Some documentation, and extra optimize test. In debug mode the unit test fails because it does not throw the right exception, but everything else seems fine.
parent
b123c5dda2
commit
a28e04988d
|
@ -20,6 +20,8 @@
|
|||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
|
||||
#include <gtsam_unstable/geometry/InvDepthCamera3.h>
|
||||
#include <gtsam_unstable/geometry/triangulation.h>
|
||||
|
@ -32,20 +34,20 @@ using namespace gtsam;
|
|||
using namespace boost::assign;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( triangulation, fourPoses) {
|
||||
Cal3_S2 K(1500, 1200, 0, 640, 480);
|
||||
TEST( triangulation, twoPosesBundler) {
|
||||
Cal3Bundler K(1500, 0, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
|
||||
SimpleCamera level_camera(level_pose, K);
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
gtsam::Point3(0, 0, 1));
|
||||
PinholeCamera<Cal3Bundler> level_camera(level_pose, K);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
|
||||
SimpleCamera level_camera_right(level_pose_right, K);
|
||||
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
PinholeCamera<Cal3Bundler> level_camera_right(level_pose_right, K);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
Point3 landmark(5, 0.5, 1.2);
|
||||
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
|
@ -56,61 +58,108 @@ TEST( triangulation, fourPoses) {
|
|||
poses += level_pose, level_pose_right;
|
||||
measurements += level_uv, level_uv_right;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses, measurements, K);
|
||||
bool optimize = true;
|
||||
double rank_tol = 1e-9;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
||||
measurements, K, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
measurements.at(0) += Point2(0.1,0.5);
|
||||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses, measurements, K);
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
||||
measurements, K, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( triangulation, fourPoses) {
|
||||
Cal3_S2 K(1500, 1200, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
gtsam::Point3(0, 0, 1));
|
||||
SimpleCamera level_camera(level_pose, K);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
SimpleCamera level_camera_right(level_pose_right, K);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
Point3 landmark(5, 0.5, 1.2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
poses += level_pose, level_pose_right;
|
||||
measurements += level_uv, level_uv_right;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
||||
measurements, K);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
||||
measurements, K);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose_top = level_pose * Pose3(Rot3::ypr(0.1,0.2,0.1), Point3(0.1,-2,-.1));
|
||||
Pose3 pose_top = level_pose
|
||||
* Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
SimpleCamera camera_top(pose_top, K);
|
||||
Point2 top_uv = camera_top.project(landmark);
|
||||
|
||||
poses += pose_top;
|
||||
measurements += top_uv + Point2(0.1, -0.1);
|
||||
|
||||
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(poses, measurements, K);
|
||||
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(poses,
|
||||
measurements, K);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses, measurements, K, 1e-9, true);
|
||||
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses,
|
||||
measurements, K, 1e-9, true);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
||||
|
||||
// 4. Test failure: Add a 4th camera facing the wrong way
|
||||
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI/2, 0., -M_PI/2), Point3(0,0,1));
|
||||
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(0, 0, 1));
|
||||
SimpleCamera camera_180(level_pose180, K);
|
||||
|
||||
CHECK_EXCEPTION(camera_180.project(landmark);, CheiralityException);
|
||||
CHECK_EXCEPTION(camera_180.project(landmark)
|
||||
;, CheiralityException);
|
||||
|
||||
poses += level_pose180;
|
||||
measurements += Point2(400,400);
|
||||
measurements += Point2(400, 400);
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, K), TriangulationCheiralityException);
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, K),
|
||||
TriangulationCheiralityException);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( triangulation, fourPoses_distinct_Ks) {
|
||||
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
gtsam::Point3(0, 0, 1));
|
||||
SimpleCamera level_camera(level_pose, K1);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
|
||||
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
Cal3_S2 K2(1600, 1300, 0, 650, 440);
|
||||
SimpleCamera level_camera_right(level_pose_right, K2);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
Point3 landmark(5, 0.5, 1.2);
|
||||
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
|
@ -125,20 +174,21 @@ TEST( triangulation, fourPoses_distinct_Ks) {
|
|||
Ks.push_back(boost::make_shared<Cal3_S2>(K1));
|
||||
Ks.push_back(boost::make_shared<Cal3_S2>(K2));
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses, measurements, Ks);
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
||||
measurements, Ks);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
measurements.at(0) += Point2(0.1,0.5);
|
||||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses, measurements, Ks);
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
||||
measurements, Ks);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose_top = level_pose * Pose3(Rot3::ypr(0.1,0.2,0.1), Point3(0.1,-2,-.1));
|
||||
Pose3 pose_top = level_pose
|
||||
* Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
Cal3_S2 K3(700, 500, 0, 640, 480);
|
||||
SimpleCamera camera_top(pose_top, K3);
|
||||
Point2 top_uv = camera_top.project(landmark);
|
||||
|
@ -147,32 +197,38 @@ TEST( triangulation, fourPoses_distinct_Ks) {
|
|||
measurements += top_uv + Point2(0.1, -0.1);
|
||||
Ks.push_back(boost::make_shared<Cal3_S2>(K3));
|
||||
|
||||
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(poses, measurements, Ks);
|
||||
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(poses,
|
||||
measurements, Ks);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses, measurements, Ks, 1e-9, true);
|
||||
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses,
|
||||
measurements, Ks, 1e-9, true);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
||||
|
||||
// 4. Test failure: Add a 4th camera facing the wrong way
|
||||
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI/2, 0., -M_PI/2), Point3(0,0,1));
|
||||
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(0, 0, 1));
|
||||
Cal3_S2 K4(700, 500, 0, 640, 480);
|
||||
SimpleCamera camera_180(level_pose180, K4);
|
||||
|
||||
CHECK_EXCEPTION(camera_180.project(landmark);, CheiralityException);
|
||||
CHECK_EXCEPTION(camera_180.project(landmark)
|
||||
;, CheiralityException);
|
||||
|
||||
poses += level_pose180;
|
||||
measurements += Point2(400,400);
|
||||
measurements += Point2(400, 400);
|
||||
Ks.push_back(boost::make_shared<Cal3_S2>(K4));
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, Ks), TriangulationCheiralityException);
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, Ks),
|
||||
TriangulationCheiralityException);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( triangulation, twoIdenticalPoses) {
|
||||
Cal3_S2 K(1500, 1200, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
gtsam::Point3(0, 0, 1));
|
||||
SimpleCamera level_camera(level_pose, K);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
|
@ -187,7 +243,8 @@ TEST( triangulation, twoIdenticalPoses) {
|
|||
poses += level_pose, level_pose;
|
||||
measurements += level_uv, level_uv;
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, K), TriangulationUnderconstrainedException);
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, K),
|
||||
TriangulationUnderconstrainedException);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -203,10 +260,13 @@ TEST( triangulation, onePose) {
|
|||
poses += Pose3();
|
||||
measurements += Point2();
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, K), TriangulationUnderconstrainedException);
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, K),
|
||||
TriangulationUnderconstrainedException);
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -34,7 +34,6 @@
|
|||
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/// Exception thrown by triangulateDLT when SVD returns rank < 3
|
||||
|
@ -73,16 +72,20 @@ Point3 triangulateDLT(const std::vector<Pose3>& poses,
|
|||
const std::vector<boost::shared_ptr<CALIBRATION> >& Ks, double rank_tol,
|
||||
bool optimize) {
|
||||
|
||||
Matrix A = zeros(projection_matrices.size() *2, 4);
|
||||
// number of cameras
|
||||
size_t m = projection_matrices.size();
|
||||
|
||||
for(size_t i=0; i< projection_matrices.size(); i++) {
|
||||
size_t row = i*2;
|
||||
// Allocate DLT matrix
|
||||
Matrix A = zeros(m * 2, 4);
|
||||
|
||||
for (size_t i = 0; i < m; i++) {
|
||||
size_t row = i * 2;
|
||||
const Matrix& projection = projection_matrices.at(i);
|
||||
const Point2& p = measurements.at(i);
|
||||
|
||||
// build system of equations
|
||||
A.row(row) = p.x() * projection.row(2) - projection.row(0);
|
||||
A.row(row+1) = p.y() * projection.row(2) - projection.row(1);
|
||||
A.row(row + 1) = p.y() * projection.row(2) - projection.row(1);
|
||||
}
|
||||
int rank;
|
||||
double error;
|
||||
|
@ -90,39 +93,41 @@ Point3 triangulateDLT(const std::vector<Pose3>& poses,
|
|||
boost::tie(rank, error, v) = DLT(A, rank_tol);
|
||||
// std::cout << "s " << s.transpose() << std:endl;
|
||||
|
||||
if(rank < 3)
|
||||
if (rank < 3)
|
||||
throw(TriangulationUnderconstrainedException());
|
||||
|
||||
Point3 point = Point3(sub( (v / v(3)),0,3));
|
||||
// Create 3D point from eigenvector
|
||||
Point3 point = Point3(sub((v / v(3)), 0, 3));
|
||||
|
||||
if (optimize) {
|
||||
// Create a factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
gtsam::Values values;
|
||||
static SharedNoiseModel noise(noiseModel::Unit::Create(2));
|
||||
static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6)));
|
||||
int ij = 0;
|
||||
Key landmarkKey = Symbol('l',0);
|
||||
static SharedNoiseModel unit2(noiseModel::Unit::Create(2));
|
||||
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
|
||||
|
||||
BOOST_FOREACH(const Point2 &measurement, measurements) {
|
||||
// Initial landmark value
|
||||
Key landmarkKey = Symbol('p', 0);
|
||||
values.insert(landmarkKey, point);
|
||||
|
||||
// Create all projection factors, as well as priors on poses
|
||||
Key i = 0;
|
||||
BOOST_FOREACH(const Point2 &z_i, measurements) {
|
||||
// Factor for pose i
|
||||
typedef GenericProjectionFactor<Pose3,Point3,CALIBRATION> ProjectionFactor;
|
||||
typedef PriorFactor<Pose3> Pose3Prior;
|
||||
Key poseKey = Symbol('x',ij);
|
||||
boost::shared_ptr<ProjectionFactor> projectionFactor(new ProjectionFactor(measurement, noise, poseKey, landmarkKey, Ks[ij]));
|
||||
typedef GenericProjectionFactor<Pose3, Point3, CALIBRATION> ProjectionFactor;
|
||||
ProjectionFactor projectionFactor(z_i, unit2, i, landmarkKey, Ks[i]);
|
||||
graph.push_back(projectionFactor);
|
||||
|
||||
// Prior on pose
|
||||
graph.push_back(Pose3Prior(poseKey, poses[ij], prior_model));
|
||||
// Frank says: this is a terrible idea: we turn a 3dof problem into a much more difficult problem
|
||||
typedef PriorFactor<Pose3> Pose3Prior;
|
||||
graph.push_back(Pose3Prior(i, poses[i], prior_model));
|
||||
|
||||
// Initial pose values
|
||||
values.insert( poseKey, poses[ij]);
|
||||
|
||||
ij++;
|
||||
values.insert(i, poses[i]);
|
||||
i++;
|
||||
}
|
||||
|
||||
// Initial landmark value
|
||||
values.insert(landmarkKey, point);
|
||||
|
||||
// Optimize
|
||||
LevenbergMarquardtParams params;
|
||||
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
|
@ -143,7 +148,6 @@ Point3 triangulateDLT(const std::vector<Pose3>& poses,
|
|||
return point;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Function to triangulate 3D landmark point from an arbitrary number
|
||||
* of poses (at least 2) using the DLT. The function checks that the
|
||||
|
@ -163,14 +167,15 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
|||
|
||||
assert(poses.size() == measurements.size());
|
||||
|
||||
if(poses.size() < 2)
|
||||
if (poses.size() < 2)
|
||||
throw(TriangulationUnderconstrainedException());
|
||||
|
||||
std::vector<Matrix> projection_matrices;
|
||||
|
||||
// construct projection matrices from poses & calibration
|
||||
BOOST_FOREACH(const Pose3& pose, poses){
|
||||
projection_matrices.push_back( K.K() * sub(pose.inverse().matrix(),0,3,0,4) );
|
||||
BOOST_FOREACH(const Pose3& pose, poses) {
|
||||
projection_matrices.push_back(
|
||||
K.K() * sub(pose.inverse().matrix(), 0, 3, 0, 4));
|
||||
// std::cout << "Calibration i \n" << K.K() << std::endl;
|
||||
// std::cout << "rank_tol i \n" << rank_tol << std::endl;
|
||||
}
|
||||
|
@ -179,16 +184,17 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
|||
boost::shared_ptr<CALIBRATION> sharedK = boost::make_shared<CALIBRATION>(K);
|
||||
std::vector<boost::shared_ptr<CALIBRATION> > Ks(poses.size(), sharedK);
|
||||
|
||||
Point3 triangulated_point = triangulateDLT(poses, projection_matrices, measurements, Ks, rank_tol, optimize);
|
||||
Point3 triangulated_point = triangulateDLT(poses, projection_matrices,
|
||||
measurements, Ks, rank_tol, optimize);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
// verify that the triangulated point lies infront of all cameras
|
||||
BOOST_FOREACH(const Pose3& pose, poses) {
|
||||
const Point3& p_local = pose.transform_to(triangulated_point);
|
||||
if(p_local.z() <= 0)
|
||||
throw(TriangulationCheiralityException());
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
return triangulated_point;
|
||||
}
|
||||
|
@ -209,37 +215,37 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
|||
template<class CALIBRATION>
|
||||
Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
||||
const std::vector<Point2>& measurements,
|
||||
const std::vector<boost::shared_ptr<CALIBRATION> >& Ks,
|
||||
double rank_tol = 1e-9, bool optimize = false) {
|
||||
const std::vector<boost::shared_ptr<CALIBRATION> >& Ks, double rank_tol =
|
||||
1e-9, bool optimize = false) {
|
||||
|
||||
assert(poses.size() == measurements.size());
|
||||
assert(poses.size() == Ks.size());
|
||||
|
||||
if(poses.size() < 2)
|
||||
if (poses.size() < 2)
|
||||
throw(TriangulationUnderconstrainedException());
|
||||
|
||||
std::vector<Matrix> projection_matrices;
|
||||
|
||||
// construct projection matrices from poses & calibration
|
||||
for(size_t i = 0; i<poses.size(); i++){
|
||||
projection_matrices.push_back( Ks.at(i)->K() * sub(poses.at(i).inverse().matrix(),0,3,0,4) );
|
||||
for (size_t i = 0; i < poses.size(); i++) {
|
||||
projection_matrices.push_back(
|
||||
Ks.at(i)->K() * sub(poses.at(i).inverse().matrix(), 0, 3, 0, 4));
|
||||
// std::cout << "2Calibration i \n" << Ks.at(i)->K() << std::endl;
|
||||
// std::cout << "2rank_tol i \n" << rank_tol << std::endl;
|
||||
}
|
||||
|
||||
Point3 triangulated_point = triangulateDLT(poses, projection_matrices, measurements, Ks, rank_tol, optimize);
|
||||
Point3 triangulated_point = triangulateDLT(poses, projection_matrices,
|
||||
measurements, Ks, rank_tol, optimize);
|
||||
|
||||
// verify that the triangulated point lies infront of all cameras
|
||||
BOOST_FOREACH(const Pose3& pose, poses) {
|
||||
const Point3& p_local = pose.transform_to(triangulated_point);
|
||||
if(p_local.z() <= 0)
|
||||
if (p_local.z() <= 0)
|
||||
throw(TriangulationCheiralityException());
|
||||
}
|
||||
|
||||
return triangulated_point;
|
||||
}
|
||||
|
||||
|
||||
} // \namespace gtsam
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue