major refactor to add Experiment class
parent
fa371e1415
commit
a18857a117
|
@ -38,181 +38,163 @@ using namespace boost::algorithm;
|
|||
|
||||
using symbol_shorthand::X;
|
||||
|
||||
// Testing params
|
||||
const size_t max_loop_count = 2000; // 200 //2000 //8000
|
||||
// Experiment Class
|
||||
class Experiment {
|
||||
/// The City10000 dataset
|
||||
City10000Dataset dataset_;
|
||||
|
||||
const bool is_with_ambiguity = false; // run original iSAM2 without ambiguities
|
||||
// const bool is_with_ambiguity = true; // run original iSAM2 with ambiguities
|
||||
public:
|
||||
// Parameters with default values
|
||||
size_t maxLoopCount = 2000; // 200 //2000 //8000
|
||||
|
||||
noiseModel::Diagonal::shared_ptr prior_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
(Vector(3) << 0.0001, 0.0001, 0.0001).finished());
|
||||
|
||||
noiseModel::Diagonal::shared_ptr pose_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
(Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished());
|
||||
|
||||
/**
|
||||
* @brief Write the results of optimization to filename.
|
||||
*
|
||||
* @param results The Values object with the final results.
|
||||
* @param num_poses The number of poses to write to the file.
|
||||
* @param filename The file name to save the results to.
|
||||
*/
|
||||
void write_results(const Values& results, size_t num_poses,
|
||||
const std::string& filename = "ISAM2_city10000.txt") {
|
||||
ofstream outfile;
|
||||
outfile.open(filename);
|
||||
|
||||
for (size_t i = 0; i < num_poses; ++i) {
|
||||
Pose2 out_pose = results.at<Pose2>(X(i));
|
||||
|
||||
outfile << out_pose.x() << " " << out_pose.y() << " " << out_pose.theta()
|
||||
<< std::endl;
|
||||
}
|
||||
outfile.close();
|
||||
std::cout << "output written to " << filename << std::endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
ifstream in(findExampleDataFile("T1_city10000_04.txt"));
|
||||
// ifstream in("../data/mh_T1_city10000_04.txt"); //Type #1 only
|
||||
// ifstream in("../data/mh_T3b_city10000_10.txt"); //Type #3 only
|
||||
// ifstream in("../data/mh_T1_T3_city10000_04.txt"); //Type #1 + Type #3
|
||||
|
||||
// ifstream in("../data/mh_All_city10000_groundtruth.txt");
|
||||
|
||||
size_t pose_count = 0;
|
||||
size_t index = 0;
|
||||
|
||||
std::list<double> time_list;
|
||||
// false: run original iSAM2 without ambiguities
|
||||
// true: run original iSAM2 with ambiguities
|
||||
const bool is_with_ambiguity = false;
|
||||
|
||||
private:
|
||||
ISAM2Params parameters;
|
||||
parameters.optimizationParams = gtsam::ISAM2GaussNewtonParams(0.0);
|
||||
parameters.relinearizeThreshold = 0.01;
|
||||
parameters.relinearizeSkip = 1;
|
||||
|
||||
ISAM2* isam2 = new ISAM2(parameters);
|
||||
|
||||
NonlinearFactorGraph* graph = new NonlinearFactorGraph();
|
||||
|
||||
Values init_values;
|
||||
ISAM2 isam2(parameters);
|
||||
NonlinearFactorGraph graph;
|
||||
Values initial_;
|
||||
Values results;
|
||||
|
||||
double x = 0.0;
|
||||
double y = 0.0;
|
||||
double rad = 0.0;
|
||||
public:
|
||||
/// Construct with filename of experiment to run
|
||||
explicit Experiment(const std::string& filename) : dataset_(filename) {}
|
||||
|
||||
Pose2 prior_pose(x, y, rad);
|
||||
/// @brief Run the main experiment with a given maxLoopCount.
|
||||
void run() {
|
||||
// Initialize local variables
|
||||
size_t pose_count = 0, index = 0;
|
||||
|
||||
init_values.insert(X(0), prior_pose);
|
||||
pose_count++;
|
||||
std::list<double> timeList;
|
||||
|
||||
graph->addPrior<Pose2>(X(0), prior_pose, prior_noise_model);
|
||||
// Set up initial prior
|
||||
Pose2 priorPose(0, 0, 0);
|
||||
initial_.insert(X(0), priorPose);
|
||||
graph.addPrior<Pose2>(X(0), priorPose, kPriorNoiseModel);
|
||||
pose_count++;
|
||||
|
||||
isam2->update(*graph, init_values);
|
||||
graph->resize(0);
|
||||
init_values.clear();
|
||||
results = isam2->calculateBestEstimate();
|
||||
// Initial update
|
||||
isam2.update(*graph, initial_);
|
||||
graph.resize(0);
|
||||
initial_.clear();
|
||||
results = isam2.calculateBestEstimate();
|
||||
|
||||
//*
|
||||
size_t key_s = 0;
|
||||
size_t key_t = 0;
|
||||
// Start main loop
|
||||
size_t keyS = 0;
|
||||
size_t keyT = 0;
|
||||
clock_t start_time = clock();
|
||||
|
||||
clock_t start_time = clock();
|
||||
string str;
|
||||
while (getline(in, str) && index < max_loop_count) {
|
||||
// cout << str << endl;
|
||||
vector<string> parts;
|
||||
split(parts, str, is_any_of(" "));
|
||||
string str;
|
||||
while (getline(in, str) && index < max_loop_count) {
|
||||
vector<string> parts;
|
||||
split(parts, str, is_any_of(" "));
|
||||
|
||||
key_s = stoi(parts[1]);
|
||||
key_t = stoi(parts[3]);
|
||||
keyS = stoi(parts[1]);
|
||||
keyT = stoi(parts[3]);
|
||||
|
||||
int num_measurements = stoi(parts[5]);
|
||||
vector<Pose2> pose_array(num_measurements);
|
||||
for (int i = 0; i < num_measurements; ++i) {
|
||||
x = stod(parts[6 + 3 * i]);
|
||||
y = stod(parts[7 + 3 * i]);
|
||||
rad = stod(parts[8 + 3 * i]);
|
||||
pose_array[i] = Pose2(x, y, rad);
|
||||
}
|
||||
int num_measurements = stoi(parts[5]);
|
||||
vector<Pose2> pose_array(num_measurements);
|
||||
for (int i = 0; i < num_measurements; ++i) {
|
||||
x = stod(parts[6 + 3 * i]);
|
||||
y = stod(parts[7 + 3 * i]);
|
||||
rad = stod(parts[8 + 3 * i]);
|
||||
pose_array[i] = Pose2(x, y, rad);
|
||||
}
|
||||
|
||||
Pose2 odom_pose;
|
||||
if (is_with_ambiguity) {
|
||||
// Get wrong intentionally
|
||||
int id = index % num_measurements;
|
||||
odom_pose = Pose2(pose_array[id]);
|
||||
} else {
|
||||
odom_pose = pose_array[0];
|
||||
}
|
||||
|
||||
if (key_s == key_t - 1) { // new X(key)
|
||||
init_values.insert(X(key_t), results.at<Pose2>(X(key_s)) * odom_pose);
|
||||
graph->add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
|
||||
pose_noise_model));
|
||||
pose_count++;
|
||||
} else { // loop
|
||||
int id = index % num_measurements;
|
||||
if (is_with_ambiguity && id % 2 == 0) {
|
||||
graph->add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
|
||||
pose_noise_model));
|
||||
Pose2 odom_pose;
|
||||
if (is_with_ambiguity) {
|
||||
// Get wrong intentionally
|
||||
int id = index % num_measurements;
|
||||
odom_pose = Pose2(pose_array[id]);
|
||||
} else {
|
||||
graph->add(BetweenFactor<Pose2>(
|
||||
X(key_s), X(key_t), odom_pose,
|
||||
noiseModel::Diagonal::Sigmas(Vector3::Ones() * 10.0)));
|
||||
odom_pose = pose_array[0];
|
||||
}
|
||||
index++;
|
||||
}
|
||||
|
||||
isam2->update(*graph, init_values);
|
||||
graph->resize(0);
|
||||
init_values.clear();
|
||||
results = isam2->calculateBestEstimate();
|
||||
|
||||
// Print loop index and time taken in processor clock ticks
|
||||
if (index % 50 == 0 && key_s != key_t - 1) {
|
||||
std::cout << "index: " << index << std::endl;
|
||||
std::cout << "acc_time: " << time_list.back() / CLOCKS_PER_SEC
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
if (key_s == key_t - 1) {
|
||||
clock_t cur_time = clock();
|
||||
time_list.push_back(cur_time - start_time);
|
||||
}
|
||||
|
||||
if (time_list.size() % 100 == 0 && (key_s == key_t - 1)) {
|
||||
string step_file_idx = std::to_string(100000 + time_list.size());
|
||||
|
||||
ofstream step_outfile;
|
||||
string step_file_name = "step_files/ISAM2_city10000_S" + step_file_idx;
|
||||
step_outfile.open(step_file_name + ".txt");
|
||||
for (size_t i = 0; i < (key_t + 1); ++i) {
|
||||
Pose2 out_pose = results.at<Pose2>(X(i));
|
||||
step_outfile << out_pose.x() << " " << out_pose.y() << " "
|
||||
<< out_pose.theta() << endl;
|
||||
if (keyS == keyT - 1) { // new X(key)
|
||||
initial_.insert(X(keyT), results.at<Pose2>(X(keyS)) * odom_pose);
|
||||
graph->add(
|
||||
BetweenFactor<Pose2>(X(keyS), X(keyT), odom_pose, kPoseNoiseModel));
|
||||
pose_count++;
|
||||
} else { // loop
|
||||
int id = index % num_measurements;
|
||||
if (is_with_ambiguity && id % 2 == 0) {
|
||||
graph->add(BetweenFactor<Pose2>(X(keyS), X(keyT), odom_pose,
|
||||
kPoseNoiseModel));
|
||||
} else {
|
||||
graph->add(BetweenFactor<Pose2>(
|
||||
X(keyS), X(keyT), odom_pose,
|
||||
noiseModel::Diagonal::Sigmas(Vector3::Ones() * 10.0)));
|
||||
}
|
||||
index++;
|
||||
}
|
||||
|
||||
isam2->update(*graph, initial_);
|
||||
graph->resize(0);
|
||||
initial_.clear();
|
||||
results = isam2->calculateBestEstimate();
|
||||
|
||||
// Print loop index and time taken in processor clock ticks
|
||||
if (index % 50 == 0 && keyS != keyT - 1) {
|
||||
std::cout << "index: " << index << std::endl;
|
||||
std::cout << "acc_time: " << timeList.back() / CLOCKS_PER_SEC
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
if (keyS == keyT - 1) {
|
||||
clock_t cur_time = clock();
|
||||
timeList.push_back(cur_time - start_time);
|
||||
}
|
||||
|
||||
if (timeList.size() % 100 == 0 && (keyS == keyT - 1)) {
|
||||
string step_file_idx = std::to_string(100000 + timeList.size());
|
||||
|
||||
ofstream step_outfile;
|
||||
string step_file_name = "step_files/ISAM2_city10000_S" + step_file_idx;
|
||||
step_outfile.open(step_file_name + ".txt");
|
||||
for (size_t i = 0; i < (keyT + 1); ++i) {
|
||||
Pose2 out_pose = results.at<Pose2>(X(i));
|
||||
step_outfile << out_pose.x() << " " << out_pose.y() << " "
|
||||
<< out_pose.theta() << endl;
|
||||
}
|
||||
step_outfile.close();
|
||||
}
|
||||
step_outfile.close();
|
||||
}
|
||||
|
||||
clock_t end_time = clock();
|
||||
clock_t total_time = end_time - start_time;
|
||||
cout << "total_time: " << total_time / CLOCKS_PER_SEC << endl;
|
||||
|
||||
/// Write results to file
|
||||
writeResult(results, (keyT + 1), "ISAM2_city10000.txt");
|
||||
|
||||
ofstream outfile_time;
|
||||
std::string time_file_name = "ISAM2_city10000_time.txt";
|
||||
outfile_time.open(time_file_name);
|
||||
for (auto acc_time : timeList) {
|
||||
outfile_time << acc_time << std::endl;
|
||||
}
|
||||
outfile_time.close();
|
||||
cout << "Written cumulative time to: " << time_file_name << " file."
|
||||
<< endl;
|
||||
}
|
||||
};
|
||||
|
||||
clock_t end_time = clock();
|
||||
clock_t total_time = end_time - start_time;
|
||||
cout << "total_time: " << total_time / CLOCKS_PER_SEC << endl;
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
Experiment experiment(findExampleDataFile("T1_city10000_04.txt"));
|
||||
// Experiment experiment("../data/mh_T1_city10000_04.txt"); //Type #1 only
|
||||
// Experiment experiment("../data/mh_T3b_city10000_10.txt"); //Type #3 only
|
||||
// Experiment experiment("../data/mh_T1_T3_city10000_04.txt"); //Type #1 +
|
||||
// Type #3
|
||||
|
||||
/// Write results to file
|
||||
write_results(results, (key_t + 1));
|
||||
|
||||
ofstream outfile_time;
|
||||
std::string time_file_name = "ISAM2_city10000_time.txt";
|
||||
outfile_time.open(time_file_name);
|
||||
for (auto acc_time : time_list) {
|
||||
outfile_time << acc_time << std::endl;
|
||||
}
|
||||
outfile_time.close();
|
||||
cout << "Written cumulative time to: " << time_file_name << " file." << endl;
|
||||
// Run the experiment
|
||||
experiment.run();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue