all tests are passing!

release/4.3a0
lcarlone 2021-07-20 22:05:36 -04:00
parent 0d1c3f16ef
commit a480b2dcfc
1 changed files with 185 additions and 127 deletions

View File

@ -93,144 +93,202 @@ TEST( ProjectionFactorRollingShutter, Equals ) {
TEST( ProjectionFactorRollingShutter, EqualsWithTransform ) {
{ // factors are equal
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K, body_P_sensor);
poseKey1, poseKey2, pointKey, K, body_P_sensor);
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K, body_P_sensor);
poseKey1, poseKey2, pointKey, K, body_P_sensor);
CHECK(assert_equal(factor1, factor2));
}
{ // factors are NOT equal
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K, body_P_sensor);
poseKey1, poseKey2, pointKey, K, body_P_sensor);
Pose3 body_P_sensor2(Rot3::RzRyRx(0.0, 0.0, 0.0), Point3(0.25, -0.10, 1.0)); // rotation different from body_P_sensor
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K, body_P_sensor2);
poseKey1, poseKey2, pointKey, K, body_P_sensor2);
CHECK(!assert_equal(factor1, factor2));
}
}
///* ************************************************************************* */
//TEST( ProjectionFactorRollingShutter, Error ) {
// // Create the factor with a measurement that is 3 pixels off in x
// Key poseKey(X(1));
// Key transformKey(T(1));
// Key pointKey(L(1));
// Point2 measurement(323.0, 240.0);
// ProjectionFactorRollingShutter factor(measurement, model, poseKey, transformKey, pointKey, K);
//
// // Set the linearization point
// Pose3 pose(Rot3(), Point3(0,0,-6));
// Point3 point(0.0, 0.0, 0.0);
//
// // Use the factor to calculate the error
// Vector actualError(factor.evaluateError(pose, Pose3(), point));
//
// // The expected error is (-3.0, 0.0) pixels / UnitCovariance
// Vector expectedError = Vector2(-3.0, 0.0);
//
// // Verify we get the expected error
// CHECK(assert_equal(expectedError, actualError, 1e-9));
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactorRollingShutter, ErrorWithTransform ) {
// // Create the factor with a measurement that is 3 pixels off in x
// Key poseKey(X(1));
// Key transformKey(T(1));
// Key pointKey(L(1));
// Point2 measurement(323.0, 240.0);
// Pose3 transform(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
// ProjectionFactorRollingShutter factor(measurement, model, poseKey,transformKey, pointKey, K);
//
// // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
// Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
// Point3 point(0.0, 0.0, 0.0);
//
// // Use the factor to calculate the error
// Vector actualError(factor.evaluateError(pose, transform, point));
//
// // The expected error is (-3.0, 0.0) pixels / UnitCovariance
// Vector expectedError = Vector2(-3.0, 0.0);
//
// // Verify we get the expected error
// CHECK(assert_equal(expectedError, actualError, 1e-9));
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactorRollingShutter, Jacobian ) {
// // Create the factor with a measurement that is 3 pixels off in x
// Key poseKey(X(1));
// Key transformKey(T(1));
// Key pointKey(L(1));
// Point2 measurement(323.0, 240.0);
// ProjectionFactorRollingShutter factor(measurement, model, poseKey, transformKey, pointKey, K);
//
// // Set the linearization point
// Pose3 pose(Rot3(), Point3(0,0,-6));
// Point3 point(0.0, 0.0, 0.0);
//
// // Use the factor to calculate the Jacobians
// Matrix H1Actual, H2Actual, H3Actual;
// factor.evaluateError(pose, Pose3(), point, H1Actual, H2Actual, H3Actual);
//
// // The expected Jacobians
// Matrix H1Expected = (Matrix(2, 6) << 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.).finished();
// Matrix H3Expected = (Matrix(2, 3) << 92.376, 0., 0., 0., 92.376, 0.).finished();
//
// // Verify the Jacobians are correct
// CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
// CHECK(assert_equal(H3Expected, H3Actual, 1e-3));
//
// // Verify H2 with numerical derivative
// Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
// std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
// std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
// std::placeholders::_1, std::placeholders::_2,
// std::placeholders::_3, boost::none, boost::none,
// boost::none)),
// pose, Pose3(), point);
//
// CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactorRollingShutter, JacobianWithTransform ) {
// // Create the factor with a measurement that is 3 pixels off in x
// Key poseKey(X(1));
// Key transformKey(T(1));
// Key pointKey(L(1));
// Point2 measurement(323.0, 240.0);
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
// ProjectionFactorRollingShutter factor(measurement, model, poseKey, transformKey, pointKey, K);
//
// // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
// Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
// Point3 point(0.0, 0.0, 0.0);
//
// // Use the factor to calculate the Jacobians
// Matrix H1Actual, H2Actual, H3Actual;
// factor.evaluateError(pose, body_P_sensor, point, H1Actual, H2Actual, H3Actual);
//
// // The expected Jacobians
// Matrix H1Expected = (Matrix(2, 6) << -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376).finished();
// Matrix H3Expected = (Matrix(2, 3) << 0., -92.376, 0., 0., 0., -92.376).finished();
//
// // Verify the Jacobians are correct
// CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
// CHECK(assert_equal(H3Expected, H3Actual, 1e-3));
//
// // Verify H2 with numerical derivative
// Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
// std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
// std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
// std::placeholders::_1, std::placeholders::_2,
// std::placeholders::_3, boost::none, boost::none,
// boost::none)),
// pose, body_P_sensor, point);
//
// CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
//
//
//}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, Error ) {
{
// Create the factor with a measurement that is 3 pixels off in x
// Camera pose corresponds to the first camera
double t = 0.0;
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1, poseKey2, pointKey, K);
// Set the linearization point
Pose3 pose1(Rot3(), Point3(0,0,-6));
Pose3 pose2(Rot3(), Point3(0,0,-4));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
// The expected error is (-3.0, 0.0) pixels / UnitCovariance
Vector expectedError = Vector2(-3.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
{
// Create the factor with a measurement that is 3 pixels off in x
// Camera pose is actually interpolated now
double t = 0.5;
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1, poseKey2, pointKey, K);
// Set the linearization point
Pose3 pose1(Rot3(), Point3(0,0,-8));
Pose3 pose2(Rot3(), Point3(0,0,-4));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
// The expected error is (-3.0, 0.0) pixels / UnitCovariance
Vector expectedError = Vector2(-3.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
{
// Create measurement by projecting 3D landmark
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
// The expected error is zero
Vector expectedError = Vector2(0.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, ErrorWithTransform ) {
// Create measurement by projecting 3D landmark
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0.2,0.1));
PinholeCamera<Cal3_S2> camera(poseInterp*body_P_sensor3, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K, body_P_sensor3);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
// The expected error is zero
Vector expectedError = Vector2(0.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, Jacobian ) {
// Create measurement by projecting 3D landmark
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual;
factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
// Expected Jacobians via numerical derivatives
Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
}
/* ************************************************************************* */
TEST( ProjectionFactorRollingShutter, JacobianWithTransform ) {
// Create measurement by projecting 3D landmark
double t = 0.6;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0.2,0.1));
PinholeCamera<Cal3_S2> camera(poseInterp*body_P_sensor3, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K, body_P_sensor3);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual;
factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
// Expected Jacobians via numerical derivatives
Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, boost::none, boost::none, boost::none)),
pose1, pose2, point);
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }