perfect forwarding magic

release/4.3a0
Frank Dellaert 2024-09-29 00:13:08 -07:00
parent 14d0f9f1ef
commit a25a0a923b
1 changed files with 12 additions and 33 deletions

View File

@ -26,11 +26,10 @@
#include <gtsam/inference/Conditional-inst.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/JacobianFactor.h>
#include <cstddef>
#include "gtsam/linear/JacobianFactor.h"
namespace gtsam {
/* *******************************************************************************/
struct HybridGaussianConditional::Helper {
@ -42,47 +41,27 @@ struct HybridGaussianConditional::Helper {
using GC = GaussianConditional;
using P = std::vector<std::pair<Vector, double>>;
// Common code for three constructors below:
template <typename Create>
void initialize(const DiscreteKey &mode, const P &p, Create create) {
/// Construct from a vector of mean and sigma pairs, plus extra args.
template <typename... Args>
Helper(const DiscreteKey &mode, const P &p, Args &&...args) {
nrFrontals = 1;
minNegLogConstant = std::numeric_limits<double>::infinity();
std::vector<GaussianFactorValuePair> fvs;
std::vector<GC::shared_ptr> gcs;
for (const auto &[mean, sigma] : p) {
auto c = create(mean, sigma);
double value = c->negLogConstant();
auto gaussianConditional =
GC::sharedMeanAndStddev(std::forward<Args>(args)..., mean, sigma);
double value = gaussianConditional->negLogConstant();
minNegLogConstant = std::min(minNegLogConstant, value);
fvs.push_back({c, value});
gcs.push_back(c);
fvs.push_back({gaussianConditional, value});
gcs.push_back(gaussianConditional);
}
conditionals = Conditionals({mode}, gcs);
pairs = FactorValuePairs({mode}, fvs);
}
// Constructors for different types of GaussianConditionals:
Helper(const DiscreteKey &mode, Key x0, const P &p) {
initialize(mode, p, [x0](const Vector &mean, double sigma) {
return GC::sharedMeanAndStddev(x0, mean, sigma);
});
}
Helper(const DiscreteKey &mode, Key x0, const Matrix &A, Key x1, const P &p) {
initialize(mode, p, [x0, A, x1](const Vector &mean, double sigma) {
return GC::sharedMeanAndStddev(x0, A, x1, mean, sigma);
});
}
Helper(const DiscreteKey &mode, Key x0, //
const Matrix &A1, Key x1, const Matrix &A2, Key x2, const P &p) {
initialize(mode, p, [x0, A1, x1, A2, x2](const Vector &mean, double sigma) {
return GC::sharedMeanAndStddev(x0, A1, x1, A2, x2, mean, sigma);
});
}
/// Construct from tree of GaussianConditionals.
Helper(const Conditionals &conditionals)
: conditionals(conditionals),
@ -124,14 +103,14 @@ HybridGaussianConditional::HybridGaussianConditional(
const DiscreteKey mode, Key key, //
const std::vector<std::pair<Vector, double>> &parameters)
: HybridGaussianConditional(DiscreteKeys{mode},
Helper(mode, key, parameters)) {}
Helper(mode, parameters, key)) {}
HybridGaussianConditional::HybridGaussianConditional(
const DiscreteKey mode, Key key, //
const Matrix &A, Key parent,
const std::vector<std::pair<Vector, double>> &parameters)
: HybridGaussianConditional(DiscreteKeys{mode},
Helper(mode, key, A, parent, parameters)) {}
Helper(mode, parameters, key, A, parent)) {}
HybridGaussianConditional::HybridGaussianConditional(
const DiscreteKey mode, Key key, //
@ -139,7 +118,7 @@ HybridGaussianConditional::HybridGaussianConditional(
const std::vector<std::pair<Vector, double>> &parameters)
: HybridGaussianConditional(
DiscreteKeys{mode},
Helper(mode, key, A1, parent1, A2, parent2, parameters)) {}
Helper(mode, parameters, key, A1, parent1, A2, parent2)) {}
HybridGaussianConditional::HybridGaussianConditional(
const DiscreteKeys &discreteParents,