Added Bayes Net and Subgraph preconditioners to gtsam (developed in CitySLAM project)

release/4.3a0
Frank Dellaert 2009-12-31 12:56:47 +00:00
parent 730f4a546f
commit a1d14ba2ae
7 changed files with 622 additions and 5 deletions

View File

@ -0,0 +1,60 @@
/*
* BayesNetPreconditioner.cpp
* Created on: Dec 31, 2009
* @Author: Frank Dellaert
*/
#include <boost/foreach.hpp>
#include "BayesNetPreconditioner.h"
namespace gtsam {
/* ************************************************************************* */
BayesNetPreconditioner::BayesNetPreconditioner(const GaussianFactorGraph& Ab,
const GaussianBayesNet& Rd) :
Ab_(Ab), Rd_(Rd) {
}
/* ************************************************************************* */
// R*x = y by solving x=inv(R)*y
VectorConfig BayesNetPreconditioner::backSubstitute(const VectorConfig& y) const {
return gtsam::backSubstitute(Rd_, y);
}
/* ************************************************************************* */
// gy=inv(L)*gx by solving L*gy=gx.
VectorConfig BayesNetPreconditioner::backSubstituteTranspose(
const VectorConfig& gx) const {
return gtsam::backSubstituteTranspose(Rd_, gx);
}
/* ************************************************************************* */
double BayesNetPreconditioner::error(const VectorConfig& y) const {
return Ab_.error(x(y));
}
/* ************************************************************************* */
// gradient is inv(R')*A'*(A*inv(R)*y-b),
VectorConfig BayesNetPreconditioner::gradient(const VectorConfig& y) const {
VectorConfig gx = Ab_ ^ Ab_.errors(x(y));
return gtsam::backSubstituteTranspose(Rd_, gx);
}
/* ************************************************************************* */
// Apply operator *
Errors BayesNetPreconditioner::operator*(const VectorConfig& y) const {
return Ab_ * x(y);
}
/* ************************************************************************* */
// Apply operator inv(R')*A'*e
VectorConfig BayesNetPreconditioner::operator^(const Errors& e) const {
VectorConfig x = Ab_ ^ e; // x = A'*e2
return gtsam::backSubstituteTranspose(Rd_, x);
}
/* ************************************************************************* */
} // namespace gtsam

View File

@ -0,0 +1,62 @@
/*
* BayesNetPreconditioner.h
* Created on: Dec 31, 2009
* @Author: Frank Dellaert
*/
#ifndef BAYESNETPRECONDITIONER_H_
#define BAYESNETPRECONDITIONER_H_
#include "GaussianFactorGraph.h"
#include "GaussianBayesNet.h"
namespace gtsam {
/**
* Upper-triangular preconditioner R for the system |A*x-b|^2
* The new system will be |A*inv(R)*y-b|^2, i.e., R*x=y
* This class can solve for x=inv(R)*y by back-substituting R*x=y
* and also apply the chain rule gy=inv(R')*gx by solving R'*gy=gx.
* This is not used currently, just to debug operators below
*/
class BayesNetPreconditioner {
// The original system
const GaussianFactorGraph& Ab_;
// The preconditioner
const GaussianBayesNet& Rd_;
public:
/** Constructor */
BayesNetPreconditioner(const GaussianFactorGraph& Ab,
const GaussianBayesNet& Rd);
// R*x = y by solving x=inv(R)*y
VectorConfig backSubstitute(const VectorConfig& y) const;
// gy=inv(L)*gx by solving L*gy=gx.
VectorConfig backSubstituteTranspose(const VectorConfig& gx) const;
/* x = inv(R)*y */
inline VectorConfig x(const VectorConfig& y) const {
return backSubstitute(y);
}
/* error, given y */
double error(const VectorConfig& y) const;
/** gradient */
VectorConfig gradient(const VectorConfig& y) const;
/** Apply operator A */
Errors operator*(const VectorConfig& y) const;
/** Apply operator A' */
VectorConfig operator^(const Errors& e) const;
};
} // namespace gtsam
#endif /* BAYESNETPRECONDITIONER_H_ */

View File

@ -96,9 +96,9 @@ testBinaryBayesNet_SOURCES = testBinaryBayesNet.cpp
testBinaryBayesNet_LDADD = libgtsam.la
# Gaussian inference
headers += GaussianFactorSet.h iterative-inl.h
sources += Errors.cpp VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp iterative.cpp
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testGaussianConditional testGaussianBayesNet testIterative
headers += GaussianFactorSet.h
sources += Errors.cpp VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testGaussianConditional testGaussianBayesNet
testVectorConfig_SOURCES = testVectorConfig.cpp
testVectorConfig_LDADD = libgtsam.la
testGaussianFactor_SOURCES = $(example) testGaussianFactor.cpp
@ -109,8 +109,17 @@ testGaussianConditional_SOURCES = $(example) testGaussianConditional.cpp
testGaussianConditional_LDADD = libgtsam.la
testGaussianBayesNet_SOURCES = $(example) testGaussianBayesNet.cpp
testGaussianBayesNet_LDADD = libgtsam.la
testIterative_SOURCES = $(example) testIterative.cpp
testIterative_LDADD = libgtsam.la
# Iterative Methods
headers += iterative-inl.h
sources += iterative.cpp BayesNetPreconditioner.cpp subgraphPreconditioner.cpp
check_PROGRAMS += testIterative testBayesNetPreconditioner testSubgraphPreconditioner
testIterative_SOURCES = $(example) testIterative.cpp
testIterative_LDADD = libgtsam.la
testBayesNetPreconditioner_SOURCES = $(example) testBayesNetPreconditioner.cpp
testBayesNetPreconditioner_LDADD = libgtsam.la
testSubgraphPreconditioner_SOURCES = $(example) testSubgraphPreconditioner.cpp
testSubgraphPreconditioner_LDADD = libgtsam.la
# not the correct way, I'm sure: Kai ?
timeGaussianFactor: timeGaussianFactor.cpp

View File

@ -0,0 +1,101 @@
/*
* SubgraphPreconditioner.cpp
* Created on: Dec 31, 2009
* @author: Frank Dellaert
*/
#include <boost/foreach.hpp>
#include "SubgraphPreconditioner.h"
using namespace std;
namespace gtsam {
/* ************************************************************************* */
SubgraphPreconditioner::SubgraphPreconditioner(const GaussianBayesNet& Rc1,
const GaussianFactorGraph& Ab2, const VectorConfig& xbar) :
Rc1_(Rc1), Ab2_(Ab2), xbar_(xbar), b2bar_(Ab2_.errors(xbar)) {
}
/* ************************************************************************* */
// x = xbar + inv(R1)*y
VectorConfig SubgraphPreconditioner::x(const VectorConfig& y) const {
return xbar_ + gtsam::backSubstitute(Rc1_, y);
}
/* ************************************************************************* */
double SubgraphPreconditioner::error(const VectorConfig& y) const {
Errors e;
// Use BayesNet order to add y contributions in order
BOOST_FOREACH(GaussianConditional::shared_ptr cg, Rc1_) {
const string& j = cg->key();
e.push_back(y[j]); // append y
}
// Add A2 contribution
VectorConfig x = this->x(y);
Errors e2 = Ab2_.errors(x);
e.splice(e.end(), e2);
return 0.5 * dot(e, e);
}
/* ************************************************************************* */
// gradient is y + inv(R1')*A2'*(A2*inv(R1)*y-b2bar),
VectorConfig SubgraphPreconditioner::gradient(const VectorConfig& y) const {
VectorConfig x = this->x(y); // x = inv(R1)*y
VectorConfig gx2 = Ab2_ ^ Ab2_.errors(x);
VectorConfig gy2 = gtsam::backSubstituteTranspose(Rc1_, gx2); // inv(R1')*gx2
return y + gy2;
}
/* ************************************************************************* */
// Apply operator A, A*y = [I;A2*inv(R1)]*y = [y; A2*inv(R1)*y]
Errors SubgraphPreconditioner::operator*(const VectorConfig& y) const {
Errors e;
// Use BayesNet order to add y contributions in order
BOOST_FOREACH(GaussianConditional::shared_ptr cg, Rc1_) {
const string& j = cg->key();
e.push_back(y[j]); // append y
}
// Add A2 contribution
VectorConfig x = gtsam::backSubstitute(Rc1_, y); // x=inv(R1)*y
Errors e2 = Ab2_ * x; // A2*x
e.splice(e.end(), e2);
return e;
}
/* ************************************************************************* */
// Apply operator A', A'*e = [I inv(R1')*A2']*e = e1 + inv(R1')*A2'*e2
VectorConfig SubgraphPreconditioner::operator^(const Errors& e) const {
VectorConfig y1;
// Use BayesNet order to remove y contributions in order
Errors::const_iterator it = e.begin();
BOOST_FOREACH(GaussianConditional::shared_ptr cg, Rc1_) {
const string& j = cg->key();
const Vector& ej = *(it++);
y1.insert(j,ej);
}
// create e2 with what's left of e
Errors e2;
while (it != e.end())
e2.push_back(*(it++));
// get A2 part,
VectorConfig x = Ab2_ ^ e2; // x = A2'*e2
VectorConfig y2 = gtsam::backSubstituteTranspose(Rc1_, x); // inv(R1')*x;
return y1 + y2;
}
/* ************************************************************************* */
} // nsamespace gtsam

View File

@ -0,0 +1,61 @@
/*
* SubgraphPreconditioner.h
* Created on: Dec 31, 2009
* @author: Frank Dellaert
*/
#ifndef SUBGRAPHPRECONDITIONER_H_
#define SUBGRAPHPRECONDITIONER_H_
#include "GaussianFactorGraph.h"
#include "GaussianBayesNet.h"
namespace gtsam {
/**
* Subgraph conditioner class, as explained in the RSS 2010 submission.
* Starting with a graph A*x=b, we split it in two systems A1*x=b1 and A2*x=b2
* We solve R1*x=c1, and make the substitution y=R1*x-c1.
* To use the class, give the Bayes Net R1*x=c1 and Graph A2*x=b2.
* Then solve for yhat using CG, and solve for xhat = system.x(yhat).
*/
class SubgraphPreconditioner {
private:
const GaussianBayesNet& Rc1_;
const GaussianFactorGraph& Ab2_;
const VectorConfig& xbar_;
const Errors b2bar_; /** b2 - A2*xbar */
public:
/**
* Constructor
* @param Rc1: the Bayes Net R1*x=c1
* @param Ab2: the Graph A2*x=b2
* @param xbar: the solution to R1*x=c1
*/
SubgraphPreconditioner(const GaussianBayesNet& Rc1,
const GaussianFactorGraph& Ab2, const VectorConfig& xbar);
/* x = xbar + inv(R1)*y */
VectorConfig x(const VectorConfig& y) const;
/* error, given y */
double error(const VectorConfig& y) const;
/** gradient */
VectorConfig gradient(const VectorConfig& y) const;
/** Apply operator A */
Errors operator*(const VectorConfig& y) const;
/** Apply operator A' */
VectorConfig operator^(const Errors& e) const;
};
} // nsamespace gtsam
#endif /* SUBGRAPHPRECONDITIONER_H_ */

