diff --git a/cython/gtsam/tests/experiments.py b/cython/gtsam/tests/experiments.py deleted file mode 100644 index db3127a83..000000000 --- a/cython/gtsam/tests/experiments.py +++ /dev/null @@ -1,113 +0,0 @@ -""" -This file is not a real python unittest. It contains small experiments -to test the wrapper with gtsam_test, a short version of gtsam.h. -Its name convention is different from other tests so it won't be discovered. -""" -from __future__ import print_function -import gtsam -import numpy as np - -r = gtsam.Rot3() -print(r) -print(r.pitch()) -r2 = gtsam.Rot3() -r3 = r.compose(r2) -print("r3 pitch:", r3.pitch()) - -v = np.array([1, 1, 1]) -print("v = ", v) -r4 = r3.retract(v) -print("r4 pitch:", r4.pitch()) -r4.print_(b'r4: ') -r3.print_(b"r3: ") - -v = r3.localCoordinates(r4) -print("localCoordinates:", v) - -Rmat = np.array([ - [0.990074, -0.0942928, 0.104218], - [0.104218, 0.990074, -0.0942928], - [-0.0942928, 0.104218, 0.990074] - ]) -r5 = gtsam.Rot3(Rmat) -r5.print_(b"r5: ") - -l = gtsam.Rot3.Logmap(r5) -print("l = ", l) - - -noise = gtsam.noiseModel_Gaussian.Covariance(Rmat) -noise.print_(b"noise:") - -D = np.array([1.,2.,3.]) -diag = gtsam.noiseModel_Diagonal.Variances(D) -print("diag:", diag) -diag.print_(b"diag:") -print("diag R:", diag.R()) - -p = gtsam.Point3() -p.print_("p:") -factor = gtsam.BetweenFactorPoint3(1,2,p, noise) -factor.print_(b"factor:") - -vv = gtsam.VectorValues() -vv.print_(b"vv:") -vv.insert(1, np.array([1.,2.,3.])) -vv.insert(2, np.array([3.,4.])) -vv.insert(3, np.array([5.,6.,7.,8.])) -vv.print_(b"vv:") - -vv2 = gtsam.VectorValues(vv) -vv2.insert(4, np.array([4.,2.,1])) -vv2.print_(b"vv2:") -vv.print_(b"vv:") - -vv.insert(4, np.array([1.,2.,4.])) -vv.print_(b"vv:") -vv3 = vv.add(vv2) - -vv3.print_(b"vv3:") - -values = gtsam.Values() -values.insert(1, gtsam.Point3()) -values.insert(2, gtsam.Rot3()) -values.print_(b"values:") - -factor = gtsam.PriorFactorVector(1, np.array([1.,2.,3.]), diag) -print("Prior factor vector: ", factor) - - - -keys = gtsam.KeyVector() - -keys.push_back(1) -keys.push_back(2) -print('size: ', keys.size()) -print(keys.at(0)) -print(keys.at(1)) - -noise = gtsam.noiseModel_Isotropic.Precision(2, 3.0) -noise.print_('noise:') -print('noise print:', noise) -f = gtsam.JacobianFactor(7, np.ones([2,2]), model=noise, b=np.ones(2)) -print('JacobianFactor(7):\n', f) -print("A = ", f.getA()) -print("b = ", f.getb()) - -f = gtsam.JacobianFactor(np.ones(2)) -f.print_('jacoboian b_in:') - - -print("JacobianFactor initalized with b_in:", f) - -diag = gtsam.noiseModel_Diagonal.Sigmas(np.array([1.,2.,3.])) -fv = gtsam.PriorFactorVector(1, np.array([4.,5.,6.]), diag) -print("priorfactorvector: ", fv) - -print("base noise: ", fv.get_noiseModel()) -print("casted to gaussian2: ", gtsam.dynamic_cast_noiseModel_Diagonal_noiseModel_Base(fv.get_noiseModel())) - -X = gtsam.symbol(65, 19) -print(X) -print(gtsam.symbolChr(X)) -print(gtsam.symbolIndex(X))