only format c++ file (no code changes)

release/4.3a0
Varun Agrawal 2021-08-20 13:33:57 -04:00
parent f6a432961a
commit a4a58cf803
1 changed files with 297 additions and 274 deletions

View File

@ -11,21 +11,23 @@
/**
* @file IMUKittiExampleGPS
* @brief Example of application of ISAM2 for GPS-aided navigation on the KITTI VISION BENCHMARK SUITE
* @author Ported by Thomas Jespersen (thomasj@tkjelectronics.dk), TKJ Electronics
* @brief Example of application of ISAM2 for GPS-aided navigation on the KITTI
* VISION BENCHMARK SUITE
* @author Ported by Thomas Jespersen (thomasj@tkjelectronics.dk), TKJ
* Electronics
*/
// GTSAM related includes.
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/ISAM2Params.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <cstring>
#include <fstream>
@ -34,9 +36,9 @@
using namespace std;
using namespace gtsam;
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
struct KittiCalibration {
double body_ptx;
@ -73,9 +75,11 @@ void loadKittiData(KittiCalibration& kitti_calibration,
string line;
// Read IMU metadata and compute relative sensor pose transforms
// BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma GyroscopeSigma IntegrationSigma
// AccelerometerBiasSigma GyroscopeBiasSigma AverageDeltaT
string imu_metadata_file = findExampleDataFile("KittiEquivBiasedImu_metadata.txt");
// BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma
// GyroscopeSigma IntegrationSigma AccelerometerBiasSigma GyroscopeBiasSigma
// AverageDeltaT
string imu_metadata_file =
findExampleDataFile("KittiEquivBiasedImu_metadata.txt");
ifstream imu_metadata(imu_metadata_file.c_str());
printf("-- Reading sensor metadata\n");
@ -85,12 +89,9 @@ void loadKittiData(KittiCalibration& kitti_calibration,
// Load Kitti calibration
getline(imu_metadata, line, '\n');
sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
&kitti_calibration.body_ptx,
&kitti_calibration.body_pty,
&kitti_calibration.body_ptz,
&kitti_calibration.body_prx,
&kitti_calibration.body_pry,
&kitti_calibration.body_prz,
&kitti_calibration.body_ptx, &kitti_calibration.body_pty,
&kitti_calibration.body_ptz, &kitti_calibration.body_prx,
&kitti_calibration.body_pry, &kitti_calibration.body_prz,
&kitti_calibration.accelerometer_sigma,
&kitti_calibration.gyroscope_sigma,
&kitti_calibration.integration_sigma,
@ -98,15 +99,11 @@ void loadKittiData(KittiCalibration& kitti_calibration,
&kitti_calibration.gyroscope_bias_sigma,
&kitti_calibration.average_delta_t);
printf("IMU metadata: %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n",
kitti_calibration.body_ptx,
kitti_calibration.body_pty,
kitti_calibration.body_ptz,
kitti_calibration.body_prx,
kitti_calibration.body_pry,
kitti_calibration.body_prz,
kitti_calibration.body_ptx, kitti_calibration.body_pty,
kitti_calibration.body_ptz, kitti_calibration.body_prx,
kitti_calibration.body_pry, kitti_calibration.body_prz,
kitti_calibration.accelerometer_sigma,
kitti_calibration.gyroscope_sigma,
kitti_calibration.integration_sigma,
kitti_calibration.gyroscope_sigma, kitti_calibration.integration_sigma,
kitti_calibration.accelerometer_bias_sigma,
kitti_calibration.gyroscope_bias_sigma,
kitti_calibration.average_delta_t);
@ -119,13 +116,12 @@ void loadKittiData(KittiCalibration& kitti_calibration,
ifstream imu_data(imu_data_file.c_str());
getline(imu_data, line, '\n'); // ignore the first line
double time = 0, dt = 0, acc_x = 0, acc_y = 0, acc_z = 0, gyro_x = 0, gyro_y = 0, gyro_z = 0;
double time = 0, dt = 0, acc_x = 0, acc_y = 0, acc_z = 0, gyro_x = 0,
gyro_y = 0, gyro_z = 0;
while (!imu_data.eof()) {
getline(imu_data, line, '\n');
sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf",
&time, &dt,
&acc_x, &acc_y, &acc_z,
&gyro_x, &gyro_y, &gyro_z);
sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf", &time, &dt,
&acc_x, &acc_y, &acc_z, &gyro_x, &gyro_y, &gyro_z);
ImuMeasurement measurement;
measurement.time = time;
@ -163,12 +159,16 @@ int main(int argc, char* argv[]) {
vector<GpsMeasurement> gps_measurements;
loadKittiData(kitti_calibration, imu_measurements, gps_measurements);
Vector6 BodyP = (Vector6() << kitti_calibration.body_ptx, kitti_calibration.body_pty, kitti_calibration.body_ptz,
kitti_calibration.body_prx, kitti_calibration.body_pry, kitti_calibration.body_prz)
Vector6 BodyP =
(Vector6() << kitti_calibration.body_ptx, kitti_calibration.body_pty,
kitti_calibration.body_ptz, kitti_calibration.body_prx,
kitti_calibration.body_pry, kitti_calibration.body_prz)
.finished();
auto body_T_imu = Pose3::Expmap(BodyP);
if (!body_T_imu.equals(Pose3(), 1e-5)) {
printf("Currently only support IMUinBody is identity, i.e. IMU and body frame are the same");
printf(
"Currently only support IMUinBody is identity, i.e. IMU and body frame "
"are the same");
exit(-1);
}
@ -180,38 +180,45 @@ int main(int argc, char* argv[]) {
auto w_coriolis = Vector3::Zero(); // zero vector
// Configure noise models
auto noise_model_gps = noiseModel::Diagonal::Precisions((Vector6() << Vector3::Constant(0),
Vector3::Constant(1.0/0.07))
auto noise_model_gps = noiseModel::Diagonal::Precisions(
(Vector6() << Vector3::Constant(0), Vector3::Constant(1.0 / 0.07))
.finished());
// Set initial conditions for the estimated trajectory
// initial pose is the reference frame (navigation frame)
auto current_pose_global = Pose3(Rot3(), gps_measurements[first_gps_pose].position);
auto current_pose_global =
Pose3(Rot3(), gps_measurements[first_gps_pose].position);
// the vehicle is stationary at the beginning at position 0,0,0
Vector3 current_velocity_global = Vector3::Zero();
auto current_bias = imuBias::ConstantBias(); // init with zero bias
auto sigma_init_x = noiseModel::Diagonal::Precisions((Vector6() << Vector3::Constant(0),
Vector3::Constant(1.0))
.finished());
auto sigma_init_x = noiseModel::Diagonal::Precisions(
(Vector6() << Vector3::Constant(0), Vector3::Constant(1.0)).finished());
auto sigma_init_v = noiseModel::Diagonal::Sigmas(Vector3::Constant(1000.0));
auto sigma_init_b = noiseModel::Diagonal::Sigmas((Vector6() << Vector3::Constant(0.100),
Vector3::Constant(5.00e-05))
auto sigma_init_b = noiseModel::Diagonal::Sigmas(
(Vector6() << Vector3::Constant(0.100), Vector3::Constant(5.00e-05))
.finished());
// Set IMU preintegration parameters
Matrix33 measured_acc_cov = I_3x3 * pow(kitti_calibration.accelerometer_sigma, 2);
Matrix33 measured_omega_cov = I_3x3 * pow(kitti_calibration.gyroscope_sigma, 2);
Matrix33 measured_acc_cov =
I_3x3 * pow(kitti_calibration.accelerometer_sigma, 2);
Matrix33 measured_omega_cov =
I_3x3 * pow(kitti_calibration.gyroscope_sigma, 2);
// error committed in integrating position from velocities
Matrix33 integration_error_cov = I_3x3 * pow(kitti_calibration.integration_sigma, 2);
Matrix33 integration_error_cov =
I_3x3 * pow(kitti_calibration.integration_sigma, 2);
auto imu_params = PreintegratedImuMeasurements::Params::MakeSharedU(g);
imu_params->accelerometerCovariance = measured_acc_cov; // acc white noise in continuous
imu_params->integrationCovariance = integration_error_cov; // integration uncertainty continuous
imu_params->gyroscopeCovariance = measured_omega_cov; // gyro white noise in continuous
imu_params->accelerometerCovariance =
measured_acc_cov; // acc white noise in continuous
imu_params->integrationCovariance =
integration_error_cov; // integration uncertainty continuous
imu_params->gyroscopeCovariance =
measured_omega_cov; // gyro white noise in continuous
imu_params->omegaCoriolis = w_coriolis;
std::shared_ptr<PreintegratedImuMeasurements> current_summarized_measurement = nullptr;
std::shared_ptr<PreintegratedImuMeasurements> current_summarized_measurement =
nullptr;
// Set ISAM2 parameters and create ISAM2 solver object
ISAM2Params isam_params;
@ -220,15 +227,19 @@ int main(int argc, char* argv[]) {
ISAM2 isam(isam_params);
// Create the factor graph and values object that will store new factors and values to add to the incremental graph
// Create the factor graph and values object that will store new factors and
// values to add to the incremental graph
NonlinearFactorGraph new_factors;
Values new_values; // values storing the initial estimates of new nodes in the factor graph
Values new_values; // values storing the initial estimates of new nodes in
// the factor graph
/// Main loop:
/// (1) we read the measurements
/// (2) we create the corresponding factors in the graph
/// (3) we solve the graph to obtain and optimal estimate of robot trajectory
printf("-- Starting main loop: inference is performed at each time step, but we plot trajectory every 10 steps\n");
printf(
"-- Starting main loop: inference is performed at each time step, but we "
"plot trajectory every 10 steps\n");
size_t j = 0;
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
// At each non=IMU measurement we initialize a new node in the graph
@ -242,19 +253,24 @@ int main(int argc, char* argv[]) {
new_values.insert(current_pose_key, current_pose_global);
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, current_pose_global, sigma_init_x);
new_factors.emplace_shared<PriorFactor<Vector3>>(current_vel_key, current_velocity_global, sigma_init_v);
new_factors.emplace_shared<PriorFactor<imuBias::ConstantBias>>(current_bias_key, current_bias, sigma_init_b);
new_factors.emplace_shared<PriorFactor<Pose3>>(
current_pose_key, current_pose_global, sigma_init_x);
new_factors.emplace_shared<PriorFactor<Vector3>>(
current_vel_key, current_velocity_global, sigma_init_v);
new_factors.emplace_shared<PriorFactor<imuBias::ConstantBias>>(
current_bias_key, current_bias, sigma_init_b);
} else {
double t_previous = gps_measurements[i - 1].time;
// Summarize IMU data between the previous GPS measurement and now
current_summarized_measurement = std::make_shared<PreintegratedImuMeasurements>(imu_params, current_bias);
current_summarized_measurement =
std::make_shared<PreintegratedImuMeasurements>(imu_params,
current_bias);
static size_t included_imu_measurement_count = 0;
while (j < imu_measurements.size() && imu_measurements[j].time <= t) {
if (imu_measurements[j].time >= t_previous) {
current_summarized_measurement->integrateMeasurement(imu_measurements[j].accelerometer,
imu_measurements[j].gyroscope,
current_summarized_measurement->integrateMeasurement(
imu_measurements[j].accelerometer, imu_measurements[j].gyroscope,
imu_measurements[j].dt);
included_imu_measurement_count++;
}
@ -266,34 +282,40 @@ int main(int argc, char* argv[]) {
auto previous_vel_key = V(i - 1);
auto previous_bias_key = B(i - 1);
new_factors.emplace_shared<ImuFactor>(previous_pose_key, previous_vel_key,
current_pose_key, current_vel_key,
previous_bias_key, *current_summarized_measurement);
new_factors.emplace_shared<ImuFactor>(
previous_pose_key, previous_vel_key, current_pose_key,
current_vel_key, previous_bias_key, *current_summarized_measurement);
// Bias evolution as given in the IMU metadata
auto sigma_between_b = noiseModel::Diagonal::Sigmas((Vector6() <<
Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.accelerometer_bias_sigma),
Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.gyroscope_bias_sigma))
auto sigma_between_b = noiseModel::Diagonal::Sigmas(
(Vector6() << Vector3::Constant(
sqrt(included_imu_measurement_count) *
kitti_calibration.accelerometer_bias_sigma),
Vector3::Constant(sqrt(included_imu_measurement_count) *
kitti_calibration.gyroscope_bias_sigma))
.finished());
new_factors.emplace_shared<BetweenFactor<imuBias::ConstantBias>>(previous_bias_key,
current_bias_key,
imuBias::ConstantBias(),
new_factors.emplace_shared<BetweenFactor<imuBias::ConstantBias>>(
previous_bias_key, current_bias_key, imuBias::ConstantBias(),
sigma_between_b);
// Create GPS factor
auto gps_pose = Pose3(current_pose_global.rotation(), gps_measurements[i].position);
auto gps_pose =
Pose3(current_pose_global.rotation(), gps_measurements[i].position);
if ((i % gps_skip) == 0) {
new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, gps_pose, noise_model_gps);
new_factors.emplace_shared<PriorFactor<Pose3>>(
current_pose_key, gps_pose, noise_model_gps);
new_values.insert(current_pose_key, gps_pose);
printf("################ POSE INCLUDED AT TIME %lf ################\n", t);
printf("################ POSE INCLUDED AT TIME %lf ################\n",
t);
cout << gps_pose.translation();
printf("\n\n");
} else {
new_values.insert(current_pose_key, current_pose_global);
}
// Add initial values for velocity and bias based on the previous estimates
// Add initial values for velocity and bias based on the previous
// estimates
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
@ -302,7 +324,8 @@ int main(int argc, char* argv[]) {
// We accumulate 2*GPSskip GPS measurements before updating the solver at
// first so that the heading becomes observable.
if (i > (first_gps_pose + 2 * gps_skip)) {
printf("################ NEW FACTORS AT TIME %lf ################\n", t);
printf("################ NEW FACTORS AT TIME %lf ################\n",
t);
new_factors.print();
isam.update(new_factors, new_values);
@ -328,7 +351,8 @@ int main(int argc, char* argv[]) {
// Save results to file
printf("\nWriting results to file...\n");
FILE* fp_out = fopen(output_filename.c_str(), "w+");
fprintf(fp_out, "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n");
fprintf(fp_out,
"#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n");
Values result = isam.calculateEstimate();
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
@ -349,10 +373,9 @@ int main(int argc, char* argv[]) {
cout << "Bias:" << endl << bias << endl;
fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
gps_measurements[i].time,
pose.x(), pose.y(), pose.z(),
pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(),
gps(0), gps(1), gps(2));
gps_measurements[i].time, pose.x(), pose.y(), pose.z(),
pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(), gps(0),
gps(1), gps(2));
}
fclose(fp_out);