View File

@ -0,0 +1,112 @@
/**
* @file testBayesNetConditioner.cpp
* @brief Unit tests for BayesNetConditioner
* @author Frank Dellaert
**/
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp>
#include <CppUnitLite/TestHarness.h>
#include "Ordering.h"
#include "smallExample.h"
#include "BayesNetPreconditioner.h"
#include "iterative-inl.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
TEST( BayesNetPreconditioner, operators )
{
// Build a simple Bayes net
// small Bayes Net x <- y, x=2D, y=1D
// 1 2 3 x1 0
// 0 1 2 * x2 = 0
// 0 0 1 x3 1
// Create a scalar Gaussian on y
GaussianBayesNet bn = scalarGaussian("y", 1, 0.1);
// Add a conditional node with one parent |Rx+Sy-d|
Matrix R11 = Matrix_(2, 2, 1.0, 2.0, 0.0, 1.0), S12 = Matrix_(2, 1, 3.0, 2.0);
Vector d = zero(2);
Vector sigmas = Vector_(2, 0.1, 0.1);
push_front(bn, "x", d, R11, "y", S12, sigmas);
// Create Precondioner class
GaussianFactorGraph dummy;
BayesNetPreconditioner P(dummy,bn);
// inv(R1)*d should equal solution [1;-2;1]
VectorConfig D;
D.insert("x", d);
D.insert("y", Vector_(1, 1.0 / 0.1)); // corrected by sigma
VectorConfig expected1;
expected1.insert("x", Vector_(2, 1.0, -2.0));
expected1.insert("y", Vector_(1, 1.0));
VectorConfig actual1 = P.backSubstitute(D);
CHECK(assert_equal(expected1,actual1));
// inv(R1')*ones should equal ?
VectorConfig ones;
ones.insert("x", Vector_(2, 1.0, 1.0));
ones.insert("y", Vector_(1, 1.0));
VectorConfig expected2;
expected2.insert("x", Vector_(2, 0.1, -0.1));
expected2.insert("y", Vector_(1, 0.0));
VectorConfig actual2 = P.backSubstituteTranspose(ones);
CHECK(assert_equal(expected2,actual2));
}
/* ************************************************************************* */
TEST( BayesNetPreconditioner, conjugateGradients )
{
// Build a planar graph
GaussianFactorGraph Ab;
VectorConfig xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree and corresponding ordering
GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2
boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
// Eliminate the spanning tree to build a prior
Ordering ordering = planarOrdering(N);
GaussianBayesNet Rc1 = Ab1.eliminate(ordering); // R1*x-c1
VectorConfig xbar = optimize(Rc1); // xbar = inv(R1)*c1
// Create BayesNet-preconditioned system
BayesNetPreconditioner system(Ab,Rc1);
// Create zero config y0 and perturbed config y1
VectorConfig y0;
Vector z2 = zero(2);
BOOST_FOREACH(const string& j, ordering) y0.insert(j,z2);
VectorConfig y1 = y0;
y1.getReference("x23") = Vector_(2, 1.0, -1.0);
VectorConfig x1 = system.x(y1);
// Solve using PCG
bool verbose = false;
double epsilon = 1e-6; // had to crank this down !!!
size_t maxIterations = 100;
VectorConfig actual_y = gtsam::conjugateGradients<BayesNetPreconditioner,
VectorConfig, Errors>(system, y1, verbose, epsilon, maxIterations);
VectorConfig actual_x = system.x(actual_y);
CHECK(assert_equal(xtrue,actual_x));
// Compare with non preconditioned version:
VectorConfig actual2 = conjugateGradientDescent(Ab, x1, verbose, epsilon,
maxIterations);
CHECK(assert_equal(xtrue,actual2));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -0,0 +1,212 @@
/**
* @file testSubgraphConditioner.cpp
* @brief Unit tests for SubgraphPreconditioner
* @author Frank Dellaert
**/
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/assign/std/list.hpp>
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include "numericalDerivative.h"
#include "Ordering.h"
#include "smallExample.h"
#include "SubgraphPreconditioner.h"
#include "iterative-inl.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
TEST( SubgraphPreconditioner, planarGraph )
{
// Check planar graph construction
GaussianFactorGraph A;
VectorConfig xtrue;
boost::tie(A, xtrue) = planarGraph(3);
LONGS_EQUAL(13,A.size());
LONGS_EQUAL(9,xtrue.size());
DOUBLES_EQUAL(0,A.error(xtrue),1e-9); // check zero error for xtrue
// Check canonical ordering
Ordering expected, ordering = planarOrdering(3);
expected += "x33", "x23", "x13", "x32", "x22", "x12", "x31", "x21", "x11";
CHECK(assert_equal(expected,ordering));
// Check that xtrue is optimal
GaussianBayesNet R1 = A.eliminate(ordering);
VectorConfig actual = optimize(R1);
CHECK(assert_equal(xtrue,actual));
}
/* ************************************************************************* */
TEST( SubgraphPreconditioner, splitOffPlanarTree )
{
// Build a planar graph
GaussianFactorGraph A;
VectorConfig xtrue;
boost::tie(A, xtrue) = planarGraph(3);
// Get the spanning tree and constraints, and check their sizes
GaussianFactorGraph T, C;
boost::tie(T, C) = splitOffPlanarTree(3, A);
LONGS_EQUAL(9,T.size());
LONGS_EQUAL(4,C.size());
// Check that the tree can be solved to give the ground xtrue
Ordering ordering = planarOrdering(3);
GaussianBayesNet R1 = T.eliminate(ordering);
VectorConfig xbar = optimize(R1);
CHECK(assert_equal(xtrue,xbar));
}
/* ************************************************************************* */
double error(const VectorConfig& x) {
// Build a planar graph
GaussianFactorGraph Ab;
VectorConfig xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree and corresponding ordering
GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2
boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
// Eliminate the spanning tree to build a prior
Ordering ordering = planarOrdering(N);
GaussianBayesNet Rc1 = Ab1.eliminate(ordering); // R1*x-c1
VectorConfig xbar = optimize(Rc1); // xbar = inv(R1)*c1
SubgraphPreconditioner system(Rc1, Ab2, xbar);
return system.error(x);
}
/* ************************************************************************* */
TEST( SubgraphPreconditioner, system )
{
// Build a planar graph
GaussianFactorGraph Ab;
VectorConfig xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree and corresponding ordering
GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2
boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
// Eliminate the spanning tree to build a prior
Ordering ordering = planarOrdering(N);
GaussianBayesNet Rc1 = Ab1.eliminate(ordering); // R1*x-c1
VectorConfig xbar = optimize(Rc1); // xbar = inv(R1)*c1
// Create Subgraph-preconditioned system
SubgraphPreconditioner system(Rc1, Ab2, xbar);
// Create zero config
VectorConfig zeros;
Vector z2 = zero(2);
BOOST_FOREACH(const string& j, ordering) zeros.insert(j,z2);
// Set up y0 as all zeros
VectorConfig y0 = zeros;
// y1 = perturbed y0
VectorConfig y1 = zeros;
y1.getReference("x23") = Vector_(2, 1.0, -1.0);
// Check corresponding x values
VectorConfig expected_x1 = xtrue, x1 = system.x(y1);
expected_x1.getReference("x23") = Vector_(2, 2.01, 2.99);
expected_x1.getReference("x33") = Vector_(2, 3.01, 2.99);
CHECK(assert_equal(xtrue, system.x(y0)));
CHECK(assert_equal(expected_x1,system.x(y1)));
// Check errors
DOUBLES_EQUAL(0,Ab.error(xtrue),1e-9);
DOUBLES_EQUAL(3,Ab.error(x1),1e-9);
DOUBLES_EQUAL(0,system.error(y0),1e-9);
DOUBLES_EQUAL(3,system.error(y1),1e-9);
// Test gradient in x
VectorConfig expected_gx0 = zeros;
VectorConfig expected_gx1 = zeros;
CHECK(assert_equal(expected_gx0,Ab.gradient(xtrue)));
expected_gx1.getReference("x13") = Vector_(2, -100., 100.);
expected_gx1.getReference("x22") = Vector_(2, -100., 100.);
expected_gx1.getReference("x23") = Vector_(2, 200., -200.);
expected_gx1.getReference("x32") = Vector_(2, -100., 100.);
expected_gx1.getReference("x33") = Vector_(2, 100., -100.);
CHECK(assert_equal(expected_gx1,Ab.gradient(x1)));
// Test gradient in y
VectorConfig expected_gy0 = zeros;
VectorConfig expected_gy1 = zeros;
expected_gy1.getReference("x13") = Vector_(2, 2., -2.);
expected_gy1.getReference("x22") = Vector_(2, -2., 2.);
expected_gy1.getReference("x23") = Vector_(2, 3., -3.);
expected_gy1.getReference("x32") = Vector_(2, -1., 1.);
expected_gy1.getReference("x33") = Vector_(2, 1., -1.);
CHECK(assert_equal(expected_gy0,system.gradient(y0)));
CHECK(assert_equal(expected_gy1,system.gradient(y1)));
// Check it numerically for good measure
// TODO use boost::bind(&SubgraphPreconditioner::error,&system,_1)
Vector numerical_g1 = numericalGradient<VectorConfig> (error, y1, 0.001);
Vector expected_g1 = Vector_(18, 0., 0., 0., 0., 2., -2., 0., 0., -2., 2.,
3., -3., 0., 0., -1., 1., 1., -1.);
CHECK(assert_equal(expected_g1,numerical_g1));
}
/* ************************************************************************* */
TEST( SubgraphPreconditioner, conjugateGradients )
{
// Build a planar graph
GaussianFactorGraph Ab;
VectorConfig xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree and corresponding ordering
GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2
boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
// Eliminate the spanning tree to build a prior
Ordering ordering = planarOrdering(N);
GaussianBayesNet Rc1 = Ab1.eliminate(ordering); // R1*x-c1
VectorConfig xbar = optimize(Rc1); // xbar = inv(R1)*c1
// Create Subgraph-preconditioned system
SubgraphPreconditioner system(Rc1, Ab2, xbar);
// Create zero config y0 and perturbed config y1
VectorConfig y0;
Vector z2 = zero(2);
BOOST_FOREACH(const string& j, ordering) y0.insert(j,z2);
VectorConfig y1 = y0;
y1.getReference("x23") = Vector_(2, 1.0, -1.0);
VectorConfig x1 = system.x(y1);
// Solve for the remaining constraints using PCG
bool verbose = false;
double epsilon = 1e-3;
size_t maxIterations = 100;
VectorConfig actual = gtsam::conjugateGradients<SubgraphPreconditioner,
VectorConfig, Errors>(system, y1, verbose, epsilon, maxIterations);
CHECK(assert_equal(y0,actual));
// Compare with non preconditioned version:
VectorConfig actual2 = conjugateGradientDescent(Ab, x1, verbose, epsilon,
maxIterations);
CHECK(assert_equal(xtrue,actual2,1e-5));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */