Merge branch 'develop' into feature/BAD
Conflicts: gtsam/linear/tests/testGaussianBayesNet.cpprelease/4.3a0
commit
a29f09423c
|
@ -174,9 +174,9 @@ endif()
|
|||
|
||||
###############################################################################
|
||||
# Find OpenMP (if we're also using MKL)
|
||||
if(GTSAM_WITH_EIGEN_MKL AND GTSAM_USE_EIGEN_MKL_OPENMP AND GTSAM_USE_EIGEN_MKL)
|
||||
find_package(OpenMP)
|
||||
find_package(OpenMP) # do this here to generate correct message if disabled
|
||||
|
||||
if(GTSAM_WITH_EIGEN_MKL AND GTSAM_WITH_EIGEN_MKL_OPENMP AND GTSAM_USE_EIGEN_MKL)
|
||||
if(OPENMP_FOUND AND GTSAM_USE_EIGEN_MKL AND GTSAM_WITH_EIGEN_MKL_OPENMP)
|
||||
set(GTSAM_USE_EIGEN_MKL_OPENMP 1) # This will go into config.h
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
|
||||
|
|
|
@ -58,6 +58,7 @@ FIND_PATH(MKL_ROOT_DIR
|
|||
/opt/intel/mkl/*/
|
||||
/opt/intel/cmkl/
|
||||
/opt/intel/cmkl/*/
|
||||
/opt/intel/*/mkl/
|
||||
/Library/Frameworks/Intel_MKL.framework/Versions/Current/lib/universal
|
||||
"C:/Program Files (x86)/Intel/ComposerXE-2011/mkl"
|
||||
"C:/Program Files (x86)/Intel/Composer XE 2013/mkl"
|
||||
|
|
|
@ -120,15 +120,15 @@ int main(int argc, char** argv) {
|
|||
// For simplicity, we will use the same noise model for each odometry factor
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
|
||||
// 2b. Add "GPS-like" measurements
|
||||
// We will use our custom UnaryFactor for this.
|
||||
noiseModel::Diagonal::shared_ptr unaryNoise = noiseModel::Diagonal::Sigmas((Vector(2) << 0.1, 0.1)); // 10cm std on x,y
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// 3. Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
|
|
@ -65,15 +65,15 @@ int main(int argc, char** argv) {
|
|||
// A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1));
|
||||
graph.push_back(PriorFactor<Pose2>(1, priorMean, priorNoise));
|
||||
graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));
|
||||
|
||||
// Add odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0);
|
||||
// For simplicity, we will use the same noise model for each odometry factor
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.push_back(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
|
||||
graph.push_back(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
|
|
@ -81,13 +81,13 @@ int main(int argc, char** argv) {
|
|||
// Add a prior on pose x1 at the origin. A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
||||
graph.push_back(PriorFactor<Pose2>(x1, prior, priorNoise)); // add directly to graph
|
||||
graph.add(PriorFactor<Pose2>(x1, prior, priorNoise)); // add directly to graph
|
||||
|
||||
// Add two odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
|
||||
graph.push_back(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
|
||||
graph.push_back(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));
|
||||
|
||||
// Add Range-Bearing measurements to two different landmarks
|
||||
// create a noise model for the landmark measurements
|
||||
|
@ -101,9 +101,9 @@ int main(int argc, char** argv) {
|
|||
range32 = 2.0;
|
||||
|
||||
// Add Bearing-Range factors
|
||||
graph.push_back(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
|
||||
graph.push_back(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
|
||||
graph.push_back(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));
|
||||
graph.add(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
|
||||
graph.add(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
|
||||
graph.add(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));
|
||||
|
||||
// Print
|
||||
graph.print("Factor Graph:\n");
|
||||
|
|
|
@ -72,23 +72,23 @@ int main(int argc, char** argv) {
|
|||
// 2a. Add a prior on the first pose, setting it to the origin
|
||||
// A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1));
|
||||
graph.push_back(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
|
||||
graph.add(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
|
||||
|
||||
// For simplicity, we will use the same noise model for odometry and loop closures
|
||||
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
|
||||
// 2b. Add odometry factors
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0 ), model));
|
||||
graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
|
||||
graph.push_back(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
|
||||
graph.push_back(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0 ), model));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
|
||||
|
||||
// 2c. Add the loop closure constraint
|
||||
// This factor encodes the fact that we have returned to the same pose. In real systems,
|
||||
// these constraints may be identified in many ways, such as appearance-based techniques
|
||||
// with camera images. We will use another Between Factor to enforce this constraint:
|
||||
graph.push_back(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// 3. Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
|
|
@ -13,6 +13,22 @@
|
|||
* @brief Incremental and batch solving, timing, and accuracy comparisons
|
||||
* @author Richard Roberts
|
||||
* @date August, 2013
|
||||
*
|
||||
* Here is an example. Below, to run in batch mode, we first generate an initialization in incremental mode.
|
||||
*
|
||||
* Solve in incremental and write to file w_inc:
|
||||
* ./SolverComparer --incremental -d w10000 -o w_inc
|
||||
*
|
||||
* You can then perturb that initialization to get batch something to optimize.
|
||||
* Read in w_inc, perturb it with noise of stddev 0.6, and write to w_pert:
|
||||
* ./SolverComparer --perturb 0.6 -i w_inc -o w_pert
|
||||
*
|
||||
* Then optimize with batch, read in w_pert, solve in batch, and write to w_batch:
|
||||
* ./SolverComparer --batch -d w10000 -i w_pert -o w_batch
|
||||
*
|
||||
* And finally compare solutions in w_inc and w_batch to check that batch converged to the global minimum
|
||||
* ./SolverComparer --compare w_inc w_batch
|
||||
*
|
||||
*/
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
* @brief A visualSLAM example for the structure-from-motion problem on a simulated dataset
|
||||
* This version uses iSAM to solve the problem incrementally
|
||||
* @author Duy-Nguyen Ta
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
/**
|
||||
|
@ -61,7 +62,8 @@ int main(int argc, char* argv[]) {
|
|||
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
||||
|
||||
// Define the camera observation noise model
|
||||
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
noiseModel::Isotropic::shared_ptr noise = //
|
||||
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
|
||||
// Create the set of ground-truth landmarks
|
||||
vector<Point3> points = createPoints();
|
||||
|
@ -69,7 +71,8 @@ int main(int argc, char* argv[]) {
|
|||
// Create the set of ground-truth poses
|
||||
vector<Pose3> poses = createPoses();
|
||||
|
||||
// Create a NonlinearISAM object which will relinearize and reorder the variables every "relinearizeInterval" updates
|
||||
// Create a NonlinearISAM object which will relinearize and reorder the variables
|
||||
// every "relinearizeInterval" updates
|
||||
int relinearizeInterval = 3;
|
||||
NonlinearISAM isam(relinearizeInterval);
|
||||
|
||||
|
@ -82,32 +85,44 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Add factors for each landmark observation
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
// Create ground truth measurement
|
||||
SimpleCamera camera(poses[i], *K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
graph.push_back(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K));
|
||||
// Add measurement
|
||||
graph.add(
|
||||
GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, noise,
|
||||
Symbol('x', i), Symbol('l', j), K));
|
||||
}
|
||||
|
||||
// Add an initial guess for the current pose
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
Pose3 noise(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
Pose3 initial_xi = poses[i].compose(noise);
|
||||
|
||||
// Add an initial guess for the current pose
|
||||
initialEstimate.insert(Symbol('x', i), initial_xi);
|
||||
|
||||
// If this is the first iteration, add a prior on the first pose to set the coordinate frame
|
||||
// and a prior on the first landmark to set the scale
|
||||
// Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
|
||||
// adding it to iSAM.
|
||||
if( i == 0) {
|
||||
// Add a prior on pose x0
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
|
||||
if (i == 0) {
|
||||
// Add a prior on pose x0, with 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)));
|
||||
graph.add(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
|
||||
|
||||
// Add a prior on landmark l0
|
||||
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
|
||||
graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
|
||||
noiseModel::Isotropic::shared_ptr pointNoise =
|
||||
noiseModel::Isotropic::Sigma(3, 0.1);
|
||||
graph.add(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise));
|
||||
|
||||
// Add initial guesses to all observed landmarks
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
for (size_t j = 0; j < points.size(); ++j)
|
||||
initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
|
||||
Point3 noise(-0.25, 0.20, 0.15);
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Point3 initial_lj = points[j].compose(noise);
|
||||
initialEstimate.insert(Symbol('l', j), initial_lj);
|
||||
}
|
||||
|
||||
} else {
|
||||
// Update iSAM with the new factors
|
||||
|
|
|
@ -4,14 +4,10 @@
|
|||
## # The following are required to uses Dart and the Cdash dashboard
|
||||
## ENABLE_TESTING()
|
||||
## INCLUDE(CTest)
|
||||
set(CTEST_PROJECT_NAME "Eigen")
|
||||
set(CTEST_PROJECT_NAME "Eigen3.2")
|
||||
set(CTEST_NIGHTLY_START_TIME "00:00:00 UTC")
|
||||
|
||||
set(CTEST_DROP_METHOD "http")
|
||||
set(CTEST_DROP_SITE "manao.inria.fr")
|
||||
set(CTEST_DROP_LOCATION "/CDash/submit.php?project=Eigen")
|
||||
set(CTEST_DROP_LOCATION "/CDash/submit.php?project=Eigen3.2")
|
||||
set(CTEST_DROP_SITE_CDASH TRUE)
|
||||
set(CTEST_PROJECT_SUBPROJECTS
|
||||
Official
|
||||
Unsupported
|
||||
)
|
||||
|
|
|
@ -95,7 +95,7 @@
|
|||
extern "C" {
|
||||
// In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
|
||||
// Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
|
||||
#ifdef __INTEL_COMPILER
|
||||
#if defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1110
|
||||
#include <immintrin.h>
|
||||
#else
|
||||
#include <emmintrin.h>
|
||||
|
@ -165,7 +165,7 @@
|
|||
#endif
|
||||
|
||||
// required for __cpuid, needs to be included after cmath
|
||||
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64))
|
||||
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE))
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
|
|
|
@ -274,30 +274,13 @@ template<> struct ldlt_inplace<Lower>
|
|||
return true;
|
||||
}
|
||||
|
||||
RealScalar cutoff(0), biggest_in_corner;
|
||||
|
||||
for (Index k = 0; k < size; ++k)
|
||||
{
|
||||
// Find largest diagonal element
|
||||
Index index_of_biggest_in_corner;
|
||||
biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||||
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||||
index_of_biggest_in_corner += k;
|
||||
|
||||
if(k == 0)
|
||||
{
|
||||
// The biggest overall is the point of reference to which further diagonals
|
||||
// are compared; if any diagonal is negligible compared
|
||||
// to the largest overall, the algorithm bails.
|
||||
cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
|
||||
}
|
||||
|
||||
// Finish early if the matrix is not full rank.
|
||||
if(biggest_in_corner < cutoff)
|
||||
{
|
||||
for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
|
||||
break;
|
||||
}
|
||||
|
||||
transpositions.coeffRef(k) = index_of_biggest_in_corner;
|
||||
if(k != index_of_biggest_in_corner)
|
||||
{
|
||||
|
@ -328,15 +311,20 @@ template<> struct ldlt_inplace<Lower>
|
|||
|
||||
if(k>0)
|
||||
{
|
||||
temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
|
||||
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
|
||||
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
|
||||
if(rs>0)
|
||||
A21.noalias() -= A20 * temp.head(k);
|
||||
}
|
||||
if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
|
||||
A21 /= mat.coeffRef(k,k);
|
||||
|
||||
|
||||
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
|
||||
// was smaller than the cutoff value. However, soince LDLT is not rank-revealing
|
||||
// we should only make sure we do not introduce INF or NaN values.
|
||||
// LAPACK also uses 0 as the cutoff value.
|
||||
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
|
||||
if((rs>0) && (abs(realAkk) > RealScalar(0)))
|
||||
A21 /= realAkk;
|
||||
|
||||
if (sign == PositiveSemiDef) {
|
||||
if (realAkk < 0) sign = Indefinite;
|
||||
} else if (sign == NegativeSemiDef) {
|
||||
|
@ -516,14 +504,20 @@ struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
|
|||
typedef typename LDLTType::MatrixType MatrixType;
|
||||
typedef typename LDLTType::Scalar Scalar;
|
||||
typedef typename LDLTType::RealScalar RealScalar;
|
||||
const Diagonal<const MatrixType> vectorD = dec().vectorD();
|
||||
RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(),
|
||||
RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS
|
||||
const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
|
||||
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
|
||||
// as motivated by LAPACK's xGELSS:
|
||||
// RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
|
||||
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
|
||||
// diagonal element is not well justified and to numerical issues in some cases.
|
||||
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
|
||||
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
|
||||
|
||||
for (Index i = 0; i < vectorD.size(); ++i) {
|
||||
if(abs(vectorD(i)) > tolerance)
|
||||
dst.row(i) /= vectorD(i);
|
||||
dst.row(i) /= vectorD(i);
|
||||
else
|
||||
dst.row(i).setZero();
|
||||
dst.row(i).setZero();
|
||||
}
|
||||
|
||||
// dst = L^-T (D^-1 L^-1 P b)
|
||||
|
@ -576,7 +570,7 @@ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
|
|||
// L^* P
|
||||
res = matrixU() * res;
|
||||
// D(L^*P)
|
||||
res = vectorD().asDiagonal() * res;
|
||||
res = vectorD().real().asDiagonal() * res;
|
||||
// L(DL^*P)
|
||||
res = matrixL() * res;
|
||||
// P^T (LDL^*P)
|
||||
|
|
|
@ -81,7 +81,7 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
|
|||
&& (InnerStrideAtCompileTime == 1)
|
||||
? PacketAccessBit : 0,
|
||||
MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1) ? LinearAccessBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits<XprType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
|
||||
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
|
||||
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
|
||||
Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
|
||||
|
|
|
@ -47,6 +47,17 @@ struct CommaInitializer :
|
|||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
* absence of return value optimization to avoid assertions during destruction. */
|
||||
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
|
||||
inline CommaInitializer(const CommaInitializer& o)
|
||||
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
|
||||
// Mark original object as finished. In absence of R-value references we need to const_cast:
|
||||
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
|
||||
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
|
||||
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
|
|
|
@ -0,0 +1,154 @@
|
|||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMMAINITIALIZER_H
|
||||
#define EIGEN_COMMAINITIALIZER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CommaInitializer
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Helper class used by the comma initializer operator
|
||||
*
|
||||
* This class is internally used to implement the comma initializer feature. It is
|
||||
* the return type of MatrixBase::operator<<, and most of the time this is the only
|
||||
* way it is used.
|
||||
*
|
||||
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
|
||||
*/
|
||||
template<typename XprType>
|
||||
struct CommaInitializer
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::Index Index;
|
||||
|
||||
inline CommaInitializer(XprType& xpr, const Scalar& s)
|
||||
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
|
||||
{
|
||||
m_xpr.coeffRef(0,0) = s;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
|
||||
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
|
||||
{
|
||||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
* absence of return value optimization to avoid assertions during destruction. */
|
||||
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
|
||||
inline CommaInitializer(const CommaInitializer& o)
|
||||
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
|
||||
// Mark original object as finished. In absence of R-value references we need to const_cast:
|
||||
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
|
||||
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
|
||||
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = 1;
|
||||
eigen_assert(m_row<m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==1);
|
||||
m_xpr.coeffRef(m_row, m_col++) = s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/* inserts a matrix expression in the target matrix */
|
||||
template<typename OtherDerived>
|
||||
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
if(other.cols()==0 || other.rows()==0)
|
||||
return *this;
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = other.rows();
|
||||
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==other.rows());
|
||||
if (OtherDerived::SizeAtCompileTime != Dynamic)
|
||||
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
|
||||
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
|
||||
(m_row, m_col) = other;
|
||||
else
|
||||
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
|
||||
m_col += other.cols();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline ~CommaInitializer()
|
||||
{
|
||||
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
|
||||
&& m_col == m_xpr.cols()
|
||||
&& "Too few coefficients passed to comma initializer (operator<<)");
|
||||
}
|
||||
|
||||
/** \returns the built matrix once all its coefficients have been set.
|
||||
* Calling finished is 100% optional. Its purpose is to write expressions
|
||||
* like this:
|
||||
* \code
|
||||
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
|
||||
* \endcode
|
||||
*/
|
||||
inline XprType& finished() { return m_xpr; }
|
||||
|
||||
XprType& m_xpr; // target expression
|
||||
Index m_row; // current row id
|
||||
Index m_col; // current col id
|
||||
Index m_currentBlockRows; // current block height
|
||||
};
|
||||
|
||||
/** \anchor MatrixBaseCommaInitRef
|
||||
* Convenient operator to set the coefficients of a matrix.
|
||||
*
|
||||
* The coefficients must be provided in a row major order and exactly match
|
||||
* the size of the matrix. Otherwise an assertion is raised.
|
||||
*
|
||||
* Example: \include MatrixBase_set.cpp
|
||||
* Output: \verbinclude MatrixBase_set.out
|
||||
*
|
||||
* \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order.
|
||||
*
|
||||
* \sa CommaInitializer::finished(), class CommaInitializer
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
|
||||
}
|
||||
|
||||
/** \sa operator<<(const Scalar&) */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer<Derived>
|
||||
DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMMAINITIALIZER_H
|
|
@ -24,6 +24,14 @@ namespace internal {
|
|||
|
||||
struct constructor_without_unaligned_array_assert {};
|
||||
|
||||
template<typename T, int Size> void check_static_allocation_size()
|
||||
{
|
||||
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
|
||||
#if EIGEN_STACK_ALLOCATION_LIMIT
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
|
||||
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
|
||||
|
@ -38,12 +46,12 @@ struct plain_array
|
|||
|
||||
plain_array()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -76,12 +84,12 @@ struct plain_array<T, Size, MatrixOrArrayOptions, 16>
|
|||
plain_array()
|
||||
{
|
||||
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf);
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -589,7 +589,7 @@ struct linspaced_op_impl<Scalar,true>
|
|||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
|
||||
|
||||
const Scalar m_low;
|
||||
const Scalar m_step;
|
||||
|
@ -609,7 +609,7 @@ template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_o
|
|||
template <typename Scalar, bool RandomAccess> struct linspaced_op
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
|
||||
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
|
||||
|
|
|
@ -237,6 +237,8 @@ template<typename Derived> class MapBase<Derived, WriteAccessors>
|
|||
using Base::Base::operator=;
|
||||
};
|
||||
|
||||
#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MAPBASE_H
|
||||
|
|
|
@ -101,7 +101,7 @@ struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
|
|||
template<typename Derived> struct match {
|
||||
enum {
|
||||
HasDirectAccess = internal::has_direct_access<Derived>::ret,
|
||||
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
|
||||
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
|
||||
InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic)
|
||||
|| int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime)
|
||||
|| (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1),
|
||||
|
@ -172,8 +172,12 @@ protected:
|
|||
}
|
||||
else
|
||||
::new (static_cast<Base*>(this)) Base(expr.data(), expr.rows(), expr.cols());
|
||||
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
|
||||
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
|
||||
|
||||
if(Expression::IsVectorAtCompileTime && (!PlainObjectType::IsVectorAtCompileTime) && ((Expression::Flags&RowMajorBit)!=(PlainObjectType::Flags&RowMajorBit)))
|
||||
::new (&m_stride) StrideBase(expr.innerStride(), StrideType::InnerStrideAtCompileTime==0?0:1);
|
||||
else
|
||||
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
|
||||
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
|
||||
}
|
||||
|
||||
StrideBase m_stride;
|
||||
|
|
|
@ -278,21 +278,21 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
|||
|
||||
/** Efficient triangular matrix times vector/matrix product */
|
||||
template<typename OtherDerived>
|
||||
TriangularProduct<Mode,true,MatrixType,false,OtherDerived, OtherDerived::IsVectorAtCompileTime>
|
||||
TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
|
||||
operator*(const MatrixBase<OtherDerived>& rhs) const
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
|
||||
<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
|
||||
(m_matrix, rhs.derived());
|
||||
}
|
||||
|
||||
/** Efficient vector/matrix times triangular matrix product */
|
||||
template<typename OtherDerived> friend
|
||||
TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
|
||||
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
|
||||
(lhs.derived(),rhs.m_matrix);
|
||||
}
|
||||
|
||||
|
|
|
@ -54,8 +54,25 @@
|
|||
#endif
|
||||
|
||||
#if defined EIGEN_USE_MKL
|
||||
# include <mkl.h>
|
||||
/*Check IMKL version for compatibility: < 10.3 is not usable with Eigen*/
|
||||
# ifndef INTEL_MKL_VERSION
|
||||
# undef EIGEN_USE_MKL /* INTEL_MKL_VERSION is not even defined on older versions */
|
||||
# elif INTEL_MKL_VERSION < 100305 /* the intel-mkl-103-release-notes say this was when the lapacke.h interface was added*/
|
||||
# undef EIGEN_USE_MKL
|
||||
# endif
|
||||
# ifndef EIGEN_USE_MKL
|
||||
/*If the MKL version is too old, undef everything*/
|
||||
# undef EIGEN_USE_MKL_ALL
|
||||
# undef EIGEN_USE_BLAS
|
||||
# undef EIGEN_USE_LAPACKE
|
||||
# undef EIGEN_USE_MKL_VML
|
||||
# undef EIGEN_USE_LAPACKE_STRICT
|
||||
# undef EIGEN_USE_LAPACKE
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#include <mkl.h>
|
||||
#if defined EIGEN_USE_MKL
|
||||
#include <mkl_lapacke.h>
|
||||
#define EIGEN_MKL_VML_THRESHOLD 128
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
#define EIGEN_WORLD_VERSION 3
|
||||
#define EIGEN_MAJOR_VERSION 2
|
||||
#define EIGEN_MINOR_VERSION 1
|
||||
#define EIGEN_MINOR_VERSION 2
|
||||
|
||||
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
|
||||
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
|
||||
|
@ -289,7 +289,8 @@ namespace Eigen {
|
|||
#endif
|
||||
|
||||
#ifndef EIGEN_STACK_ALLOCATION_LIMIT
|
||||
#define EIGEN_STACK_ALLOCATION_LIMIT 20000
|
||||
// 131072 == 128 KB
|
||||
#define EIGEN_STACK_ALLOCATION_LIMIT 131072
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_DEFAULT_IO_FORMAT
|
||||
|
|
|
@ -272,12 +272,12 @@ inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
|
|||
// The defined(_mm_free) is just here to verify that this MSVC version
|
||||
// implements _mm_malloc/_mm_free based on the corresponding _aligned_
|
||||
// functions. This may not always be the case and we just try to be safe.
|
||||
#if defined(_MSC_VER) && defined(_mm_free)
|
||||
#if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = generic_aligned_realloc(ptr,new_size,old_size);
|
||||
#endif
|
||||
#elif defined(_MSC_VER)
|
||||
#elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = handmade_aligned_realloc(ptr,new_size,old_size);
|
||||
|
@ -630,6 +630,8 @@ template<typename T> class aligned_stack_memory_handler
|
|||
} \
|
||||
void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
void operator delete(void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
void operator delete[](void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
/* in-place new and delete. since (at least afaik) there is no actual */ \
|
||||
/* memory allocated we can safely let the default implementation handle */ \
|
||||
/* this particular case. */ \
|
||||
|
@ -777,9 +779,9 @@ namespace internal {
|
|||
|
||||
#ifdef EIGEN_CPUID
|
||||
|
||||
inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
|
||||
inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
|
||||
{
|
||||
return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
|
||||
return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
|
||||
}
|
||||
|
||||
inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
|
||||
|
@ -921,13 +923,16 @@ inline void queryCacheSizes(int& l1, int& l2, int& l3)
|
|||
{
|
||||
#ifdef EIGEN_CPUID
|
||||
int abcd[4];
|
||||
const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
|
||||
const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
|
||||
const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
|
||||
|
||||
// identify the CPU vendor
|
||||
EIGEN_CPUID(abcd,0x0,0);
|
||||
int max_std_funcs = abcd[1];
|
||||
if(cpuid_is_vendor(abcd,"GenuineIntel"))
|
||||
if(cpuid_is_vendor(abcd,GenuineIntel))
|
||||
queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
|
||||
else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
|
||||
else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
|
||||
queryCacheSizes_amd(l1,l2,l3);
|
||||
else
|
||||
// by default let's use Intel's API
|
||||
|
|
|
@ -203,6 +203,8 @@ public:
|
|||
* \li \c Quaternionf for \c float
|
||||
* \li \c Quaterniond for \c double
|
||||
*
|
||||
* \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
|
||||
*
|
||||
* \sa class AngleAxis, class Transform
|
||||
*/
|
||||
|
||||
|
@ -344,7 +346,7 @@ class Map<const Quaternion<_Scalar>, _Options >
|
|||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
*
|
||||
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
|
||||
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
|
||||
* \code *coeffs == {x, y, z, w} \endcode
|
||||
*
|
||||
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
|
||||
|
@ -464,7 +466,7 @@ QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
|||
// Note that this algorithm comes from the optimization by hand
|
||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||
// It appears to be much faster than the common algorithm found
|
||||
// in the litterature (30 versus 39 flops). It also requires two
|
||||
// in the literature (30 versus 39 flops). It also requires two
|
||||
// Vector3 as temporaries.
|
||||
Vector3 uv = this->vec().cross(v);
|
||||
uv += uv;
|
||||
|
@ -584,7 +586,7 @@ inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Deri
|
|||
// which yields a singular value problem
|
||||
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
|
||||
{
|
||||
c = max<Scalar>(c,-1);
|
||||
c = (max)(c,Scalar(-1));
|
||||
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
||||
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
|
||||
Vector3 axis = svd.matrixV().col(2);
|
||||
|
@ -667,10 +669,10 @@ QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& oth
|
|||
{
|
||||
using std::acos;
|
||||
using std::abs;
|
||||
double d = abs(this->dot(other));
|
||||
if (d>=1.0)
|
||||
Scalar d = abs(this->dot(other));
|
||||
if (d>=Scalar(1))
|
||||
return Scalar(0);
|
||||
return static_cast<Scalar>(2 * acos(d));
|
||||
return Scalar(2) * acos(d);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -194,9 +194,9 @@ public:
|
|||
/** type of the matrix used to represent the linear part of the transformation */
|
||||
typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
|
||||
/** type of read/write reference to the linear part of the transformation */
|
||||
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact)> LinearPart;
|
||||
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
|
||||
/** type of read reference to the linear part of the transformation */
|
||||
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact)> ConstLinearPart;
|
||||
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
|
||||
/** type of read/write reference to the affine part of the transformation */
|
||||
typedef typename internal::conditional<int(Mode)==int(AffineCompact),
|
||||
MatrixType&,
|
||||
|
|
|
@ -113,7 +113,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
const Index n = src.cols(); // number of measurements
|
||||
|
||||
// required for demeaning ...
|
||||
const RealScalar one_over_n = 1 / static_cast<RealScalar>(n);
|
||||
const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
|
||||
|
||||
// computation of mean
|
||||
const VectorType src_mean = src.rowwise().sum() * one_over_n;
|
||||
|
@ -136,16 +136,16 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
|
||||
// Eq. (39)
|
||||
VectorType S = VectorType::Ones(m);
|
||||
if (sigma.determinant()<0) S(m-1) = -1;
|
||||
if (sigma.determinant()<Scalar(0)) S(m-1) = Scalar(-1);
|
||||
|
||||
// Eq. (40) and (43)
|
||||
const VectorType& d = svd.singularValues();
|
||||
Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
|
||||
if (rank == m-1) {
|
||||
if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) {
|
||||
if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) {
|
||||
Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
|
||||
} else {
|
||||
const Scalar s = S(m-1); S(m-1) = -1;
|
||||
const Scalar s = S(m-1); S(m-1) = Scalar(-1);
|
||||
Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
|
||||
S(m-1) = s;
|
||||
}
|
||||
|
@ -156,7 +156,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
if (with_scaling)
|
||||
{
|
||||
// Eq. (42)
|
||||
const Scalar c = 1/src_var * svd.singularValues().dot(S);
|
||||
const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S);
|
||||
|
||||
// Eq. (41)
|
||||
Rt.col(m).head(m) = dst_mean;
|
||||
|
|
|
@ -48,7 +48,7 @@ void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vec
|
|||
typedef typename MatrixType::Index Index;
|
||||
enum { TFactorSize = MatrixType::ColsAtCompileTime };
|
||||
Index nbVecs = vectors.cols();
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize> T(nbVecs,nbVecs);
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, ColMajor> T(nbVecs,nbVecs);
|
||||
make_block_householder_triangular_factor(T, vectors, hCoeffs);
|
||||
|
||||
const TriangularView<const VectorsType, UnitLower>& V(vectors);
|
||||
|
|
|
@ -61,6 +61,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||
VectorType s(n), t(n);
|
||||
|
||||
RealScalar tol2 = tol*tol;
|
||||
RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
|
||||
int i = 0;
|
||||
int restarts = 0;
|
||||
|
||||
|
@ -69,7 +70,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||
Scalar rho_old = rho;
|
||||
|
||||
rho = r0.dot(r);
|
||||
if (internal::isMuchSmallerThan(rho,r0_sqnorm))
|
||||
if (abs(rho) < eps2*r0_sqnorm)
|
||||
{
|
||||
// The new residual vector became too orthogonal to the arbitrarily choosen direction r0
|
||||
// Let's restart with a new r0:
|
||||
|
|
|
@ -20,10 +20,11 @@ namespace Eigen {
|
|||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
|
||||
*
|
||||
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
|
||||
* is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
|
||||
* are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
|
||||
* coefficients) of U are sorted in such a way that any zeros are at the end.
|
||||
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
|
||||
* decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
|
||||
* upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
|
||||
* decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
|
||||
* zeros are at the end.
|
||||
*
|
||||
* This decomposition provides the generic approach to solving systems of linear equations, computing
|
||||
* the rank, invertibility, inverse, kernel, and determinant.
|
||||
|
@ -511,8 +512,8 @@ typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant
|
|||
}
|
||||
|
||||
/** \returns the matrix represented by the decomposition,
|
||||
* i.e., it returns the product: P^{-1} L U Q^{-1}.
|
||||
* This function is provided for debug purpose. */
|
||||
* i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
|
||||
* This function is provided for debug purposes. */
|
||||
template<typename MatrixType>
|
||||
MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
|
||||
{
|
||||
|
|
|
@ -109,7 +109,7 @@ class NaturalOrdering
|
|||
* \class COLAMDOrdering
|
||||
*
|
||||
* Functor computing the \em column \em approximate \em minimum \em degree ordering
|
||||
* The matrix should be in column-major format
|
||||
* The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
|
||||
*/
|
||||
template<typename Index>
|
||||
class COLAMDOrdering
|
||||
|
@ -118,10 +118,14 @@ class COLAMDOrdering
|
|||
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||
typedef Matrix<Index, Dynamic, 1> IndexVector;
|
||||
|
||||
/** Compute the permutation vector form a sparse matrix */
|
||||
/** Compute the permutation vector \a perm form the sparse matrix \a mat
|
||||
* \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void operator() (const MatrixType& mat, PermutationType& perm)
|
||||
{
|
||||
eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
|
||||
|
||||
Index m = mat.rows();
|
||||
Index n = mat.cols();
|
||||
Index nnz = mat.nonZeros();
|
||||
|
@ -132,12 +136,12 @@ class COLAMDOrdering
|
|||
Index stats [COLAMD_STATS];
|
||||
internal::colamd_set_defaults(knobs);
|
||||
|
||||
Index info;
|
||||
IndexVector p(n+1), A(Alen);
|
||||
for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
|
||||
for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
|
||||
// Call Colamd routine to compute the ordering
|
||||
info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||||
Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||||
EIGEN_UNUSED_VARIABLE(info);
|
||||
eigen_assert( info && "COLAMD failed " );
|
||||
|
||||
perm.resize(n);
|
||||
|
|
|
@ -76,7 +76,8 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
|||
m_colsTranspositions(),
|
||||
m_temp(),
|
||||
m_colSqNorms(),
|
||||
m_isInitialized(false) {}
|
||||
m_isInitialized(false),
|
||||
m_usePrescribedThreshold(false) {}
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
|
|
|
@ -375,17 +375,19 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
|||
Scalar z;
|
||||
JacobiRotation<Scalar> rot;
|
||||
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
|
||||
|
||||
if(n==0)
|
||||
{
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
||||
if(work_matrix.coeff(q,q)!=Scalar(0))
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
else
|
||||
z = Scalar(0);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
// otherwise the second row is already zero, so we have nothing to do.
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -415,6 +417,7 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
|||
JacobiRotation<RealScalar> *j_right)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
Matrix<RealScalar,2,2> m;
|
||||
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
|
||||
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
|
||||
|
@ -428,9 +431,11 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
|||
}
|
||||
else
|
||||
{
|
||||
RealScalar u = d / t;
|
||||
rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
|
||||
rot1.s() = rot1.c() * u;
|
||||
RealScalar t2d2 = numext::hypot(t,d);
|
||||
rot1.c() = abs(t)/t2d2;
|
||||
rot1.s() = d/t2d2;
|
||||
if(t<RealScalar(0))
|
||||
rot1.s() = -rot1.s();
|
||||
}
|
||||
m.applyOnTheLeft(0,1,rot1);
|
||||
j_right->makeJacobi(m,0,1);
|
||||
|
@ -531,8 +536,9 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD()
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
m_rows(-1), m_cols(-1), m_diagSize(0)
|
||||
{}
|
||||
|
||||
|
||||
|
@ -545,6 +551,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
|
@ -564,6 +571,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
|
@ -665,6 +673,69 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
return m_nonzeroSingularValues;
|
||||
}
|
||||
|
||||
/** \returns the rank of the matrix of which \c *this is the SVD.
|
||||
*
|
||||
* \note This method has to determine which singular values should be considered nonzero.
|
||||
* For that, it uses the threshold value that you can control by calling
|
||||
* setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline Index rank() const
|
||||
{
|
||||
using std::abs;
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
if(m_singularValues.size()==0) return 0;
|
||||
RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
|
||||
Index i = m_nonzeroSingularValues-1;
|
||||
while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
|
||||
return i+1;
|
||||
}
|
||||
|
||||
/** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
|
||||
* which need to determine when singular values are to be considered nonzero.
|
||||
* This is not used for the SVD decomposition itself.
|
||||
*
|
||||
* When it needs to get the threshold value, Eigen calls threshold().
|
||||
* The default is \c NumTraits<Scalar>::epsilon()
|
||||
*
|
||||
* \param threshold The new value to use as the threshold.
|
||||
*
|
||||
* A singular value will be considered nonzero if its value is strictly greater than
|
||||
* \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
|
||||
*
|
||||
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
||||
*/
|
||||
JacobiSVD& setThreshold(const RealScalar& threshold)
|
||||
{
|
||||
m_usePrescribedThreshold = true;
|
||||
m_prescribedThreshold = threshold;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
||||
* determining the threshold.
|
||||
*
|
||||
* You should pass the special object Eigen::Default as parameter here.
|
||||
* \code svd.setThreshold(Eigen::Default); \endcode
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
JacobiSVD& setThreshold(Default_t)
|
||||
{
|
||||
m_usePrescribedThreshold = false;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Returns the threshold that will be used by certain methods such as rank().
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
RealScalar threshold() const
|
||||
{
|
||||
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
||||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
: (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
|
@ -677,11 +748,12 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
WorkMatrixType m_workMatrix;
|
||||
bool m_isInitialized, m_isAllocated;
|
||||
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
unsigned int m_computationOptions;
|
||||
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
||||
RealScalar m_prescribedThreshold;
|
||||
|
||||
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
|
@ -764,6 +836,11 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
||||
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
|
||||
}
|
||||
|
||||
// Scaling factor to reduce over/under-flows
|
||||
RealScalar scale = m_workMatrix.cwiseAbs().maxCoeff();
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
m_workMatrix /= scale;
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
|
||||
|
@ -833,6 +910,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
m_singularValues *= scale;
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
|
@ -854,11 +933,11 @@ struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
|||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
|
||||
Index nonzeroSingVals = dec().nonzeroSingularValues();
|
||||
Index rank = dec().rank();
|
||||
|
||||
tmp.noalias() = dec().matrixU().leftCols(nonzeroSingVals).adjoint() * rhs();
|
||||
tmp = dec().singularValues().head(nonzeroSingVals).asDiagonal().inverse() * tmp;
|
||||
dst = dec().matrixV().leftCols(nonzeroSingVals) * tmp;
|
||||
tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
|
||||
tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
|
||||
dst = dec().matrixV().leftCols(rank) * tmp;
|
||||
}
|
||||
};
|
||||
} // end namespace internal
|
||||
|
|
|
@ -37,6 +37,7 @@ class SimplicialCholeskyBase : internal::noncopyable
|
|||
{
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
||||
typedef typename internal::traits<Derived>::OrderingType OrderingType;
|
||||
enum { UpLo = internal::traits<Derived>::UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
|
@ -240,15 +241,16 @@ class SimplicialCholeskyBase : internal::noncopyable
|
|||
RealScalar m_shiftScale;
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLDLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialCholesky;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLDLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialCholesky;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -259,9 +261,10 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixTyp
|
|||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -272,9 +275,10 @@ template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixTyp
|
|||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
};
|
||||
|
||||
|
@ -294,11 +298,12 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_Matr
|
|||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \sa class SimplicialLDLT
|
||||
* \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
@ -382,11 +387,12 @@ public:
|
|||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \sa class SimplicialLLT
|
||||
* \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
@ -467,8 +473,8 @@ public:
|
|||
*
|
||||
* \sa class SimplicialLDLT, class SimplicialLLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
@ -612,15 +618,13 @@ void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixTy
|
|||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
// TODO allows to configure the permutation
|
||||
// Note that amd compute the inverse permutation
|
||||
{
|
||||
CholMatrixType C;
|
||||
C = a.template selfadjointView<UpLo>();
|
||||
// remove diagonal entries:
|
||||
// seems not to be needed
|
||||
// C.prune(keep_diag());
|
||||
internal::minimum_degree_ordering(C, m_Pinv);
|
||||
|
||||
OrderingType ordering;
|
||||
ordering(C,m_Pinv);
|
||||
}
|
||||
|
||||
if(m_Pinv.size()>0)
|
||||
|
|
|
@ -51,8 +51,8 @@ class CompressedStorage
|
|||
CompressedStorage& operator=(const CompressedStorage& other)
|
||||
{
|
||||
resize(other.size());
|
||||
memcpy(m_values, other.m_values, m_size * sizeof(Scalar));
|
||||
memcpy(m_indices, other.m_indices, m_size * sizeof(Index));
|
||||
internal::smart_copy(other.m_values, other.m_values + m_size, m_values);
|
||||
internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices);
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -83,10 +83,10 @@ class CompressedStorage
|
|||
reallocate(m_size);
|
||||
}
|
||||
|
||||
void resize(size_t size, float reserveSizeFactor = 0)
|
||||
void resize(size_t size, double reserveSizeFactor = 0)
|
||||
{
|
||||
if (m_allocatedSize<size)
|
||||
reallocate(size + size_t(reserveSizeFactor*size));
|
||||
reallocate(size + size_t(reserveSizeFactor*double(size)));
|
||||
m_size = size;
|
||||
}
|
||||
|
||||
|
|
|
@ -73,7 +73,8 @@ class CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator
|
|||
typedef internal::sparse_cwise_binary_op_inner_iterator_selector<
|
||||
BinaryOp,Lhs,Rhs, InnerIterator> Base;
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const CwiseBinaryOpImpl& binOp, Index outer)
|
||||
// NOTE: we have to prefix Index by "typename Lhs::" to avoid an ICE with VC11
|
||||
EIGEN_STRONG_INLINE InnerIterator(const CwiseBinaryOpImpl& binOp, typename Lhs::Index outer)
|
||||
: Base(binOp.derived(),outer)
|
||||
{}
|
||||
};
|
||||
|
|
|
@ -19,7 +19,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct SparseDenseProductRet
|
|||
|
||||
template<typename Lhs, typename Rhs> struct SparseDenseProductReturnType<Lhs,Rhs,1>
|
||||
{
|
||||
typedef SparseDenseOuterProduct<Lhs,Rhs,false> Type;
|
||||
typedef typename internal::conditional<
|
||||
Lhs::IsRowMajor,
|
||||
SparseDenseOuterProduct<Rhs,Lhs,true>,
|
||||
SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductReturnType
|
||||
|
@ -29,7 +32,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductRet
|
|||
|
||||
template<typename Lhs, typename Rhs> struct DenseSparseProductReturnType<Lhs,Rhs,1>
|
||||
{
|
||||
typedef SparseDenseOuterProduct<Rhs,Lhs,true> Type;
|
||||
typedef typename internal::conditional<
|
||||
Rhs::IsRowMajor,
|
||||
SparseDenseOuterProduct<Rhs,Lhs,true>,
|
||||
SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
@ -114,17 +120,30 @@ class SparseDenseOuterProduct<Lhs,Rhs,Transpose>::InnerIterator : public _LhsNes
|
|||
typedef typename SparseDenseOuterProduct::Index Index;
|
||||
public:
|
||||
EIGEN_STRONG_INLINE InnerIterator(const SparseDenseOuterProduct& prod, Index outer)
|
||||
: Base(prod.lhs(), 0), m_outer(outer), m_factor(prod.rhs().coeff(outer))
|
||||
{
|
||||
}
|
||||
: Base(prod.lhs(), 0), m_outer(outer), m_factor(get(prod.rhs(), outer, typename internal::traits<Rhs>::StorageKind() ))
|
||||
{ }
|
||||
|
||||
inline Index outer() const { return m_outer; }
|
||||
inline Index row() const { return Transpose ? Base::row() : m_outer; }
|
||||
inline Index col() const { return Transpose ? m_outer : Base::row(); }
|
||||
inline Index row() const { return Transpose ? m_outer : Base::index(); }
|
||||
inline Index col() const { return Transpose ? Base::index() : m_outer; }
|
||||
|
||||
inline Scalar value() const { return Base::value() * m_factor; }
|
||||
|
||||
protected:
|
||||
static Scalar get(const _RhsNested &rhs, Index outer, Dense = Dense())
|
||||
{
|
||||
return rhs.coeff(outer);
|
||||
}
|
||||
|
||||
static Scalar get(const _RhsNested &rhs, Index outer, Sparse = Sparse())
|
||||
{
|
||||
typename Traits::_RhsNested::InnerIterator it(rhs, outer);
|
||||
if (it && it.index()==0)
|
||||
return it.value();
|
||||
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
Index m_outer;
|
||||
Scalar m_factor;
|
||||
};
|
||||
|
|
|
@ -940,7 +940,7 @@ void set_from_triplets(const InputIterator& begin, const InputIterator& end, Spa
|
|||
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
typedef typename SparseMatrixType::Index Index;
|
||||
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor> trMat(mat.rows(),mat.cols());
|
||||
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());
|
||||
|
||||
if(begin!=end)
|
||||
{
|
||||
|
@ -1178,7 +1178,7 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
|
|||
size_t p = m_outerIndex[outer+1];
|
||||
++m_outerIndex[outer+1];
|
||||
|
||||
float reallocRatio = 1;
|
||||
double reallocRatio = 1;
|
||||
if (m_data.allocatedSize()<=m_data.size())
|
||||
{
|
||||
// if there is no preallocated memory, let's reserve a minimum of 32 elements
|
||||
|
@ -1190,13 +1190,13 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
|
|||
{
|
||||
// we need to reallocate the data, to reduce multiple reallocations
|
||||
// we use a smart resize algorithm based on the current filling ratio
|
||||
// in addition, we use float to avoid integers overflows
|
||||
float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
|
||||
reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
|
||||
// in addition, we use double to avoid integers overflows
|
||||
double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
|
||||
reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
|
||||
// furthermore we bound the realloc ratio to:
|
||||
// 1) reduce multiple minor realloc when the matrix is almost filled
|
||||
// 2) avoid to allocate too much memory when the matrix is almost empty
|
||||
reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
|
||||
reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
|
||||
}
|
||||
}
|
||||
m_data.resize(m_data.size()+1,reallocRatio);
|
||||
|
|
|
@ -26,7 +26,7 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
|
|||
inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); }
|
||||
};
|
||||
|
||||
// NOTE: VC10 trigger an ICE if don't put typename TransposeImpl<MatrixType,Sparse>:: in front of Index,
|
||||
// NOTE: VC10 and VC11 trigger an ICE if don't put typename TransposeImpl<MatrixType,Sparse>:: in front of Index,
|
||||
// a typedef typename TransposeImpl<MatrixType,Sparse>::Index Index;
|
||||
// does not fix the issue.
|
||||
// An alternative is to define the nested class in the parent class itself.
|
||||
|
@ -40,8 +40,8 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::InnerItera
|
|||
EIGEN_STRONG_INLINE InnerIterator(const TransposeImpl& trans, typename TransposeImpl<MatrixType,Sparse>::Index outer)
|
||||
: Base(trans.derived().nestedExpression(), outer)
|
||||
{}
|
||||
Index row() const { return Base::col(); }
|
||||
Index col() const { return Base::row(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index row() const { return Base::col(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index col() const { return Base::row(); }
|
||||
};
|
||||
|
||||
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInnerIterator
|
||||
|
@ -54,8 +54,8 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInn
|
|||
EIGEN_STRONG_INLINE ReverseInnerIterator(const TransposeImpl& xpr, typename TransposeImpl<MatrixType,Sparse>::Index outer)
|
||||
: Base(xpr.derived().nestedExpression(), outer)
|
||||
{}
|
||||
Index row() const { return Base::col(); }
|
||||
Index col() const { return Base::row(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index row() const { return Base::col(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index col() const { return Base::row(); }
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
|
|
@ -84,8 +84,10 @@ template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
|
|||
template<typename Lhs, typename Rhs, bool Transpose> class SparseDenseOuterProduct;
|
||||
|
||||
template<typename Lhs, typename Rhs> struct SparseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct DenseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct SparseDenseProductReturnType;
|
||||
template<typename Lhs, typename Rhs,
|
||||
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct DenseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs,
|
||||
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct SparseDenseProductReturnType;
|
||||
template<typename MatrixType,int UpLo> class SparseSymmetricPermutationProduct;
|
||||
|
||||
namespace internal {
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
||||
// Copyright (C) 2012-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
|
@ -58,6 +58,7 @@ namespace internal {
|
|||
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
|
||||
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
|
||||
*
|
||||
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
*/
|
||||
template<typename _MatrixType, typename _OrderingType>
|
||||
|
@ -77,10 +78,23 @@ class SparseQR
|
|||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
{ }
|
||||
|
||||
/** Construct a QR factorization of the matrix \a mat.
|
||||
*
|
||||
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
/** Computes the QR factorization of the sparse matrix \a mat.
|
||||
*
|
||||
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
* \sa analyzePattern(), factorize()
|
||||
*/
|
||||
void compute(const MatrixType& mat)
|
||||
{
|
||||
analyzePattern(mat);
|
||||
|
@ -166,7 +180,7 @@ class SparseQR
|
|||
y.bottomRows(y.rows()-rank).setZero();
|
||||
|
||||
// Apply the column permutation
|
||||
if (m_perm_c.size()) dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
|
||||
if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
|
||||
else dest = y.topRows(cols());
|
||||
|
||||
m_info = Success;
|
||||
|
@ -206,7 +220,7 @@ class SparseQR
|
|||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \returns \c Success if computation was successful,
|
||||
* \c NumericalIssue if the QR factorization reports a numerical problem
|
||||
* \c InvalidInput if the input matrix is invalid
|
||||
*
|
||||
|
@ -255,20 +269,24 @@ class SparseQR
|
|||
};
|
||||
|
||||
/** \brief Preprocessing step of a QR factorization
|
||||
*
|
||||
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
* In this step, the fill-reducing permutation is computed and applied to the columns of A
|
||||
* and the column elimination tree is computed as well. Only the sparcity pattern of \a mat is exploited.
|
||||
* and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
|
||||
*
|
||||
* \note In this step it is assumed that there is no empty row in the matrix \a mat.
|
||||
*/
|
||||
template <typename MatrixType, typename OrderingType>
|
||||
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
{
|
||||
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
|
||||
// Compute the column fill reducing ordering
|
||||
OrderingType ord;
|
||||
ord(mat, m_perm_c);
|
||||
Index n = mat.cols();
|
||||
Index m = mat.rows();
|
||||
Index diagSize = (std::min)(m,n);
|
||||
|
||||
if (!m_perm_c.size())
|
||||
{
|
||||
|
@ -280,20 +298,20 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
|||
m_outputPerm_c = m_perm_c.inverse();
|
||||
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
|
||||
m_R.resize(n, n);
|
||||
m_Q.resize(m, n);
|
||||
m_R.resize(m, n);
|
||||
m_Q.resize(m, diagSize);
|
||||
|
||||
// Allocate space for nonzero elements : rough estimation
|
||||
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
|
||||
m_Q.reserve(2*mat.nonZeros());
|
||||
m_hcoeffs.resize(n);
|
||||
m_hcoeffs.resize(diagSize);
|
||||
m_analysisIsok = true;
|
||||
}
|
||||
|
||||
/** \brief Performs the numerical QR factorization of the input matrix
|
||||
*
|
||||
* The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
|
||||
* a matrix having the same sparcity pattern than \a mat.
|
||||
* a matrix having the same sparsity pattern than \a mat.
|
||||
*
|
||||
* \param mat The sparse column-major matrix
|
||||
*/
|
||||
|
@ -306,11 +324,12 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
|
||||
Index m = mat.rows();
|
||||
Index n = mat.cols();
|
||||
IndexVector mark(m); mark.setConstant(-1); // Record the visited nodes
|
||||
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
|
||||
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
||||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
bool found_diag;
|
||||
Index diagSize = (std::min)(m,n);
|
||||
IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
|
||||
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
|
||||
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
||||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
RealScalar pivotThreshold = m_threshold;
|
||||
|
||||
m_pmat = mat;
|
||||
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
|
||||
|
@ -322,7 +341,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
|
||||
}
|
||||
|
||||
/* Compute the default threshold, see :
|
||||
/* Compute the default threshold as in MatLab, see:
|
||||
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
||||
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
|
||||
*/
|
||||
|
@ -330,24 +349,24 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
{
|
||||
RealScalar max2Norm = 0.0;
|
||||
for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
|
||||
m_threshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
}
|
||||
|
||||
// Initialize the numerical permutation
|
||||
m_pivotperm.setIdentity(n);
|
||||
|
||||
Index nonzeroCol = 0; // Record the number of valid pivots
|
||||
m_Q.startVec(0);
|
||||
|
||||
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
|
||||
for (Index col = 0; col < (std::min)(n,m); ++col)
|
||||
for (Index col = 0; col < n; ++col)
|
||||
{
|
||||
mark.setConstant(-1);
|
||||
m_R.startVec(col);
|
||||
m_Q.startVec(col);
|
||||
mark(nonzeroCol) = col;
|
||||
Qidx(0) = nonzeroCol;
|
||||
nzcolR = 0; nzcolQ = 1;
|
||||
found_diag = col>=m;
|
||||
bool found_diag = nonzeroCol>=m;
|
||||
tval.setZero();
|
||||
|
||||
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
|
||||
|
@ -356,7 +375,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
|
||||
for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
|
||||
{
|
||||
Index curIdx = nonzeroCol ;
|
||||
Index curIdx = nonzeroCol;
|
||||
if(itp) curIdx = itp.row();
|
||||
if(curIdx == nonzeroCol) found_diag = true;
|
||||
|
||||
|
@ -398,7 +417,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
// Browse all the indexes of R(:,col) in reverse order
|
||||
for (Index i = nzcolR-1; i >= 0; i--)
|
||||
{
|
||||
Index curIdx = m_pivotperm.indices()(Ridx(i));
|
||||
Index curIdx = Ridx(i);
|
||||
|
||||
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
|
||||
Scalar tdot(0);
|
||||
|
@ -427,33 +446,37 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
}
|
||||
} // End update current column
|
||||
|
||||
// Compute the Householder reflection that eliminate the current column
|
||||
// FIXME this step should call the Householder module.
|
||||
|
||||
Scalar tau;
|
||||
RealScalar beta;
|
||||
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
|
||||
RealScalar beta = 0;
|
||||
|
||||
// First, the squared norm of Q((col+1):m, col)
|
||||
RealScalar sqrNorm = 0.;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
|
||||
|
||||
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
|
||||
if(nonzeroCol < diagSize)
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
tval(Qidx(0)) = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
beta = std::sqrt(numext::abs2(c0) + sqrNorm);
|
||||
if(numext::real(c0) >= RealScalar(0))
|
||||
beta = -beta;
|
||||
tval(Qidx(0)) = 1;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq)
|
||||
tval(Qidx(itq)) /= (c0 - beta);
|
||||
tau = numext::conj((beta-c0) / beta);
|
||||
|
||||
// Compute the Householder reflection that eliminate the current column
|
||||
// FIXME this step should call the Householder module.
|
||||
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
|
||||
|
||||
// First, the squared norm of Q((col+1):m, col)
|
||||
RealScalar sqrNorm = 0.;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
|
||||
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
tval(Qidx(0)) = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
using std::sqrt;
|
||||
beta = sqrt(numext::abs2(c0) + sqrNorm);
|
||||
if(numext::real(c0) >= RealScalar(0))
|
||||
beta = -beta;
|
||||
tval(Qidx(0)) = 1;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq)
|
||||
tval(Qidx(itq)) /= (c0 - beta);
|
||||
tau = numext::conj((beta-c0) / beta);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Insert values in R
|
||||
|
@ -467,24 +490,25 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
}
|
||||
|
||||
if(abs(beta) >= m_threshold)
|
||||
if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
|
||||
{
|
||||
m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
|
||||
nonzeroCol++;
|
||||
// The householder coefficient
|
||||
m_hcoeffs(col) = tau;
|
||||
m_hcoeffs(nonzeroCol) = tau;
|
||||
// Record the householder reflections
|
||||
for (Index itq = 0; itq < nzcolQ; ++itq)
|
||||
{
|
||||
Index iQ = Qidx(itq);
|
||||
m_Q.insertBackByOuterInnerUnordered(col,iQ) = tval(iQ);
|
||||
m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
|
||||
tval(iQ) = Scalar(0.);
|
||||
}
|
||||
}
|
||||
nonzeroCol++;
|
||||
if(nonzeroCol<diagSize)
|
||||
m_Q.startVec(nonzeroCol);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Zero pivot found: move implicitly this column to the end
|
||||
m_hcoeffs(col) = Scalar(0);
|
||||
for (Index j = nonzeroCol; j < n-1; j++)
|
||||
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
|
||||
|
||||
|
@ -493,6 +517,8 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
}
|
||||
|
||||
m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
|
||||
|
||||
// Finalize the column pointers of the sparse matrices R and Q
|
||||
m_Q.finalize();
|
||||
m_Q.makeCompressed();
|
||||
|
@ -561,14 +587,16 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
|||
template<typename DesType>
|
||||
void evalTo(DesType& res) const
|
||||
{
|
||||
Index m = m_qr.rows();
|
||||
Index n = m_qr.cols();
|
||||
Index diagSize = (std::min)(m,n);
|
||||
res = m_other;
|
||||
if (m_transpose)
|
||||
{
|
||||
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
|
||||
//Compute res = Q' * other column by column
|
||||
for(Index j = 0; j < res.cols(); j++){
|
||||
for (Index k = 0; k < n; k++)
|
||||
for (Index k = 0; k < diagSize; k++)
|
||||
{
|
||||
Scalar tau = Scalar(0);
|
||||
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
||||
|
@ -581,10 +609,10 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
|||
else
|
||||
{
|
||||
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
|
||||
// Compute res = Q' * other column by column
|
||||
// Compute res = Q * other column by column
|
||||
for(Index j = 0; j < res.cols(); j++)
|
||||
{
|
||||
for (Index k = n-1; k >=0; k--)
|
||||
for (Index k = diagSize-1; k >=0; k--)
|
||||
{
|
||||
Scalar tau = Scalar(0);
|
||||
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
||||
|
@ -618,7 +646,7 @@ struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<Sp
|
|||
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
|
||||
}
|
||||
inline Index rows() const { return m_qr.rows(); }
|
||||
inline Index cols() const { return m_qr.cols(); }
|
||||
inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
|
||||
// To use for operations with the transpose of Q
|
||||
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
|
||||
{
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#ifndef EIGEN_STDDEQUE_H
|
||||
#define EIGEN_STDDEQUE_H
|
||||
|
||||
#include "Eigen/src/StlSupport/details.h"
|
||||
#include "details.h"
|
||||
|
||||
// Define the explicit instantiation (e.g. necessary for the Intel compiler)
|
||||
#if defined(__INTEL_COMPILER) || defined(__GNUC__)
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#ifndef EIGEN_STDLIST_H
|
||||
#define EIGEN_STDLIST_H
|
||||
|
||||
#include "Eigen/src/StlSupport/details.h"
|
||||
#include "details.h"
|
||||
|
||||
// Define the explicit instantiation (e.g. necessary for the Intel compiler)
|
||||
#if defined(__INTEL_COMPILER) || defined(__GNUC__)
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#ifndef EIGEN_STDVECTOR_H
|
||||
#define EIGEN_STDVECTOR_H
|
||||
|
||||
#include "Eigen/src/StlSupport/details.h"
|
||||
#include "details.h"
|
||||
|
||||
/**
|
||||
* This section contains a convenience MACRO which allows an easy specialization of
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
|
||||
This directory contains a BLAS library built on top of Eigen.
|
||||
|
||||
This is currently a work in progress which is far to be ready for use,
|
||||
but feel free to contribute to it if you wish.
|
||||
|
||||
This module is not built by default. In order to compile it, you need to
|
||||
type 'make blas' from within your build dir.
|
||||
|
||||
|
|
|
@ -41,7 +41,7 @@ endif()
|
|||
|
||||
# copy ctest properties, which currently
|
||||
# o raise the warning levels
|
||||
configure_file(${CMAKE_BINARY_DIR}/DartConfiguration.tcl ${CMAKE_BINARY_DIR}/DartConfiguration.tcl)
|
||||
configure_file(${CMAKE_CURRENT_BINARY_DIR}/DartConfiguration.tcl ${CMAKE_BINARY_DIR}/DartConfiguration.tcl)
|
||||
|
||||
# restore default CMAKE_MAKE_PROGRAM
|
||||
set(CMAKE_MAKE_PROGRAM ${CMAKE_MAKE_PROGRAM_SAVE})
|
||||
|
@ -50,7 +50,7 @@ set(CMAKE_MAKE_PROGRAM ${CMAKE_MAKE_PROGRAM_SAVE})
|
|||
set(CMAKE_MAKE_PROGRAM_SAVE)
|
||||
set(EIGEN_MAKECOMMAND_PLACEHOLDER)
|
||||
|
||||
configure_file(${CMAKE_SOURCE_DIR}/CTestCustom.cmake.in ${CMAKE_BINARY_DIR}/CTestCustom.cmake)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/CTestCustom.cmake.in ${CMAKE_BINARY_DIR}/CTestCustom.cmake)
|
||||
|
||||
# some documentation of this function would be nice
|
||||
ei_init_testing()
|
||||
|
|
|
@ -41,8 +41,8 @@ MatrixXd::Ones(rows,cols) // ones(rows,cols)
|
|||
C.setOnes(rows,cols) // C = ones(rows,cols)
|
||||
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
|
||||
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
|
||||
VectorXd::LinSpace(size,low,high) // linspace(low,high,size)'
|
||||
v.setLinSpace(size,low,high) // v = linspace(low,high,size)'
|
||||
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
|
||||
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
|
||||
|
||||
|
||||
// Matrix slicing and blocks. All expressions listed here are read/write.
|
||||
|
@ -91,6 +91,8 @@ R.adjoint() // R'
|
|||
R.transpose() // R.' or conj(R')
|
||||
R.diagonal() // diag(R)
|
||||
x.asDiagonal() // diag(x)
|
||||
R.transpose().colwise().reverse(); // rot90(R)
|
||||
R.conjugate() // conj(R)
|
||||
|
||||
// All the same as Matlab, but matlab doesn't have *= style operators.
|
||||
// Matrix-vector. Matrix-matrix. Matrix-scalar.
|
||||
|
@ -167,6 +169,8 @@ x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
|
|||
A.cast<double>(); // double(A)
|
||||
A.cast<float>(); // single(A)
|
||||
A.cast<int>(); // int32(A)
|
||||
A.real(); // real(A)
|
||||
A.imag(); // imag(A)
|
||||
// if the original type equals destination type, no work is done
|
||||
|
||||
// Note that for most operations Eigen requires all operands to have the same type:
|
||||
|
|
|
@ -1,27 +0,0 @@
|
|||
namespace Eigen {
|
||||
|
||||
/** \eigenManualPage LinearLeastSquares Solving linear least squares problems
|
||||
|
||||
lede
|
||||
|
||||
\eigenAutoToc
|
||||
|
||||
\section LinearLeastSquaresCopied Copied
|
||||
|
||||
The best way to do least squares solving is with a SVD decomposition. Eigen provides one as the JacobiSVD class, and its solve()
|
||||
is doing least-squares solving.
|
||||
|
||||
Here is an example:
|
||||
<table class="example">
|
||||
<tr><th>Example:</th><th>Output:</th></tr>
|
||||
<tr>
|
||||
<td>\include TutorialLinAlgSVDSolve.cpp </td>
|
||||
<td>\verbinclude TutorialLinAlgSVDSolve.out </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
For more information, including faster but less reliable methods, read our page concentrating on \ref LinearLeastSquares "linear least squares problems".
|
||||
|
||||
*/
|
||||
|
||||
}
|
|
@ -62,6 +62,8 @@ run time. However, these assertions do cost time and can thus be turned off.
|
|||
expect that any objects passed to it are aligned. This will turn off vectorization. Not defined by default.
|
||||
- \b EIGEN_DONT_ALIGN_STATICALLY - disables alignment of arrays on the stack. Not defined by default, unless
|
||||
\c EIGEN_DONT_ALIGN is defined.
|
||||
- \b EIGEN_DONT_PARALLELIZE - if defined, this disables multi-threading. This is only relevant if you enabled OpenMP.
|
||||
See \ref TopicMultiThreading for details.
|
||||
- \b EIGEN_DONT_VECTORIZE - disables explicit vectorization when defined. Not defined by default, unless
|
||||
alignment is disabled by %Eigen's platform test or the user defining \c EIGEN_DONT_ALIGN.
|
||||
- \b EIGEN_FAST_MATH - enables some optimizations which might affect the accuracy of the result. This currently
|
||||
|
@ -69,7 +71,10 @@ run time. However, these assertions do cost time and can thus be turned off.
|
|||
Define it to 0 to disable.
|
||||
- \b EIGEN_UNROLLING_LIMIT - defines the size of a loop to enable meta unrolling. Set it to zero to disable
|
||||
unrolling. The size of a loop here is expressed in %Eigen's own notion of "number of FLOPS", it does not
|
||||
correspond to the number of iterations or the number of instructions. The default is value 100.
|
||||
correspond to the number of iterations or the number of instructions. The default is value 100.
|
||||
- \b EIGEN_STACK_ALLOCATION_LIMIT - defines the maximum bytes for a buffer to be allocated on the stack. For internal
|
||||
temporary buffers, dynamic memory allocation is employed as a fall back. For fixed-size matrices or arrays, exceeding
|
||||
this threshold raises a compile time assertion. Use 0 to set no limit. Default is 128 KB.
|
||||
|
||||
|
||||
\section TopicPreprocessorDirectivesPlugins Plugins
|
||||
|
|
|
@ -253,12 +253,15 @@ SparseMatrix<double> A, B;
|
|||
B = SparseMatrix<double>(A.transpose()) + A;
|
||||
\endcode
|
||||
|
||||
Binary coefficient wise operators can also mix sparse and dense expressions:
|
||||
Some binary coefficient-wise operators can also mix sparse and dense expressions:
|
||||
\code
|
||||
sm2 = sm1.cwiseProduct(dm1);
|
||||
dm2 = sm1 + dm1;
|
||||
dm1 += sm1;
|
||||
\endcode
|
||||
|
||||
However, it is not yet possible to add a sparse and a dense matrix as in <tt>dm2 = sm1 + dm1</tt>.
|
||||
Please write this as the equivalent <tt>dm2 = dm1; dm2 += sm1</tt> (we plan to lift this restriction
|
||||
in the next release of %Eigen).
|
||||
|
||||
%Sparse expressions also support transposition:
|
||||
\code
|
||||
|
|
|
@ -10,6 +10,26 @@
|
|||
#define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType, typename Index, typename Scalar>
|
||||
typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
|
||||
block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) {
|
||||
// check cwise-Functions:
|
||||
VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
|
||||
VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
|
||||
|
||||
VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMin(s1), m1.cwiseMin(s1).block(r1,c1,r2-r1+1,c2-c1+1));
|
||||
VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMax(s1), m1.cwiseMax(s1).block(r1,c1,r2-r1+1,c2-c1+1));
|
||||
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename Index, typename Scalar>
|
||||
typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
|
||||
block_real_only(const MatrixType &, Index, Index, Index, Index, const Scalar&) {
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
|
||||
template<typename MatrixType> void block(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -37,6 +57,8 @@ template<typename MatrixType> void block(const MatrixType& m)
|
|||
Index c1 = internal::random<Index>(0,cols-1);
|
||||
Index c2 = internal::random<Index>(c1,cols-1);
|
||||
|
||||
block_real_only(m1, r1, r2, c1, c1, s1);
|
||||
|
||||
//check row() and col()
|
||||
VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
|
||||
//check operator(), both constant and non-constant, on row() and col()
|
||||
|
@ -51,7 +73,8 @@ template<typename MatrixType> void block(const MatrixType& m)
|
|||
VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
|
||||
m1.col(c1).col(0) += s1 * m1_copy.col(c2);
|
||||
VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
|
||||
|
||||
|
||||
|
||||
//check block()
|
||||
Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
|
||||
|
||||
|
|
|
@ -68,6 +68,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
|||
Index cols = m.cols();
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
|
@ -179,6 +180,57 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
|||
// restore
|
||||
if(sign == -1)
|
||||
symm = -symm;
|
||||
|
||||
// check matrices coming from linear constraints with Lagrange multipliers
|
||||
if(rows>=3)
|
||||
{
|
||||
SquareMatrixType A = symm;
|
||||
int c = internal::random<int>(0,rows-2);
|
||||
A.bottomRightCorner(c,c).setZero();
|
||||
// Make sure a solution exists:
|
||||
vecX.setRandom();
|
||||
vecB = A * vecX;
|
||||
vecX.setZero();
|
||||
ldltlo.compute(A);
|
||||
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
|
||||
vecX = ldltlo.solve(vecB);
|
||||
VERIFY_IS_APPROX(A * vecX, vecB);
|
||||
}
|
||||
|
||||
// check non-full rank matrices
|
||||
if(rows>=3)
|
||||
{
|
||||
int r = internal::random<int>(1,rows-1);
|
||||
Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r);
|
||||
SquareMatrixType A = a * a.adjoint();
|
||||
// Make sure a solution exists:
|
||||
vecX.setRandom();
|
||||
vecB = A * vecX;
|
||||
vecX.setZero();
|
||||
ldltlo.compute(A);
|
||||
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
|
||||
vecX = ldltlo.solve(vecB);
|
||||
VERIFY_IS_APPROX(A * vecX, vecB);
|
||||
}
|
||||
|
||||
// check matrices with a wide spectrum
|
||||
if(rows>=3)
|
||||
{
|
||||
RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8);
|
||||
Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows);
|
||||
Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(rows);
|
||||
for(int k=0; k<rows; ++k)
|
||||
d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
SquareMatrixType A = a * d.asDiagonal() * a.adjoint();
|
||||
// Make sure a solution exists:
|
||||
vecX.setRandom();
|
||||
vecB = A * vecX;
|
||||
vecX.setZero();
|
||||
ldltlo.compute(A);
|
||||
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
|
||||
vecX = ldltlo.solve(vecB);
|
||||
VERIFY_IS_APPROX(A * vecX, vecB);
|
||||
}
|
||||
}
|
||||
|
||||
// update/downdate
|
||||
|
|
|
@ -53,7 +53,7 @@ void check_aligned_new()
|
|||
|
||||
void check_aligned_stack_alloc()
|
||||
{
|
||||
for(int i = 1; i < 1000; i++)
|
||||
for(int i = 1; i < 400; i++)
|
||||
{
|
||||
ei_declare_aligned_stack_constructed_variable(float,p,i,0);
|
||||
VERIFY(size_t(p)%ALIGNMENT==0);
|
||||
|
@ -87,6 +87,32 @@ template<typename T> void check_dynaligned()
|
|||
delete obj;
|
||||
}
|
||||
|
||||
template<typename T> void check_custom_new_delete()
|
||||
{
|
||||
{
|
||||
T* t = new T;
|
||||
delete t;
|
||||
}
|
||||
|
||||
{
|
||||
std::size_t N = internal::random<std::size_t>(1,10);
|
||||
T* t = new T[N];
|
||||
delete[] t;
|
||||
}
|
||||
|
||||
#ifdef EIGEN_ALIGN
|
||||
{
|
||||
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
|
||||
(T::operator delete)(t, sizeof(T));
|
||||
}
|
||||
|
||||
{
|
||||
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
|
||||
(T::operator delete)(t);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_dynalloc()
|
||||
{
|
||||
// low level dynamic memory allocation
|
||||
|
@ -102,6 +128,12 @@ void test_dynalloc()
|
|||
CALL_SUBTEST(check_dynaligned<Matrix4f>() );
|
||||
CALL_SUBTEST(check_dynaligned<Vector4d>() );
|
||||
CALL_SUBTEST(check_dynaligned<Vector4i>() );
|
||||
CALL_SUBTEST(check_dynaligned<Vector8f>() );
|
||||
|
||||
CALL_SUBTEST( check_custom_new_delete<Vector4f>() );
|
||||
CALL_SUBTEST( check_custom_new_delete<Vector2f>() );
|
||||
CALL_SUBTEST( check_custom_new_delete<Matrix4f>() );
|
||||
CALL_SUBTEST( check_custom_new_delete<MatrixXi>() );
|
||||
}
|
||||
|
||||
// check static allocation, who knows ?
|
||||
|
|
|
@ -67,6 +67,7 @@ template<typename MatrixType, int QRPreconditioner>
|
|||
void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
@ -81,9 +82,90 @@ void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
|
|||
|
||||
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
|
||||
JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
|
||||
|
||||
if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
|
||||
else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(1e-4);
|
||||
|
||||
SolutionType x = svd.solve(rhs);
|
||||
|
||||
RealScalar residual = (m*x-rhs).norm();
|
||||
// Check that there is no significantly better solution in the neighborhood of x
|
||||
if(!test_isMuchSmallerThan(residual,rhs.norm()))
|
||||
{
|
||||
// If the residual is very small, then we have an exact solution, so we are already good.
|
||||
for(int k=0;k<x.rows();++k)
|
||||
{
|
||||
SolutionType y(x);
|
||||
y.row(k).array() += 2*NumTraits<RealScalar>::epsilon();
|
||||
RealScalar residual_y = (m*y-rhs).norm();
|
||||
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
|
||||
|
||||
y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon();
|
||||
residual_y = (m*y-rhs).norm();
|
||||
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
|
||||
}
|
||||
}
|
||||
|
||||
// evaluate normal equation which works also for least-squares solutions
|
||||
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
|
||||
if(internal::is_same<RealScalar,double>::value)
|
||||
{
|
||||
// This test is not stable with single precision.
|
||||
// This is probably because squaring m signicantly affects the precision.
|
||||
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
|
||||
}
|
||||
|
||||
// check minimal norm solutions
|
||||
{
|
||||
// generate a full-rank m x n problem with m<n
|
||||
enum {
|
||||
RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
|
||||
RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
|
||||
};
|
||||
typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
|
||||
typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
|
||||
Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
|
||||
MatrixType2 m2(rank,cols);
|
||||
int guard = 0;
|
||||
do {
|
||||
m2.setRandom();
|
||||
} while(m2.jacobiSvd().setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
|
||||
VERIFY(guard<10);
|
||||
RhsType2 rhs2 = RhsType2::Random(rank);
|
||||
// use QR to find a reference minimal norm solution
|
||||
HouseholderQR<MatrixType2T> qr(m2.adjoint());
|
||||
Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
|
||||
tmp.conservativeResize(cols);
|
||||
tmp.tail(cols-rank).setZero();
|
||||
SolutionType x21 = qr.householderQ() * tmp;
|
||||
// now check with SVD
|
||||
JacobiSVD<MatrixType2, ColPivHouseholderQRPreconditioner> svd2(m2, computationOptions);
|
||||
SolutionType x22 = svd2.solve(rhs2);
|
||||
VERIFY_IS_APPROX(m2*x21, rhs2);
|
||||
VERIFY_IS_APPROX(m2*x22, rhs2);
|
||||
VERIFY_IS_APPROX(x21, x22);
|
||||
|
||||
// Now check with a rank deficient matrix
|
||||
typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
|
||||
Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
|
||||
Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
|
||||
MatrixType3 m3 = C * m2;
|
||||
RhsType3 rhs3 = C * rhs2;
|
||||
JacobiSVD<MatrixType3, ColPivHouseholderQRPreconditioner> svd3(m3, computationOptions);
|
||||
SolutionType x3 = svd3.solve(rhs3);
|
||||
if(svd3.rank()!=rank) {
|
||||
std::cout << m3 << "\n\n";
|
||||
std::cout << svd3.singularValues().transpose() << "\n";
|
||||
std::cout << svd3.rank() << " == " << rank << "\n";
|
||||
std::cout << x21.norm() << " == " << x3.norm() << "\n";
|
||||
}
|
||||
// VERIFY_IS_APPROX(m3*x3, rhs3);
|
||||
VERIFY_IS_APPROX(m3*x21, rhs3);
|
||||
VERIFY_IS_APPROX(m2*x3, rhs2);
|
||||
|
||||
VERIFY_IS_APPROX(x21, x3);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
|
@ -92,10 +174,9 @@ void jacobisvd_test_all_computation_options(const MatrixType& m)
|
|||
if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
|
||||
return;
|
||||
JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
|
||||
|
||||
jacobisvd_check_full(m, fullSvd);
|
||||
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV);
|
||||
|
||||
CALL_SUBTEST(( jacobisvd_check_full(m, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV) ));
|
||||
|
||||
#if defined __INTEL_COMPILER
|
||||
// remark #111: statement is unreachable
|
||||
#pragma warning disable 111
|
||||
|
@ -103,20 +184,20 @@ void jacobisvd_test_all_computation_options(const MatrixType& m)
|
|||
if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||
return;
|
||||
|
||||
jacobisvd_compare_to_full(m, ComputeFullU, fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeFullV, fullSvd);
|
||||
jacobisvd_compare_to_full(m, 0, fullSvd);
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, 0, fullSvd) ));
|
||||
|
||||
if (MatrixType::ColsAtCompileTime == Dynamic) {
|
||||
// thin U/V are only available with dynamic number of columns
|
||||
jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeThinV, fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeThinU , fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd);
|
||||
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV);
|
||||
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV);
|
||||
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV);
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU , fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV) ));
|
||||
CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV) ));
|
||||
CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV) ));
|
||||
|
||||
// test reconstruction
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -129,12 +210,29 @@ void jacobisvd_test_all_computation_options(const MatrixType& m)
|
|||
template<typename MatrixType>
|
||||
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
||||
{
|
||||
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
|
||||
MatrixType m = a;
|
||||
if(pickrandom)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index diagSize = (std::min)(a.rows(), a.cols());
|
||||
RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4;
|
||||
s = internal::random<RealScalar>(1,s);
|
||||
Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize);
|
||||
for(Index k=0; k<diagSize; ++k)
|
||||
d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
m = Matrix<Scalar,Dynamic,Dynamic>::Random(a.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,a.cols());
|
||||
// cancel some coeffs
|
||||
Index n = internal::random<Index>(0,m.size()-1);
|
||||
for(Index i=0; i<n; ++i)
|
||||
m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0);
|
||||
}
|
||||
|
||||
jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
|
||||
jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
|
||||
jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
|
||||
jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
|
||||
CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m) ));
|
||||
CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m) ));
|
||||
CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m) ));
|
||||
CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m) ));
|
||||
}
|
||||
|
||||
template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
|
||||
|
@ -328,6 +426,7 @@ void test_jacobisvd()
|
|||
TEST_SET_BUT_UNUSED_VARIABLE(r)
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(c)
|
||||
|
||||
CALL_SUBTEST_10(( jacobisvd<MatrixXd>(MatrixXd(r,c)) ));
|
||||
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
|
||||
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
|
||||
(void) r;
|
||||
|
|
|
@ -154,59 +154,79 @@ template<typename PlainObjectType> void check_const_correctness(const PlainObjec
|
|||
VERIFY( !(Ref<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE void call_ref_1(Ref<VectorXf> ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_2(const Ref<const VectorXf>& ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_3(Ref<VectorXf,0,InnerStride<> > ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_4(const Ref<const VectorXf,0,InnerStride<> >& ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_5(Ref<MatrixXf,0,OuterStride<> > ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_6(const Ref<const MatrixXf,0,OuterStride<> >& ) { }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_1(Ref<VectorXf> a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_2(const Ref<const VectorXf>& a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_3(Ref<VectorXf,0,InnerStride<> > a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_4(const Ref<const VectorXf,0,InnerStride<> >& a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_5(Ref<MatrixXf,0,OuterStride<> > a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_6(const Ref<const MatrixXf,0,OuterStride<> >& a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_7(Ref<Matrix<float,Dynamic,3> > a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
|
||||
void call_ref()
|
||||
{
|
||||
VectorXcf ca(10);
|
||||
VectorXf a(10);
|
||||
VectorXcf ca = VectorXcf::Random(10);
|
||||
VectorXf a = VectorXf::Random(10);
|
||||
RowVectorXf b = RowVectorXf::Random(10);
|
||||
MatrixXf A = MatrixXf::Random(10,10);
|
||||
RowVector3f c = RowVector3f::Random();
|
||||
const VectorXf& ac(a);
|
||||
VectorBlock<VectorXf> ab(a,0,3);
|
||||
MatrixXf A(10,10);
|
||||
const VectorBlock<VectorXf> abc(a,0,3);
|
||||
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(a), 0);
|
||||
//call_ref_1(ac); // does not compile because ac is const
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(ab), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(a.head(4)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(abc), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(A.col(3)), 0);
|
||||
// call_ref_1(A.row(3)); // does not compile because innerstride!=1
|
||||
VERIFY_EVALUATION_COUNT( call_ref_3(A.row(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(A.row(3)), 0);
|
||||
//call_ref_1(a+a); // does not compile for obvious reason
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(a,a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(b,b.transpose()), 0);
|
||||
// call_ref_1(ac); // does not compile because ac is const
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(ab,ab), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(a.head(4),a.head(4)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(abc,abc), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(A.col(3),A.col(3)), 0);
|
||||
// call_ref_1(A.row(3)); // does not compile because innerstride!=1
|
||||
VERIFY_EVALUATION_COUNT( call_ref_3(A.row(3),A.row(3).transpose()), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(A.row(3),A.row(3).transpose()), 0);
|
||||
// call_ref_1(a+a); // does not compile for obvious reason
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(A*A.col(1)), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ac.head(5)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ac), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ab), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a.head(4)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a+a), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ca.imag()), 1); // evaluated into a temp
|
||||
MatrixXf tmp = A*A.col(1);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(A*A.col(1), tmp), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ac.head(5),ac.head(5)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ac,ac), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a,a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ab,ab), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a.head(4),a.head(4)), 0);
|
||||
tmp = a+a;
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a+a,tmp), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ca.imag(),ca.imag()), 1); // evaluated into a temp
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(ac.head(5)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(a+a), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(ca.imag()), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(ac.head(5),ac.head(5)), 0);
|
||||
tmp = a+a;
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(a+a,tmp), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(ca.imag(),ca.imag()), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a.head(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(A), 0);
|
||||
// call_ref_5(A.transpose()); // does not compile
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(A.block(1,1,2,2)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a,a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a.head(3),a.head(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(A,A), 0);
|
||||
// call_ref_5(A.transpose()); // does not compile
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(A.block(1,1,2,2),A.block(1,1,2,2)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(b,b), 0); // storage order do not match, but this is a degenerate case that should work
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a.row(3),a.row(3)), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(a.head(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.row(3)), 1); // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A+A), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.transpose()), 1); // evaluated into a temp because the storage orders do not match
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.block(1,1,2,2)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(a,a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(a.head(3),a.head(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.row(3),A.row(3)), 1); // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix
|
||||
tmp = A+A;
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A+A,tmp), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A,A), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.transpose(),A.transpose()), 1); // evaluated into a temp because the storage orders do not match
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.block(1,1,2,2),A.block(1,1,2,2)), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_7(c,c), 0);
|
||||
}
|
||||
|
||||
void test_ref()
|
||||
|
|
|
@ -11,26 +11,31 @@
|
|||
|
||||
template<typename T> void test_simplicial_cholesky_T()
|
||||
{
|
||||
SimplicialCholesky<SparseMatrix<T>, Lower> chol_colmajor_lower;
|
||||
SimplicialCholesky<SparseMatrix<T>, Upper> chol_colmajor_upper;
|
||||
SimplicialLLT<SparseMatrix<T>, Lower> llt_colmajor_lower;
|
||||
SimplicialLDLT<SparseMatrix<T>, Upper> llt_colmajor_upper;
|
||||
SimplicialLDLT<SparseMatrix<T>, Lower> ldlt_colmajor_lower;
|
||||
SimplicialLDLT<SparseMatrix<T>, Upper> ldlt_colmajor_upper;
|
||||
SimplicialCholesky<SparseMatrix<T>, Lower> chol_colmajor_lower_amd;
|
||||
SimplicialCholesky<SparseMatrix<T>, Upper> chol_colmajor_upper_amd;
|
||||
SimplicialLLT<SparseMatrix<T>, Lower> llt_colmajor_lower_amd;
|
||||
SimplicialLLT<SparseMatrix<T>, Upper> llt_colmajor_upper_amd;
|
||||
SimplicialLDLT<SparseMatrix<T>, Lower> ldlt_colmajor_lower_amd;
|
||||
SimplicialLDLT<SparseMatrix<T>, Upper> ldlt_colmajor_upper_amd;
|
||||
SimplicialLDLT<SparseMatrix<T>, Lower, NaturalOrdering<int> > ldlt_colmajor_lower_nat;
|
||||
SimplicialLDLT<SparseMatrix<T>, Upper, NaturalOrdering<int> > ldlt_colmajor_upper_nat;
|
||||
|
||||
check_sparse_spd_solving(chol_colmajor_lower);
|
||||
check_sparse_spd_solving(chol_colmajor_upper);
|
||||
check_sparse_spd_solving(llt_colmajor_lower);
|
||||
check_sparse_spd_solving(llt_colmajor_upper);
|
||||
check_sparse_spd_solving(ldlt_colmajor_lower);
|
||||
check_sparse_spd_solving(ldlt_colmajor_upper);
|
||||
check_sparse_spd_solving(chol_colmajor_lower_amd);
|
||||
check_sparse_spd_solving(chol_colmajor_upper_amd);
|
||||
check_sparse_spd_solving(llt_colmajor_lower_amd);
|
||||
check_sparse_spd_solving(llt_colmajor_upper_amd);
|
||||
check_sparse_spd_solving(ldlt_colmajor_lower_amd);
|
||||
check_sparse_spd_solving(ldlt_colmajor_upper_amd);
|
||||
|
||||
check_sparse_spd_determinant(chol_colmajor_lower);
|
||||
check_sparse_spd_determinant(chol_colmajor_upper);
|
||||
check_sparse_spd_determinant(llt_colmajor_lower);
|
||||
check_sparse_spd_determinant(llt_colmajor_upper);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_lower);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_upper);
|
||||
check_sparse_spd_determinant(chol_colmajor_lower_amd);
|
||||
check_sparse_spd_determinant(chol_colmajor_upper_amd);
|
||||
check_sparse_spd_determinant(llt_colmajor_lower_amd);
|
||||
check_sparse_spd_determinant(llt_colmajor_upper_amd);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_lower_amd);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_upper_amd);
|
||||
|
||||
check_sparse_spd_solving(ldlt_colmajor_lower_nat);
|
||||
check_sparse_spd_solving(ldlt_colmajor_upper_nat);
|
||||
}
|
||||
|
||||
void test_simplicial_cholesky()
|
||||
|
|
|
@ -2,24 +2,24 @@
|
|||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
|
||||
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
#include "sparse.h"
|
||||
#include <Eigen/SparseQR>
|
||||
|
||||
|
||||
template<typename MatrixType,typename DenseMat>
|
||||
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300)
|
||||
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 150)
|
||||
{
|
||||
eigen_assert(maxRows >= maxCols);
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
int rows = internal::random<int>(1,maxRows);
|
||||
int cols = internal::random<int>(1,rows);
|
||||
int cols = internal::random<int>(1,maxCols);
|
||||
double density = (std::max)(8./(rows*cols), 0.01);
|
||||
|
||||
A.resize(rows,rows);
|
||||
dA.resize(rows,rows);
|
||||
A.resize(rows,cols);
|
||||
dA.resize(rows,cols);
|
||||
initSparse<Scalar>(density, dA, A,ForceNonZeroDiag);
|
||||
A.makeCompressed();
|
||||
int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0);
|
||||
|
@ -31,6 +31,13 @@ int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows
|
|||
A.col(j0) = s * A.col(j1);
|
||||
dA.col(j0) = s * dA.col(j1);
|
||||
}
|
||||
|
||||
// if(rows<cols) {
|
||||
// A.conservativeResize(cols,cols);
|
||||
// dA.conservativeResize(cols,cols);
|
||||
// dA.bottomRows(cols-rows).setZero();
|
||||
// }
|
||||
|
||||
return rows;
|
||||
}
|
||||
|
||||
|
@ -42,11 +49,10 @@ template<typename Scalar> void test_sparseqr_scalar()
|
|||
MatrixType A;
|
||||
DenseMat dA;
|
||||
DenseVector refX,x,b;
|
||||
SparseQR<MatrixType, AMDOrdering<int> > solver;
|
||||
SparseQR<MatrixType, COLAMDOrdering<int> > solver;
|
||||
generate_sparse_rectangular_problem(A,dA);
|
||||
|
||||
int n = A.cols();
|
||||
b = DenseVector::Random(n);
|
||||
b = dA * DenseVector::Random(A.cols());
|
||||
solver.compute(A);
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
|
@ -60,17 +66,19 @@ template<typename Scalar> void test_sparseqr_scalar()
|
|||
std::cerr << "sparse QR factorization failed\n";
|
||||
exit(0);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
VERIFY_IS_APPROX(A * x, b);
|
||||
|
||||
//Compare with a dense QR solver
|
||||
ColPivHouseholderQR<DenseMat> dqr(dA);
|
||||
refX = dqr.solve(b);
|
||||
|
||||
VERIFY_IS_EQUAL(dqr.rank(), solver.rank());
|
||||
|
||||
if(solver.rank()<A.cols())
|
||||
VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
|
||||
else
|
||||
if(solver.rank()==A.cols()) // full rank
|
||||
VERIFY_IS_APPROX(x, refX);
|
||||
// else
|
||||
// VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
|
||||
|
||||
// Compute explicitly the matrix Q
|
||||
MatrixType Q, QtQ, idM;
|
||||
|
@ -88,3 +96,4 @@ void test_sparseqr()
|
|||
CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
|
||||
// Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
|
@ -72,16 +72,20 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||
|
||||
VectorType p0 = rhs - mat*x;
|
||||
VectorType r0 = precond.solve(p0);
|
||||
// RealScalar r0_sqnorm = r0.squaredNorm();
|
||||
|
||||
// is initial guess already good enough?
|
||||
if(abs(r0.norm()) < tol) {
|
||||
return true;
|
||||
}
|
||||
|
||||
VectorType w = VectorType::Zero(restart + 1);
|
||||
|
||||
FMatrixType H = FMatrixType::Zero(m, restart + 1);
|
||||
FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix
|
||||
VectorType tau = VectorType::Zero(restart + 1);
|
||||
std::vector < JacobiRotation < Scalar > > G(restart);
|
||||
|
||||
// generate first Householder vector
|
||||
VectorType e;
|
||||
VectorType e(m-1);
|
||||
RealScalar beta;
|
||||
r0.makeHouseholder(e, tau.coeffRef(0), beta);
|
||||
w(0)=(Scalar) beta;
|
||||
|
|
|
@ -127,46 +127,47 @@ template<typename Func> void forward_jacobian(const Func& f)
|
|||
VERIFY_IS_APPROX(j, jref);
|
||||
}
|
||||
|
||||
|
||||
// TODO also check actual derivatives!
|
||||
void test_autodiff_scalar()
|
||||
{
|
||||
std::cerr << foo<float>(1,2) << "\n";
|
||||
Vector2f p = Vector2f::Random();
|
||||
typedef AutoDiffScalar<Vector2f> AD;
|
||||
AD ax(1,Vector2f::UnitX());
|
||||
AD ay(2,Vector2f::UnitY());
|
||||
AD ax(p.x(),Vector2f::UnitX());
|
||||
AD ay(p.y(),Vector2f::UnitY());
|
||||
AD res = foo<AD>(ax,ay);
|
||||
std::cerr << res.value() << " <> "
|
||||
<< res.derivatives().transpose() << "\n\n";
|
||||
VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y()));
|
||||
}
|
||||
|
||||
// TODO also check actual derivatives!
|
||||
void test_autodiff_vector()
|
||||
{
|
||||
std::cerr << foo<Vector2f>(Vector2f(1,2)) << "\n";
|
||||
Vector2f p = Vector2f::Random();
|
||||
typedef AutoDiffScalar<Vector2f> AD;
|
||||
typedef Matrix<AD,2,1> VectorAD;
|
||||
VectorAD p(AD(1),AD(-1));
|
||||
p.x().derivatives() = Vector2f::UnitX();
|
||||
p.y().derivatives() = Vector2f::UnitY();
|
||||
VectorAD ap = p.cast<AD>();
|
||||
ap.x().derivatives() = Vector2f::UnitX();
|
||||
ap.y().derivatives() = Vector2f::UnitY();
|
||||
|
||||
AD res = foo<VectorAD>(p);
|
||||
std::cerr << res.value() << " <> "
|
||||
<< res.derivatives().transpose() << "\n\n";
|
||||
AD res = foo<VectorAD>(ap);
|
||||
VERIFY_IS_APPROX(res.value(), foo(p));
|
||||
}
|
||||
|
||||
void test_autodiff_jacobian()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
|
||||
}
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
|
||||
}
|
||||
|
||||
void test_autodiff()
|
||||
{
|
||||
test_autodiff_scalar();
|
||||
test_autodiff_vector();
|
||||
// test_autodiff_jacobian();
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( test_autodiff_scalar() );
|
||||
CALL_SUBTEST_2( test_autodiff_vector() );
|
||||
CALL_SUBTEST_3( test_autodiff_jacobian() );
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -17,6 +17,10 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#ifndef MKL_BLAS
|
||||
#define MKL_BLAS MKL_DOMAIN_BLAS
|
||||
#endif
|
||||
|
||||
#cmakedefine EIGEN_USE_MKL_ALL // This is also defined in config.h
|
||||
#include <@GTSAM_EIGEN_INCLUDE_PREFIX@Eigen/Dense>
|
||||
#include <@GTSAM_EIGEN_INCLUDE_PREFIX@Eigen/QR>
|
||||
|
|
|
@ -30,55 +30,11 @@
|
|||
|
||||
#include <gtsam/base/Vector.h>
|
||||
|
||||
//#ifdef WIN32
|
||||
//#include <Windows.h>
|
||||
//#endif
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
void odprintf_(const char *format, ostream& stream, ...) {
|
||||
char buf[4096], *p = buf;
|
||||
|
||||
va_list args;
|
||||
va_start(args, stream);
|
||||
#ifdef WIN32
|
||||
_vsnprintf(p, sizeof buf - 3, format, args); // buf-3 is room for CR/LF/NUL
|
||||
#else
|
||||
vsnprintf(p, sizeof buf - 3, format, args); // buf-3 is room for CR/LF/NUL
|
||||
#endif
|
||||
va_end(args);
|
||||
|
||||
//#ifdef WIN32
|
||||
// OutputDebugString(buf);
|
||||
//#else
|
||||
stream << buf;
|
||||
//#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
void odprintf(const char *format, ...) {
|
||||
char buf[4096], *p = buf;
|
||||
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
#ifdef WIN32
|
||||
_vsnprintf(p, sizeof buf - 3, format, args); // buf-3 is room for CR/LF/NUL
|
||||
#else
|
||||
vsnprintf(p, sizeof buf - 3, format, args); // buf-3 is room for CR/LF/NUL
|
||||
#endif
|
||||
va_end(args);
|
||||
|
||||
//#ifdef WIN32
|
||||
// OutputDebugString(buf);
|
||||
//#else
|
||||
cout << buf;
|
||||
//#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool zero(const Vector& v) {
|
||||
bool result = true;
|
||||
|
@ -101,10 +57,12 @@ Vector delta(size_t n, size_t i, double value) {
|
|||
/* ************************************************************************* */
|
||||
void print(const Vector& v, const string& s, ostream& stream) {
|
||||
size_t n = v.size();
|
||||
odprintf_("%s [", stream, s.c_str());
|
||||
for(size_t i=0; i<n; i++)
|
||||
odprintf_("%g%s", stream, v[i], (i<n-1 ? "; " : ""));
|
||||
odprintf_("];\n", stream);
|
||||
|
||||
stream << s << "[";
|
||||
for(size_t i=0; i<n; i++) {
|
||||
stream << setprecision(9) << v(i) << (i<n-1 ? "; " : "");
|
||||
}
|
||||
stream << "];" << endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -46,11 +46,6 @@ typedef Eigen::Matrix<double, 9, 1> Vector9;
|
|||
typedef Eigen::VectorBlock<Vector> SubVector;
|
||||
typedef Eigen::VectorBlock<const Vector> ConstSubVector;
|
||||
|
||||
/**
|
||||
* An auxiliary function to printf for Win32 compatibility, added by Kai
|
||||
*/
|
||||
GTSAM_EXPORT void odprintf(const char *format, ...);
|
||||
|
||||
/**
|
||||
* Create vector initialized to a constant value
|
||||
* @param n is the size of the vector
|
||||
|
|
|
@ -1127,6 +1127,12 @@ TEST( matrix, svd2 )
|
|||
|
||||
svd(sampleA, U, s, V);
|
||||
|
||||
// take care of sign ambiguity
|
||||
if (U(0, 1) > 0) {
|
||||
U = -U;
|
||||
V = -V;
|
||||
}
|
||||
|
||||
EXPECT(assert_equal(expectedU,U));
|
||||
EXPECT(assert_equal(expected_s,s,1e-9));
|
||||
EXPECT(assert_equal(expectedV,V));
|
||||
|
@ -1143,6 +1149,13 @@ TEST( matrix, svd3 )
|
|||
Matrix expectedV = (Matrix(3, 2) << 0.,1.,0.,0.,-1.,0.);
|
||||
|
||||
svd(sampleAt, U, s, V);
|
||||
|
||||
// take care of sign ambiguity
|
||||
if (U(0, 0) > 0) {
|
||||
U = -U;
|
||||
V = -V;
|
||||
}
|
||||
|
||||
Matrix S = diag(s);
|
||||
Matrix t = U * S;
|
||||
Matrix Vt = trans(V);
|
||||
|
@ -1176,6 +1189,17 @@ TEST( matrix, svd4 )
|
|||
0.6723, 0.7403);
|
||||
|
||||
svd(A, U, s, V);
|
||||
|
||||
// take care of sign ambiguity
|
||||
if (U(0, 0) < 0) {
|
||||
U.col(0) = -U.col(0);
|
||||
V.col(0) = -V.col(0);
|
||||
}
|
||||
if (U(0, 1) < 0) {
|
||||
U.col(1) = -U.col(1);
|
||||
V.col(1) = -V.col(1);
|
||||
}
|
||||
|
||||
Matrix reconstructed = U * diag(s) * trans(V);
|
||||
|
||||
EXPECT(assert_equal(A, reconstructed, 1e-4));
|
||||
|
|
|
@ -173,6 +173,12 @@ TEST (EssentialMatrix, epipoles) {
|
|||
Vector S;
|
||||
gtsam::svd(E.matrix(), U, S, V);
|
||||
|
||||
// take care of SVD sign ambiguity
|
||||
if (U(0, 2) > 0) {
|
||||
U = -U;
|
||||
V = -V;
|
||||
}
|
||||
|
||||
// check rank 2 constraint
|
||||
CHECK(fabs(S(2))<1e-10);
|
||||
|
||||
|
@ -182,8 +188,15 @@ TEST (EssentialMatrix, epipoles) {
|
|||
// Check epipoles
|
||||
|
||||
// Epipole in image 1 is just E.direction()
|
||||
Unit3 e1(U(0, 2), U(1, 2), U(2, 2));
|
||||
EXPECT(assert_equal(e1, E.epipole_a()));
|
||||
Unit3 e1(-U(0, 2), -U(1, 2), -U(2, 2));
|
||||
Unit3 actual = E.epipole_a();
|
||||
EXPECT(assert_equal(e1, actual));
|
||||
|
||||
// take care of SVD sign ambiguity
|
||||
if (V(0, 2) < 0) {
|
||||
U = -U;
|
||||
V = -V;
|
||||
}
|
||||
|
||||
// Epipole in image 2 is E.rotation().unrotate(E.direction())
|
||||
Unit3 e2(V(0, 2), V(1, 2), V(2, 2));
|
||||
|
|
|
@ -38,7 +38,7 @@ Errors::Errors(const VectorValues& V) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
void Errors::print(const std::string& s) const {
|
||||
odprintf("%s:\n", s.c_str());
|
||||
cout << s << endl;
|
||||
BOOST_FOREACH(const Vector& v, *this)
|
||||
gtsam::print(v);
|
||||
}
|
||||
|
|
|
@ -37,7 +37,15 @@ class MagFactor: public NoiseModelFactor1<Rot2> {
|
|||
|
||||
public:
|
||||
|
||||
/** Constructor */
|
||||
/**
|
||||
* Constructor of factor that estimates nav to body rotation bRn
|
||||
* @param key of the unknown rotation bRn in the factor graph
|
||||
* @param measured magnetometer reading, a 3-vector
|
||||
* @param scale by which a unit vector is scaled to yield a magnetometer reading
|
||||
* @param direction of the local magnetic field, see e.g. http://www.ngdc.noaa.gov/geomag-web/#igrfwmm
|
||||
* @param bias of the magnetometer, modeled as purely additive (after scaling)
|
||||
* @param model of the additive Gaussian noise that is assumed
|
||||
*/
|
||||
MagFactor(Key key, const Point3& measured, double scale,
|
||||
const Unit3& direction, const Point3& bias,
|
||||
const SharedNoiseModel& model) :
|
||||
|
|
|
@ -49,12 +49,12 @@ using symbol_shorthand::T;
|
|||
typedef ProjectionFactorPPP<Pose3, Point3> TestProjectionFactor;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, nonStandard ) {
|
||||
TEST( ProjectionFactorPPP, nonStandard ) {
|
||||
ProjectionFactorPPP<Pose3, Point3, Cal3DS2> f;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, Constructor) {
|
||||
TEST( ProjectionFactorPPP, Constructor) {
|
||||
Key poseKey(X(1));
|
||||
Key transformKey(T(1));
|
||||
Key pointKey(L(1));
|
||||
|
@ -65,7 +65,7 @@ TEST( ProjectionFactor, Constructor) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, ConstructorWithTransform) {
|
||||
TEST( ProjectionFactorPPP, ConstructorWithTransform) {
|
||||
Key poseKey(X(1));
|
||||
Key transformKey(T(1));
|
||||
Key pointKey(L(1));
|
||||
|
@ -75,7 +75,7 @@ TEST( ProjectionFactor, ConstructorWithTransform) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, Equals ) {
|
||||
TEST( ProjectionFactorPPP, Equals ) {
|
||||
// Create two identical factors and make sure they're equal
|
||||
Point2 measurement(323.0, 240.0);
|
||||
|
||||
|
@ -86,7 +86,7 @@ TEST( ProjectionFactor, Equals ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, EqualsWithTransform ) {
|
||||
TEST( ProjectionFactorPPP, EqualsWithTransform ) {
|
||||
// Create two identical factors and make sure they're equal
|
||||
Point2 measurement(323.0, 240.0);
|
||||
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
||||
|
@ -98,7 +98,7 @@ TEST( ProjectionFactor, EqualsWithTransform ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, Error ) {
|
||||
TEST( ProjectionFactorPPP, Error ) {
|
||||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Key poseKey(X(1));
|
||||
Key transformKey(T(1));
|
||||
|
@ -121,7 +121,7 @@ TEST( ProjectionFactor, Error ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, ErrorWithTransform ) {
|
||||
TEST( ProjectionFactorPPP, ErrorWithTransform ) {
|
||||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Key poseKey(X(1));
|
||||
Key transformKey(T(1));
|
||||
|
@ -145,7 +145,7 @@ TEST( ProjectionFactor, ErrorWithTransform ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, Jacobian ) {
|
||||
TEST( ProjectionFactorPPP, Jacobian ) {
|
||||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Key poseKey(X(1));
|
||||
Key transformKey(T(1));
|
||||
|
@ -179,7 +179,7 @@ TEST( ProjectionFactor, Jacobian ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, JacobianWithTransform ) {
|
||||
TEST( ProjectionFactorPPP, JacobianWithTransform ) {
|
||||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Key poseKey(X(1));
|
||||
Key transformKey(T(1));
|
||||
|
|
|
@ -50,19 +50,19 @@ using symbol_shorthand::K;
|
|||
typedef ProjectionFactorPPPC<Pose3, Point3, Cal3_S2> TestProjectionFactor;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, nonStandard ) {
|
||||
TEST( ProjectionFactorPPPC, nonStandard ) {
|
||||
ProjectionFactorPPPC<Pose3, Point3, Cal3DS2> f;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, Constructor) {
|
||||
TEST( ProjectionFactorPPPC, Constructor) {
|
||||
Point2 measurement(323.0, 240.0);
|
||||
TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1));
|
||||
// TODO: Actually check something
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, Equals ) {
|
||||
TEST( ProjectionFactorPPPC, Equals ) {
|
||||
// Create two identical factors and make sure they're equal
|
||||
Point2 measurement(323.0, 240.0);
|
||||
|
||||
|
@ -73,7 +73,7 @@ TEST( ProjectionFactor, Equals ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, Error ) {
|
||||
TEST( ProjectionFactorPPPC, Error ) {
|
||||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Point2 measurement(323.0, 240.0);
|
||||
TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1));
|
||||
|
@ -93,7 +93,7 @@ TEST( ProjectionFactor, Error ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, ErrorWithTransform ) {
|
||||
TEST( ProjectionFactorPPPC, ErrorWithTransform ) {
|
||||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Point2 measurement(323.0, 240.0);
|
||||
Pose3 transform(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
||||
|
@ -114,7 +114,7 @@ TEST( ProjectionFactor, ErrorWithTransform ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, Jacobian ) {
|
||||
TEST( ProjectionFactorPPPC, Jacobian ) {
|
||||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Point2 measurement(323.0, 240.0);
|
||||
TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1));
|
||||
|
@ -149,7 +149,7 @@ TEST( ProjectionFactor, Jacobian ) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( ProjectionFactor, JacobianWithTransform ) {
|
||||
TEST( ProjectionFactorPPPC, JacobianWithTransform ) {
|
||||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Point2 measurement(323.0, 240.0);
|
||||
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
||||
|
|
|
@ -0,0 +1,16 @@
|
|||
<?xml version="1.0"?>
|
||||
<package format="2">
|
||||
<name>gtsam</name>
|
||||
<version>3.1.0</version>
|
||||
<description>gtsam</description>
|
||||
|
||||
<maintainer email="gtsam@lists.gatech.edu">Frank Dellaert</maintainer>
|
||||
<license>BSD</license>
|
||||
|
||||
<buildtool_depend>cmake</buildtool_depend>
|
||||
<export>
|
||||
<!-- Specify that this is not really a Catkin package-->
|
||||
<build_type>cmake</build_type>
|
||||
</export>
|
||||
</package>
|
||||
|
Loading…
Reference in New Issue