Merge pull request #1372 from borglab/hybrid/simplifiedAPI
Simplified AP for HybridBayesNetrelease/4.3a0
commit
a3b177c604
|
@ -42,13 +42,21 @@ const GaussianMixture::Conditionals &GaussianMixture::conditionals() const {
|
|||
return conditionals_;
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
GaussianMixture::GaussianMixture(
|
||||
KeyVector &&continuousFrontals, KeyVector &&continuousParents,
|
||||
DiscreteKeys &&discreteParents,
|
||||
std::vector<GaussianConditional::shared_ptr> &&conditionals)
|
||||
: GaussianMixture(continuousFrontals, continuousParents, discreteParents,
|
||||
Conditionals(discreteParents, conditionals)) {}
|
||||
|
||||
/* *******************************************************************************/
|
||||
GaussianMixture::GaussianMixture(
|
||||
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
|
||||
const DiscreteKeys &discreteParents,
|
||||
const std::vector<GaussianConditional::shared_ptr> &conditionalsList)
|
||||
const std::vector<GaussianConditional::shared_ptr> &conditionals)
|
||||
: GaussianMixture(continuousFrontals, continuousParents, discreteParents,
|
||||
Conditionals(discreteParents, conditionalsList)) {}
|
||||
Conditionals(discreteParents, conditionals)) {}
|
||||
|
||||
/* *******************************************************************************/
|
||||
GaussianFactorGraphTree GaussianMixture::add(
|
||||
|
|
|
@ -104,6 +104,18 @@ class GTSAM_EXPORT GaussianMixture
|
|||
const DiscreteKeys &discreteParents,
|
||||
const Conditionals &conditionals);
|
||||
|
||||
/**
|
||||
* @brief Make a Gaussian Mixture from a list of Gaussian conditionals
|
||||
*
|
||||
* @param continuousFrontals The continuous frontal variables
|
||||
* @param continuousParents The continuous parent variables
|
||||
* @param discreteParents Discrete parents variables
|
||||
* @param conditionals List of conditionals
|
||||
*/
|
||||
GaussianMixture(KeyVector &&continuousFrontals, KeyVector &&continuousParents,
|
||||
DiscreteKeys &&discreteParents,
|
||||
std::vector<GaussianConditional::shared_ptr> &&conditionals);
|
||||
|
||||
/**
|
||||
* @brief Make a Gaussian Mixture from a list of Gaussian conditionals
|
||||
*
|
||||
|
|
|
@ -197,8 +197,7 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
|||
prunedGaussianMixture->prune(*decisionTree); // imperative :-(
|
||||
|
||||
// Type-erase and add to the pruned Bayes Net fragment.
|
||||
prunedBayesNetFragment.push_back(
|
||||
boost::make_shared<HybridConditional>(prunedGaussianMixture));
|
||||
prunedBayesNetFragment.push_back(prunedGaussianMixture);
|
||||
|
||||
} else {
|
||||
// Add the non-GaussianMixture conditional
|
||||
|
@ -209,21 +208,6 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
|||
return prunedBayesNetFragment;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianMixture::shared_ptr HybridBayesNet::atMixture(size_t i) const {
|
||||
return at(i)->asMixture();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianConditional::shared_ptr HybridBayesNet::atGaussian(size_t i) const {
|
||||
return at(i)->asGaussian();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
DiscreteConditional::shared_ptr HybridBayesNet::atDiscrete(size_t i) const {
|
||||
return at(i)->asDiscrete();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianBayesNet HybridBayesNet::choose(
|
||||
const DiscreteValues &assignment) const {
|
||||
|
|
|
@ -63,55 +63,26 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
/// @{
|
||||
|
||||
/// Add HybridConditional to Bayes Net
|
||||
using Base::add;
|
||||
using Base::emplace_shared;
|
||||
|
||||
/// Add a Gaussian Mixture to the Bayes Net.
|
||||
void addMixture(const GaussianMixture::shared_ptr &ptr) {
|
||||
push_back(HybridConditional(ptr));
|
||||
/// Add a conditional directly using a pointer.
|
||||
template <class Conditional>
|
||||
void emplace_back(Conditional *conditional) {
|
||||
factors_.push_back(boost::make_shared<HybridConditional>(
|
||||
boost::shared_ptr<Conditional>(conditional)));
|
||||
}
|
||||
|
||||
/// Add a Gaussian conditional to the Bayes Net.
|
||||
void addGaussian(const GaussianConditional::shared_ptr &ptr) {
|
||||
push_back(HybridConditional(ptr));
|
||||
/// Add a conditional directly using a shared_ptr.
|
||||
void push_back(boost::shared_ptr<HybridConditional> conditional) {
|
||||
factors_.push_back(conditional);
|
||||
}
|
||||
|
||||
/// Add a discrete conditional to the Bayes Net.
|
||||
void addDiscrete(const DiscreteConditional::shared_ptr &ptr) {
|
||||
push_back(HybridConditional(ptr));
|
||||
/// Add a conditional directly using implicit conversion.
|
||||
void push_back(HybridConditional &&conditional) {
|
||||
factors_.push_back(
|
||||
boost::make_shared<HybridConditional>(std::move(conditional)));
|
||||
}
|
||||
|
||||
/// Add a Gaussian Mixture to the Bayes Net.
|
||||
template <typename... T>
|
||||
void emplaceMixture(T &&...args) {
|
||||
push_back(HybridConditional(
|
||||
boost::make_shared<GaussianMixture>(std::forward<T>(args)...)));
|
||||
}
|
||||
|
||||
/// Add a Gaussian conditional to the Bayes Net.
|
||||
template <typename... T>
|
||||
void emplaceGaussian(T &&...args) {
|
||||
push_back(HybridConditional(
|
||||
boost::make_shared<GaussianConditional>(std::forward<T>(args)...)));
|
||||
}
|
||||
|
||||
/// Add a discrete conditional to the Bayes Net.
|
||||
template <typename... T>
|
||||
void emplaceDiscrete(T &&...args) {
|
||||
push_back(HybridConditional(
|
||||
boost::make_shared<DiscreteConditional>(std::forward<T>(args)...)));
|
||||
}
|
||||
|
||||
using Base::push_back;
|
||||
|
||||
/// Get a specific Gaussian mixture by index `i`.
|
||||
GaussianMixture::shared_ptr atMixture(size_t i) const;
|
||||
|
||||
/// Get a specific Gaussian conditional by index `i`.
|
||||
GaussianConditional::shared_ptr atGaussian(size_t i) const;
|
||||
|
||||
/// Get a specific discrete conditional by index `i`.
|
||||
DiscreteConditional::shared_ptr atDiscrete(size_t i) const;
|
||||
|
||||
/**
|
||||
* @brief Get the Gaussian Bayes Net which corresponds to a specific discrete
|
||||
* value assignment.
|
||||
|
|
|
@ -39,7 +39,7 @@ HybridConditional::HybridConditional(const KeyVector &continuousFrontals,
|
|||
|
||||
/* ************************************************************************ */
|
||||
HybridConditional::HybridConditional(
|
||||
boost::shared_ptr<GaussianConditional> continuousConditional)
|
||||
const boost::shared_ptr<GaussianConditional> &continuousConditional)
|
||||
: HybridConditional(continuousConditional->keys(), {},
|
||||
continuousConditional->nrFrontals()) {
|
||||
inner_ = continuousConditional;
|
||||
|
@ -47,7 +47,7 @@ HybridConditional::HybridConditional(
|
|||
|
||||
/* ************************************************************************ */
|
||||
HybridConditional::HybridConditional(
|
||||
boost::shared_ptr<DiscreteConditional> discreteConditional)
|
||||
const boost::shared_ptr<DiscreteConditional> &discreteConditional)
|
||||
: HybridConditional({}, discreteConditional->discreteKeys(),
|
||||
discreteConditional->nrFrontals()) {
|
||||
inner_ = discreteConditional;
|
||||
|
@ -55,7 +55,7 @@ HybridConditional::HybridConditional(
|
|||
|
||||
/* ************************************************************************ */
|
||||
HybridConditional::HybridConditional(
|
||||
boost::shared_ptr<GaussianMixture> gaussianMixture)
|
||||
const boost::shared_ptr<GaussianMixture> &gaussianMixture)
|
||||
: BaseFactor(KeyVector(gaussianMixture->keys().begin(),
|
||||
gaussianMixture->keys().begin() +
|
||||
gaussianMixture->nrContinuous()),
|
||||
|
|
|
@ -111,7 +111,7 @@ class GTSAM_EXPORT HybridConditional
|
|||
* HybridConditional.
|
||||
*/
|
||||
HybridConditional(
|
||||
boost::shared_ptr<GaussianConditional> continuousConditional);
|
||||
const boost::shared_ptr<GaussianConditional>& continuousConditional);
|
||||
|
||||
/**
|
||||
* @brief Construct a new Hybrid Conditional object
|
||||
|
@ -119,7 +119,8 @@ class GTSAM_EXPORT HybridConditional
|
|||
* @param discreteConditional Conditional used to create the
|
||||
* HybridConditional.
|
||||
*/
|
||||
HybridConditional(boost::shared_ptr<DiscreteConditional> discreteConditional);
|
||||
HybridConditional(
|
||||
const boost::shared_ptr<DiscreteConditional>& discreteConditional);
|
||||
|
||||
/**
|
||||
* @brief Construct a new Hybrid Conditional object
|
||||
|
@ -127,7 +128,7 @@ class GTSAM_EXPORT HybridConditional
|
|||
* @param gaussianMixture Gaussian Mixture Conditional used to create the
|
||||
* HybridConditional.
|
||||
*/
|
||||
HybridConditional(boost::shared_ptr<GaussianMixture> gaussianMixture);
|
||||
HybridConditional(const boost::shared_ptr<GaussianMixture>& gaussianMixture);
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
|
|
|
@ -46,7 +46,7 @@ void HybridSmoother::update(HybridGaussianFactorGraph graph,
|
|||
}
|
||||
|
||||
// Add the partial bayes net to the posterior bayes net.
|
||||
hybridBayesNet_.push_back<HybridBayesNet>(*bayesNetFragment);
|
||||
hybridBayesNet_.add(*bayesNetFragment);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -100,7 +100,7 @@ HybridSmoother::addConditionals(const HybridGaussianFactorGraph &originalGraph,
|
|||
/* ************************************************************************* */
|
||||
GaussianMixture::shared_ptr HybridSmoother::gaussianMixture(
|
||||
size_t index) const {
|
||||
return hybridBayesNet_.atMixture(index);
|
||||
return hybridBayesNet_.at(index)->asMixture();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -135,29 +135,9 @@ class HybridBayesTree {
|
|||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
class HybridBayesNet {
|
||||
HybridBayesNet();
|
||||
void add(const gtsam::HybridConditional& s);
|
||||
void addMixture(const gtsam::GaussianMixture* s);
|
||||
void addGaussian(const gtsam::GaussianConditional* s);
|
||||
void addDiscrete(const gtsam::DiscreteConditional* s);
|
||||
|
||||
void emplaceMixture(const gtsam::GaussianMixture& s);
|
||||
void emplaceMixture(const gtsam::KeyVector& continuousFrontals,
|
||||
const gtsam::KeyVector& continuousParents,
|
||||
const gtsam::DiscreteKeys& discreteParents,
|
||||
const std::vector<gtsam::GaussianConditional::shared_ptr>&
|
||||
conditionalsList);
|
||||
void emplaceGaussian(const gtsam::GaussianConditional& s);
|
||||
void emplaceDiscrete(const gtsam::DiscreteConditional& s);
|
||||
void emplaceDiscrete(const gtsam::DiscreteKey& key, string spec);
|
||||
void emplaceDiscrete(const gtsam::DiscreteKey& key,
|
||||
const gtsam::DiscreteKeys& parents, string spec);
|
||||
void emplaceDiscrete(const gtsam::DiscreteKey& key,
|
||||
const std::vector<gtsam::DiscreteKey>& parents,
|
||||
string spec);
|
||||
|
||||
gtsam::GaussianMixture* atMixture(size_t i) const;
|
||||
gtsam::GaussianConditional* atGaussian(size_t i) const;
|
||||
gtsam::DiscreteConditional* atDiscrete(size_t i) const;
|
||||
void push_back(const gtsam::GaussianMixture* s);
|
||||
void push_back(const gtsam::GaussianConditional* s);
|
||||
void push_back(const gtsam::DiscreteConditional* s);
|
||||
|
||||
bool empty() const;
|
||||
size_t size() const;
|
||||
|
|
|
@ -43,22 +43,22 @@ inline HybridBayesNet createHybridBayesNet(int num_measurements = 1,
|
|||
// Create Gaussian mixture z_i = x0 + noise for each measurement.
|
||||
for (int i = 0; i < num_measurements; i++) {
|
||||
const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode;
|
||||
GaussianMixture gm({Z(i)}, {X(0)}, {mode_i},
|
||||
{GaussianConditional::sharedMeanAndStddev(
|
||||
Z(i), I_1x1, X(0), Z_1x1, 0.5),
|
||||
GaussianConditional::sharedMeanAndStddev(
|
||||
Z(i), I_1x1, X(0), Z_1x1, 3)});
|
||||
bayesNet.emplaceMixture(gm); // copy :-(
|
||||
bayesNet.emplace_back(
|
||||
new GaussianMixture({Z(i)}, {X(0)}, {mode_i},
|
||||
{GaussianConditional::sharedMeanAndStddev(
|
||||
Z(i), I_1x1, X(0), Z_1x1, 0.5),
|
||||
GaussianConditional::sharedMeanAndStddev(
|
||||
Z(i), I_1x1, X(0), Z_1x1, 3)}));
|
||||
}
|
||||
|
||||
// Create prior on X(0).
|
||||
bayesNet.addGaussian(
|
||||
bayesNet.push_back(
|
||||
GaussianConditional::sharedMeanAndStddev(X(0), Vector1(5.0), 0.5));
|
||||
|
||||
// Add prior on mode.
|
||||
const size_t nrModes = manyModes ? num_measurements : 1;
|
||||
for (int i = 0; i < nrModes; i++) {
|
||||
bayesNet.emplaceDiscrete(DiscreteKey{M(i), 2}, "4/6");
|
||||
bayesNet.emplace_back(new DiscreteConditional({M(i), 2}, "4/6"));
|
||||
}
|
||||
return bayesNet;
|
||||
}
|
||||
|
|
|
@ -42,21 +42,21 @@ static const DiscreteKey Asia(asiaKey, 2);
|
|||
// Test creation of a pure discrete Bayes net.
|
||||
TEST(HybridBayesNet, Creation) {
|
||||
HybridBayesNet bayesNet;
|
||||
bayesNet.emplaceDiscrete(Asia, "99/1");
|
||||
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1"));
|
||||
|
||||
DiscreteConditional expected(Asia, "99/1");
|
||||
CHECK(bayesNet.atDiscrete(0));
|
||||
EXPECT(assert_equal(expected, *bayesNet.atDiscrete(0)));
|
||||
CHECK(bayesNet.at(0)->asDiscrete());
|
||||
EXPECT(assert_equal(expected, *bayesNet.at(0)->asDiscrete()));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test adding a Bayes net to another one.
|
||||
TEST(HybridBayesNet, Add) {
|
||||
HybridBayesNet bayesNet;
|
||||
bayesNet.emplaceDiscrete(Asia, "99/1");
|
||||
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1"));
|
||||
|
||||
HybridBayesNet other;
|
||||
other.push_back(bayesNet);
|
||||
other.add(bayesNet);
|
||||
EXPECT(bayesNet.equals(other));
|
||||
}
|
||||
|
||||
|
@ -64,7 +64,7 @@ TEST(HybridBayesNet, Add) {
|
|||
// Test evaluate for a pure discrete Bayes net P(Asia).
|
||||
TEST(HybridBayesNet, EvaluatePureDiscrete) {
|
||||
HybridBayesNet bayesNet;
|
||||
bayesNet.emplaceDiscrete(Asia, "99/1");
|
||||
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1"));
|
||||
HybridValues values;
|
||||
values.insert(asiaKey, 0);
|
||||
EXPECT_DOUBLES_EQUAL(0.99, bayesNet.evaluate(values), 1e-9);
|
||||
|
@ -80,7 +80,7 @@ TEST(HybridBayesNet, Tiny) {
|
|||
/* ****************************************************************************/
|
||||
// Test evaluate for a hybrid Bayes net P(X0|X1) P(X1|Asia) P(Asia).
|
||||
TEST(HybridBayesNet, evaluateHybrid) {
|
||||
const auto continuousConditional = GaussianConditional::FromMeanAndStddev(
|
||||
const auto continuousConditional = GaussianConditional::sharedMeanAndStddev(
|
||||
X(0), 2 * I_1x1, X(1), Vector1(-4.0), 5.0);
|
||||
|
||||
const SharedDiagonal model0 = noiseModel::Diagonal::Sigmas(Vector1(2.0)),
|
||||
|
@ -93,10 +93,11 @@ TEST(HybridBayesNet, evaluateHybrid) {
|
|||
|
||||
// Create hybrid Bayes net.
|
||||
HybridBayesNet bayesNet;
|
||||
bayesNet.emplaceGaussian(continuousConditional);
|
||||
GaussianMixture gm({X(1)}, {}, {Asia}, {conditional0, conditional1});
|
||||
bayesNet.emplaceMixture(gm); // copy :-(
|
||||
bayesNet.emplaceDiscrete(Asia, "99/1");
|
||||
bayesNet.push_back(GaussianConditional::sharedMeanAndStddev(
|
||||
X(0), 2 * I_1x1, X(1), Vector1(-4.0), 5.0));
|
||||
bayesNet.emplace_back(
|
||||
new GaussianMixture({X(1)}, {}, {Asia}, {conditional0, conditional1}));
|
||||
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1"));
|
||||
|
||||
// Create values at which to evaluate.
|
||||
HybridValues values;
|
||||
|
@ -105,7 +106,7 @@ TEST(HybridBayesNet, evaluateHybrid) {
|
|||
values.insert(X(1), Vector1(1));
|
||||
|
||||
const double conditionalProbability =
|
||||
continuousConditional.evaluate(values.continuous());
|
||||
continuousConditional->evaluate(values.continuous());
|
||||
const double mixtureProbability = conditional0->evaluate(values.continuous());
|
||||
EXPECT_DOUBLES_EQUAL(conditionalProbability * mixtureProbability * 0.99,
|
||||
bayesNet.evaluate(values), 1e-9);
|
||||
|
@ -135,17 +136,13 @@ TEST(HybridBayesNet, Choose) {
|
|||
|
||||
EXPECT_LONGS_EQUAL(4, gbn.size());
|
||||
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atMixture(0)))(assignment),
|
||||
EXPECT(assert_equal(*(*hybridBayesNet->at(0)->asMixture())(assignment),
|
||||
*gbn.at(0)));
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atMixture(1)))(assignment),
|
||||
EXPECT(assert_equal(*(*hybridBayesNet->at(1)->asMixture())(assignment),
|
||||
*gbn.at(1)));
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atMixture(2)))(assignment),
|
||||
EXPECT(assert_equal(*(*hybridBayesNet->at(2)->asMixture())(assignment),
|
||||
*gbn.at(2)));
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atMixture(3)))(assignment),
|
||||
EXPECT(assert_equal(*(*hybridBayesNet->at(3)->asMixture())(assignment),
|
||||
*gbn.at(3)));
|
||||
}
|
||||
|
||||
|
@ -247,11 +244,12 @@ TEST(HybridBayesNet, Error) {
|
|||
double total_error = 0;
|
||||
for (size_t idx = 0; idx < hybridBayesNet->size(); idx++) {
|
||||
if (hybridBayesNet->at(idx)->isHybrid()) {
|
||||
double error = hybridBayesNet->atMixture(idx)->error(
|
||||
double error = hybridBayesNet->at(idx)->asMixture()->error(
|
||||
{delta.continuous(), discrete_values});
|
||||
total_error += error;
|
||||
} else if (hybridBayesNet->at(idx)->isContinuous()) {
|
||||
double error = hybridBayesNet->atGaussian(idx)->error(delta.continuous());
|
||||
double error =
|
||||
hybridBayesNet->at(idx)->asGaussian()->error(delta.continuous());
|
||||
total_error += error;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -310,7 +310,7 @@ TEST(HybridEstimation, Probability) {
|
|||
for (auto discrete_conditional : *discreteBayesNet) {
|
||||
bayesNet->add(discrete_conditional);
|
||||
}
|
||||
auto discreteConditional = discreteBayesNet->atDiscrete(0);
|
||||
auto discreteConditional = discreteBayesNet->at(0)->asDiscrete();
|
||||
|
||||
HybridValues hybrid_values = bayesNet->optimize();
|
||||
|
||||
|
|
|
@ -677,11 +677,11 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1) {
|
|||
X(0), Vector1(14.1421), I_1x1 * 2.82843),
|
||||
conditional1 = boost::make_shared<GaussianConditional>(
|
||||
X(0), Vector1(10.1379), I_1x1 * 2.02759);
|
||||
GaussianMixture gm({X(0)}, {}, {mode}, {conditional0, conditional1});
|
||||
expectedBayesNet.emplaceMixture(gm); // copy :-(
|
||||
expectedBayesNet.emplace_back(
|
||||
new GaussianMixture({X(0)}, {}, {mode}, {conditional0, conditional1}));
|
||||
|
||||
// Add prior on mode.
|
||||
expectedBayesNet.emplaceDiscrete(mode, "74/26");
|
||||
expectedBayesNet.emplace_back(new DiscreteConditional(mode, "74/26"));
|
||||
|
||||
// Test elimination
|
||||
Ordering ordering;
|
||||
|
@ -712,11 +712,11 @@ TEST(HybridGaussianFactorGraph, EliminateTiny2) {
|
|||
X(0), Vector1(17.3205), I_1x1 * 3.4641),
|
||||
conditional1 = boost::make_shared<GaussianConditional>(
|
||||
X(0), Vector1(10.274), I_1x1 * 2.0548);
|
||||
GaussianMixture gm({X(0)}, {}, {mode}, {conditional0, conditional1});
|
||||
expectedBayesNet.emplaceMixture(gm); // copy :-(
|
||||
expectedBayesNet.emplace_back(
|
||||
new GaussianMixture({X(0)}, {}, {mode}, {conditional0, conditional1}));
|
||||
|
||||
// Add prior on mode.
|
||||
expectedBayesNet.emplaceDiscrete(mode, "23/77");
|
||||
expectedBayesNet.emplace_back(new DiscreteConditional(mode, "23/77"));
|
||||
|
||||
// Test elimination
|
||||
Ordering ordering;
|
||||
|
@ -764,13 +764,10 @@ TEST(HybridGaussianFactorGraph, EliminateTiny22) {
|
|||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.018253037966018862, expected_ratio, 1e-6);
|
||||
|
||||
// 3. Do sampling
|
||||
// Test ratios for a number of independent samples:
|
||||
constexpr int num_samples = 100;
|
||||
for (size_t i = 0; i < num_samples; i++) {
|
||||
// Sample from the bayes net
|
||||
HybridValues sample = bn.sample(&rng);
|
||||
|
||||
// Check that the ratio is constant.
|
||||
EXPECT_DOUBLES_EQUAL(expected_ratio, compute_ratio(&sample), 1e-6);
|
||||
}
|
||||
}
|
||||
|
@ -787,34 +784,34 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|||
for (size_t t : {0, 1, 2}) {
|
||||
// Create Gaussian mixture on Z(t) conditioned on X(t) and mode N(t):
|
||||
const auto noise_mode_t = DiscreteKey{N(t), 2};
|
||||
GaussianMixture gm({Z(t)}, {X(t)}, {noise_mode_t},
|
||||
{GaussianConditional::sharedMeanAndStddev(
|
||||
Z(t), I_1x1, X(t), Z_1x1, 0.5),
|
||||
GaussianConditional::sharedMeanAndStddev(
|
||||
Z(t), I_1x1, X(t), Z_1x1, 3.0)});
|
||||
bn.emplaceMixture(gm); // copy :-(
|
||||
bn.emplace_back(
|
||||
new GaussianMixture({Z(t)}, {X(t)}, {noise_mode_t},
|
||||
{GaussianConditional::sharedMeanAndStddev(
|
||||
Z(t), I_1x1, X(t), Z_1x1, 0.5),
|
||||
GaussianConditional::sharedMeanAndStddev(
|
||||
Z(t), I_1x1, X(t), Z_1x1, 3.0)}));
|
||||
|
||||
// Create prior on discrete mode M(t):
|
||||
bn.emplaceDiscrete(noise_mode_t, "20/80");
|
||||
bn.emplace_back(new DiscreteConditional(noise_mode_t, "20/80"));
|
||||
}
|
||||
|
||||
// Add motion models:
|
||||
for (size_t t : {2, 1}) {
|
||||
// Create Gaussian mixture on X(t) conditioned on X(t-1) and mode M(t-1):
|
||||
const auto motion_model_t = DiscreteKey{M(t), 2};
|
||||
GaussianMixture gm({X(t)}, {X(t - 1)}, {motion_model_t},
|
||||
{GaussianConditional::sharedMeanAndStddev(
|
||||
X(t), I_1x1, X(t - 1), Z_1x1, 0.2),
|
||||
GaussianConditional::sharedMeanAndStddev(
|
||||
X(t), I_1x1, X(t - 1), I_1x1, 0.2)});
|
||||
bn.emplaceMixture(gm); // copy :-(
|
||||
bn.emplace_back(
|
||||
new GaussianMixture({X(t)}, {X(t - 1)}, {motion_model_t},
|
||||
{GaussianConditional::sharedMeanAndStddev(
|
||||
X(t), I_1x1, X(t - 1), Z_1x1, 0.2),
|
||||
GaussianConditional::sharedMeanAndStddev(
|
||||
X(t), I_1x1, X(t - 1), I_1x1, 0.2)}));
|
||||
|
||||
// Create prior on motion model M(t):
|
||||
bn.emplaceDiscrete(motion_model_t, "40/60");
|
||||
bn.emplace_back(new DiscreteConditional(motion_model_t, "40/60"));
|
||||
}
|
||||
|
||||
// Create Gaussian prior on continuous X(0) using sharedMeanAndStddev:
|
||||
bn.addGaussian(GaussianConditional::sharedMeanAndStddev(X(0), Z_1x1, 0.1));
|
||||
bn.push_back(GaussianConditional::sharedMeanAndStddev(X(0), Z_1x1, 0.1));
|
||||
|
||||
// Make sure we an sample from the Bayes net:
|
||||
EXPECT_LONGS_EQUAL(6, bn.sample().continuous().size());
|
||||
|
@ -822,7 +819,7 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|||
// Create measurements consistent with moving right every time:
|
||||
const VectorValues measurements{
|
||||
{Z(0), Vector1(0.0)}, {Z(1), Vector1(1.0)}, {Z(2), Vector1(2.0)}};
|
||||
const auto fg = bn.toFactorGraph(measurements);
|
||||
const HybridGaussianFactorGraph fg = bn.toFactorGraph(measurements);
|
||||
|
||||
// Create ordering that eliminates in time order, then discrete modes:
|
||||
Ordering ordering;
|
||||
|
@ -835,11 +832,11 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|||
ordering.push_back(M(1));
|
||||
ordering.push_back(M(2));
|
||||
|
||||
// Test elimination result has correct size:
|
||||
const auto posterior = fg.eliminateSequential(ordering);
|
||||
// Do elimination:
|
||||
const HybridBayesNet::shared_ptr posterior = fg.eliminateSequential(ordering);
|
||||
// GTSAM_PRINT(*posterior);
|
||||
|
||||
// Test elimination result has correct size:
|
||||
// Test resulting posterior Bayes net has correct size:
|
||||
EXPECT_LONGS_EQUAL(8, posterior->size());
|
||||
|
||||
// TODO(dellaert): below is copy/pasta from above, refactor
|
||||
|
@ -861,13 +858,10 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.0094526745785019472, expected_ratio, 1e-6);
|
||||
|
||||
// 3. Do sampling
|
||||
// Test ratios for a number of independent samples:
|
||||
constexpr int num_samples = 100;
|
||||
for (size_t i = 0; i < num_samples; i++) {
|
||||
// Sample from the bayes net
|
||||
HybridValues sample = bn.sample(&rng);
|
||||
|
||||
// Check that the ratio is constant.
|
||||
EXPECT_DOUBLES_EQUAL(expected_ratio, compute_ratio(&sample), 1e-6);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -16,13 +16,13 @@ import numpy as np
|
|||
from gtsam.symbol_shorthand import A, X
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
import gtsam
|
||||
from gtsam import (DiscreteKeys, GaussianConditional, GaussianMixture,
|
||||
from gtsam import (DiscreteKeys, GaussianMixture, DiscreteConditional, GaussianConditional, GaussianMixture,
|
||||
HybridBayesNet, HybridValues, noiseModel)
|
||||
|
||||
|
||||
class TestHybridBayesNet(GtsamTestCase):
|
||||
"""Unit tests for HybridValues."""
|
||||
|
||||
def test_evaluate(self):
|
||||
"""Test evaluate for a hybrid Bayes net P(X0|X1) P(X1|Asia) P(Asia)."""
|
||||
asiaKey = A(0)
|
||||
|
@ -40,15 +40,15 @@ class TestHybridBayesNet(GtsamTestCase):
|
|||
# Create the conditionals
|
||||
conditional0 = GaussianConditional(X(1), [5], I_1x1, model0)
|
||||
conditional1 = GaussianConditional(X(1), [2], I_1x1, model1)
|
||||
dkeys = DiscreteKeys()
|
||||
dkeys.push_back(Asia)
|
||||
gm = GaussianMixture([X(1)], [], dkeys, [conditional0, conditional1])
|
||||
discrete_keys = DiscreteKeys()
|
||||
discrete_keys.push_back(Asia)
|
||||
|
||||
# Create hybrid Bayes net.
|
||||
bayesNet = HybridBayesNet()
|
||||
bayesNet.addGaussian(gc)
|
||||
bayesNet.addMixture(gm)
|
||||
bayesNet.emplaceDiscrete(Asia, "99/1")
|
||||
bayesNet.push_back(gc)
|
||||
bayesNet.push_back(GaussianMixture(
|
||||
[X(1)], [], discrete_keys, [conditional0, conditional1]))
|
||||
bayesNet.push_back(DiscreteConditional(Asia, "99/1"))
|
||||
|
||||
# Create values at which to evaluate.
|
||||
values = HybridValues()
|
||||
|
|
|
@ -108,16 +108,16 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
|
|||
I_1x1,
|
||||
X(0), [0],
|
||||
sigma=3)
|
||||
bayesNet.emplaceMixture([Z(i)], [X(0)], keys,
|
||||
[conditional0, conditional1])
|
||||
bayesNet.push_back(GaussianMixture([Z(i)], [X(0)], keys,
|
||||
[conditional0, conditional1]))
|
||||
|
||||
# Create prior on X(0).
|
||||
prior_on_x0 = GaussianConditional.FromMeanAndStddev(
|
||||
X(0), [prior_mean], prior_sigma)
|
||||
bayesNet.addGaussian(prior_on_x0)
|
||||
bayesNet.push_back(prior_on_x0)
|
||||
|
||||
# Add prior on mode.
|
||||
bayesNet.emplaceDiscrete(mode, "4/6")
|
||||
bayesNet.push_back(DiscreteConditional(mode, "4/6"))
|
||||
|
||||
return bayesNet
|
||||
|
||||
|
@ -163,11 +163,11 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
|
|||
fg = HybridGaussianFactorGraph()
|
||||
num_measurements = bayesNet.size() - 2
|
||||
for i in range(num_measurements):
|
||||
conditional = bayesNet.atMixture(i)
|
||||
conditional = bayesNet.at(i).asMixture()
|
||||
factor = conditional.likelihood(cls.measurements(sample, [i]))
|
||||
fg.push_back(factor)
|
||||
fg.push_back(bayesNet.atGaussian(num_measurements))
|
||||
fg.push_back(bayesNet.atDiscrete(num_measurements+1))
|
||||
fg.push_back(bayesNet.at(num_measurements).asGaussian())
|
||||
fg.push_back(bayesNet.at(num_measurements+1).asDiscrete())
|
||||
return fg
|
||||
|
||||
@classmethod
|
||||
|
|
Loading…
Reference in New Issue