Added example with fisheye camera using the SFM data
parent
69130fda7a
commit
a488888d40
|
@ -0,0 +1,128 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file VisualBatchExample.cpp
|
||||
* @brief A visualSLAM example for the structure-from-motion problem on a
|
||||
* simulated dataset. This version uses a fisheye camera model and a GaussNewton
|
||||
* solver to solve the graph in one batch
|
||||
* @author ghaggin
|
||||
*/
|
||||
|
||||
/**
|
||||
* A structure-from-motion example with landmarks
|
||||
* - The landmarks form a 10 meter cube
|
||||
* - The robot rotates around the landmarks, always facing towards the cube
|
||||
*/
|
||||
|
||||
// For loading the data
|
||||
#include "SFMdata.h"
|
||||
|
||||
// Camera observations of landmarks will be stored as Point2 (x, y).
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
// Each variable in the system (poses and landmarks) must be identified with a
|
||||
// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
|
||||
// (X1, X2, L1). Here we will use Symbols
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
|
||||
// Use GaussNewtonOptimizer to solve graph
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
// In GTSAM, measurement functions are represented as 'factors'. Several common
|
||||
// factors have been provided with the library for solving robotics/SLAM/Bundle
|
||||
// Adjustment problems. Here we will use Projection factors to model the
|
||||
// camera's landmark observations. Also, we will initialize the robot at some
|
||||
// location using a Prior factor.
|
||||
#include <gtsam/geometry/Cal3Fisheye.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
// Define the camera calibration parameters
|
||||
// Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
||||
boost::shared_ptr<Cal3Fisheye> K(new Cal3Fisheye(
|
||||
278.66, 278.48, 0.0, 319.75, 241.96, -0.013721808247486035, 0.020727425669427896, -0.012786476702685545, 0.0025242267320687625));
|
||||
|
||||
// Define the camera observation noise model, 1 pixel stddev
|
||||
auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
|
||||
|
||||
// Create the set of ground-truth landmarks
|
||||
vector<Point3> points = createPoints();
|
||||
|
||||
// Create the set of ground-truth poses
|
||||
vector<Pose3> poses = createPoses();
|
||||
|
||||
// Create a Factor Graph and Values to hold the new data
|
||||
NonlinearFactorGraph graph;
|
||||
Values initialEstimate;
|
||||
|
||||
// Add a prior on pose x0, 30cm std on x,y,z and 0.1 rad on roll,pitch,yaw
|
||||
static auto kPosePrior = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
|
||||
graph.emplace_shared<PriorFactor<Pose3>>(Symbol('x', 0), poses[0], kPosePrior);
|
||||
|
||||
// Add a prior on landmark l0
|
||||
static auto kPointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
|
||||
graph.emplace_shared<PriorFactor<Point3>>(Symbol('l', 0), points[0], kPointPrior);
|
||||
|
||||
// Add initial guesses to all observed landmarks
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
static Point3 kDeltaPoint(-0.25, 0.20, 0.15);
|
||||
for (size_t j = 0; j < points.size(); ++j)
|
||||
initialEstimate.insert<Point3>(Symbol('l', j), points[j] + kDeltaPoint);
|
||||
|
||||
// Loop over the poses, adding the observations to the graph
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
{
|
||||
// Add factors for each landmark observation
|
||||
for (size_t j = 0; j < points.size(); ++j)
|
||||
{
|
||||
PinholeCamera<Cal3Fisheye> camera(poses[i], *K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3Fisheye>>(
|
||||
measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K);
|
||||
}
|
||||
|
||||
// Add an initial guess for the current pose
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
static Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
initialEstimate.insert(Symbol('x', i), poses[i] * kDeltaPose);
|
||||
}
|
||||
|
||||
GaussNewtonParams params;
|
||||
params.setVerbosity("TERMINATION");
|
||||
params.maxIterations = 10000;
|
||||
|
||||
std::cout << "Optimizing the factor graph" << std::endl;
|
||||
GaussNewtonOptimizer optimizer(graph, initialEstimate, params);
|
||||
Values result = optimizer.optimize();
|
||||
std::cout << "Optimization complete" << std::endl;
|
||||
|
||||
std::cout << "initial error=" << graph.error(initialEstimate) << std::endl;
|
||||
std::cout << "final error=" << graph.error(result) << std::endl;
|
||||
|
||||
std::ofstream os("examples/vio_batch.dot");
|
||||
graph.saveGraph(os, result);
|
||||
|
||||
return 0;
|
||||
}
|
||||
/* ************************************************************************* */
|
Loading…
Reference in New Issue