outlier rejection in separate fn and other readability changes
parent
634682738e
commit
a490017669
|
@ -15,7 +15,7 @@ Date: September 2020
|
|||
"""
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import Tuple, List
|
||||
from typing import List, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
@ -28,59 +28,48 @@ OUTLIER_WEIGHT_THRESHOLD = 0.1
|
|||
|
||||
|
||||
def get_data() -> Tuple[gtsam.Values, List[gtsam.BinaryMeasurementUnit3]]:
|
||||
""""Returns global rotations and unit translation directions between 8 cameras
|
||||
that lie on a circle and face the center. The poses of 8 cameras are obtained from SFMdata
|
||||
and the unit translations directions between some camera pairs are computed from their
|
||||
""""Returns global rotations and unit translation directions between 8 cameras
|
||||
that lie on a circle and face the center. The poses of 8 cameras are obtained from SFMdata
|
||||
and the unit translations directions between some camera pairs are computed from their
|
||||
global translations. """
|
||||
# Using toy dataset in SfMdata for example.
|
||||
wTc = SFMdata.createPoses(gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0))
|
||||
wTc_list = SFMdata.createPoses(gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0))
|
||||
# Rotations of the cameras in the world frame.
|
||||
wRc_values = gtsam.Values()
|
||||
# Normalized translation directions from camera i to camera j
|
||||
# in the coordinate frame of camera i.
|
||||
i_iZj_list = []
|
||||
for i in range(0, len(wTc) - 2):
|
||||
for i in range(0, len(wTc_list) - 2):
|
||||
# Add the rotation.
|
||||
wRc_values.insert(i, wTc[i].rotation())
|
||||
wRi = wTc_list[i].rotation()
|
||||
wRc_values.insert(i, wRi)
|
||||
# Create unit translation measurements with next two poses.
|
||||
for j in range(i + 1, i + 3):
|
||||
i_iZj = gtsam.Unit3(wTc[i].rotation().unrotate(
|
||||
wTc[j].translation() - wTc[i].translation()))
|
||||
# Compute the translation from pose i to pose j, in the world reference frame.
|
||||
w_itj = wTc_list[j].translation() - wTc_list[i].translation()
|
||||
# Obtain the translation in the camera i's reference frame.
|
||||
i_itj = wRi.unrotate(w_itj)
|
||||
# Compute the normalized unit translation direction.
|
||||
i_iZj = gtsam.Unit3(i_itj)
|
||||
i_iZj_list.append(gtsam.BinaryMeasurementUnit3(
|
||||
i, j, i_iZj, gtsam.noiseModel.Isotropic.Sigma(3, 0.01)))
|
||||
# Add the last two rotations.
|
||||
wRc_values.insert(len(wTc) - 1, wTc[-1].rotation())
|
||||
wRc_values.insert(len(wTc) - 2, wTc[-2].rotation())
|
||||
return (wRc_values, i_iZj_list)
|
||||
wRc_values.insert(len(wTc_list) - 1, wTc_list[-1].rotation())
|
||||
wRc_values.insert(len(wTc_list) - 2, wTc_list[-2].rotation())
|
||||
return wRc_values, i_iZj_list
|
||||
|
||||
|
||||
def estimate_poses(i_iZj_list: gtsam.BinaryMeasurementsUnit3,
|
||||
wRc_values: gtsam.Values) -> gtsam.Values:
|
||||
"""Estimate poses given rotations and normalized translation directions between cameras.
|
||||
def prune_to_inliers(w_iZj_list: gtsam.BinaryMeasurementsUnit3) -> gtsam.BinaryMeasurementsUnit3:
|
||||
"""Removes outliers from a list of Unit3 measurements that are the
|
||||
translation directions from camera i to camera j in the world frame."""
|
||||
|
||||
Args:
|
||||
iZj_list -- List of normalized translation direction measurements between camera pairs,
|
||||
Z here refers to measurements. The measurements are of camera j with reference
|
||||
to camera i (iZj), in camera i's coordinate frame (i_). iZj represents a unit
|
||||
vector to j in i's frame and is not a transformation.
|
||||
wRc_values -- Rotations of the cameras in the world frame.
|
||||
# Indices of measurements that are to be used as projection directions.
|
||||
# These are randomly chosen. All sampled directions must be unique.
|
||||
num_directions_to_sample = min(
|
||||
MAX_1DSFM_PROJECTION_DIRECTIONS, len(w_iZj_list))
|
||||
sampled_indices = np.random.choice(
|
||||
len(w_iZj_list), num_directions_to_sample, replace=False)
|
||||
|
||||
Returns:
|
||||
Values -- Estimated poses.
|
||||
"""
|
||||
|
||||
# Convert the translation direction measurements to world frame using the rotations.
|
||||
w_iZj_list = gtsam.BinaryMeasurementsUnit3()
|
||||
for i_iZj in i_iZj_list:
|
||||
w_iZj = gtsam.Unit3(wRc_values.atRot3(i_iZj.key1())
|
||||
.rotate(i_iZj.measured().point3()))
|
||||
w_iZj_list.append(gtsam.BinaryMeasurementUnit3(
|
||||
i_iZj.key1(), i_iZj.key2(), w_iZj, i_iZj.noiseModel()))
|
||||
|
||||
# Indices of measurements that are to be used as projection directions.
|
||||
# These are randomly chosen.
|
||||
sampled_indices = np.random.choice(len(w_iZj_list), min(
|
||||
MAX_1DSFM_PROJECTION_DIRECTIONS, len(w_iZj_list)), replace=False)
|
||||
# Sample projection directions from the measurements.
|
||||
projection_directions = [w_iZj_list[idx].measured()
|
||||
for idx in sampled_indices]
|
||||
|
@ -91,8 +80,8 @@ def estimate_poses(i_iZj_list: gtsam.BinaryMeasurementsUnit3,
|
|||
algorithm = gtsam.MFAS(w_iZj_list, direction)
|
||||
outlier_weights.append(algorithm.computeOutlierWeights())
|
||||
|
||||
# Compute average of outlier weights. Each outlier weight is a map from a pair of Keys
|
||||
# (camera IDs) to a weight, where weights are proportional to the probability of the edge
|
||||
# Compute average of outlier weights. Each outlier weight is a map from a pair of Keys
|
||||
# (camera IDs) to a weight, where weights are proportional to the probability of the edge
|
||||
# being an outlier.
|
||||
avg_outlier_weights = defaultdict(float)
|
||||
for outlier_weight_dict in outlier_weights:
|
||||
|
@ -101,8 +90,37 @@ def estimate_poses(i_iZj_list: gtsam.BinaryMeasurementsUnit3,
|
|||
|
||||
# Remove w_relative_tranlsations that have weight greater than threshold, these are outliers.
|
||||
w_iZj_inliers = gtsam.BinaryMeasurementsUnit3()
|
||||
[w_iZj_inliers.append(Z) for Z in w_iZj_list
|
||||
if avg_outlier_weights[(Z.key1(), Z.key2())] < OUTLIER_WEIGHT_THRESHOLD]
|
||||
[w_iZj_inliers.append(Z) for Z in w_iZj_list if avg_outlier_weights[(
|
||||
Z.key1(), Z.key2())] < OUTLIER_WEIGHT_THRESHOLD]
|
||||
|
||||
return w_iZj_inliers
|
||||
|
||||
|
||||
def estimate_poses(i_iZj_list: gtsam.BinaryMeasurementsUnit3,
|
||||
wRc_values: gtsam.Values) -> gtsam.Values:
|
||||
"""Estimate poses given rotations and normalized translation directions between cameras.
|
||||
|
||||
Args:
|
||||
i_iZj_list: List of normalized translation direction measurements between camera pairs,
|
||||
Z here refers to measurements. The measurements are of camera j with reference
|
||||
to camera i (iZj), in camera i's coordinate frame (i_). iZj represents a unit
|
||||
vector to j in i's frame and is not a transformation.
|
||||
wRc_values: Rotations of the cameras in the world frame.
|
||||
|
||||
Returns:
|
||||
Values: Estimated poses.
|
||||
"""
|
||||
|
||||
# Convert the translation direction measurements to world frame using the rotations.
|
||||
w_iZj_list = gtsam.BinaryMeasurementsUnit3()
|
||||
for i_iZj in i_iZj_list:
|
||||
w_iZj = gtsam.Unit3(wRc_values.atRot3(i_iZj.key1())
|
||||
.rotate(i_iZj.measured().point3()))
|
||||
w_iZj_list.append(gtsam.BinaryMeasurementUnit3(
|
||||
i_iZj.key1(), i_iZj.key2(), w_iZj, i_iZj.noiseModel()))
|
||||
|
||||
# Remove the outliers in the unit translation directions.
|
||||
w_iZj_inliers = prune_to_inliers(w_iZj_list)
|
||||
|
||||
# Run the optimizer to obtain translations for normalized directions.
|
||||
wtc_values = gtsam.TranslationRecovery(w_iZj_inliers).run()
|
||||
|
@ -115,8 +133,8 @@ def estimate_poses(i_iZj_list: gtsam.BinaryMeasurementsUnit3,
|
|||
|
||||
|
||||
def main():
|
||||
wRc_values, w_iZj_list = get_data()
|
||||
wTc_values = estimate_poses(w_iZj_list, wRc_values)
|
||||
wRc_values, i_iZj_list = get_data()
|
||||
wTc_values = estimate_poses(i_iZj_list, wRc_values)
|
||||
print("**** Translation averaging output ****")
|
||||
print(wTc_values)
|
||||
print("**************************************")
|
||||
|
|
Loading…
Reference in New Issue