const correctness
parent
bb3820780d
commit
a1433dbd31
|
|
@ -53,7 +53,7 @@ KalmanFilter::solve(const GaussianFactorGraph& factorGraph) const {
|
|||
/* ************************************************************************* */
|
||||
// Auxiliary function to create a small graph for predict or update and solve
|
||||
KalmanFilter::State //
|
||||
KalmanFilter::fuse(const State& p, GaussianFactor::shared_ptr newFactor) {
|
||||
KalmanFilter::fuse(const State& p, GaussianFactor::shared_ptr newFactor) const {
|
||||
|
||||
// Create a factor graph
|
||||
GaussianFactorGraph factorGraph;
|
||||
|
|
@ -65,7 +65,7 @@ KalmanFilter::fuse(const State& p, GaussianFactor::shared_ptr newFactor) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
KalmanFilter::State KalmanFilter::init(const Vector& x0,
|
||||
const SharedDiagonal& P0) {
|
||||
const SharedDiagonal& P0) const {
|
||||
|
||||
// Create a factor graph f(x0), eliminate it into P(x0)
|
||||
GaussianFactorGraph factorGraph;
|
||||
|
|
@ -74,7 +74,7 @@ KalmanFilter::State KalmanFilter::init(const Vector& x0,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
KalmanFilter::State KalmanFilter::init(const Vector& x, const Matrix& P0) {
|
||||
KalmanFilter::State KalmanFilter::init(const Vector& x, const Matrix& P0) const {
|
||||
|
||||
// Create a factor graph f(x0), eliminate it into P(x0)
|
||||
GaussianFactorGraph factorGraph;
|
||||
|
|
@ -89,7 +89,7 @@ void KalmanFilter::print(const string& s) const {
|
|||
|
||||
/* ************************************************************************* */
|
||||
KalmanFilter::State KalmanFilter::predict(const State& p, const Matrix& F,
|
||||
const Matrix& B, const Vector& u, const SharedDiagonal& model) {
|
||||
const Matrix& B, const Vector& u, const SharedDiagonal& model) const {
|
||||
|
||||
// The factor related to the motion model is defined as
|
||||
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
|
||||
|
|
@ -100,7 +100,7 @@ KalmanFilter::State KalmanFilter::predict(const State& p, const Matrix& F,
|
|||
|
||||
/* ************************************************************************* */
|
||||
KalmanFilter::State KalmanFilter::predictQ(const State& p, const Matrix& F,
|
||||
const Matrix& B, const Vector& u, const Matrix& Q) {
|
||||
const Matrix& B, const Vector& u, const Matrix& Q) const {
|
||||
|
||||
#ifndef NDEBUG
|
||||
DenseIndex n = F.cols();
|
||||
|
|
@ -126,7 +126,7 @@ KalmanFilter::State KalmanFilter::predictQ(const State& p, const Matrix& F,
|
|||
|
||||
/* ************************************************************************* */
|
||||
KalmanFilter::State KalmanFilter::predict2(const State& p, const Matrix& A0,
|
||||
const Matrix& A1, const Vector& b, const SharedDiagonal& model) {
|
||||
const Matrix& A1, const Vector& b, const SharedDiagonal& model) const {
|
||||
// Nhe factor related to the motion model is defined as
|
||||
// f2(x_{t},x_{t+1}) = |A0*x_{t} + A1*x_{t+1} - b|^2
|
||||
Key k = step(p);
|
||||
|
|
@ -135,7 +135,7 @@ KalmanFilter::State KalmanFilter::predict2(const State& p, const Matrix& A0,
|
|||
|
||||
/* ************************************************************************* */
|
||||
KalmanFilter::State KalmanFilter::update(const State& p, const Matrix& H,
|
||||
const Vector& z, const SharedDiagonal& model) {
|
||||
const Vector& z, const SharedDiagonal& model) const {
|
||||
// The factor related to the measurements would be defined as
|
||||
// f2 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
|
||||
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
|
||||
|
|
@ -145,7 +145,7 @@ KalmanFilter::State KalmanFilter::update(const State& p, const Matrix& H,
|
|||
|
||||
/* ************************************************************************* */
|
||||
KalmanFilter::State KalmanFilter::updateQ(const State& p, const Matrix& H,
|
||||
const Vector& z, const Matrix& Q) {
|
||||
const Vector& z, const Matrix& Q) const {
|
||||
Key k = step(p);
|
||||
Matrix M = inverse(Q), Ht = trans(H);
|
||||
Matrix G = Ht * M * H;
|
||||
|
|
|
|||
|
|
@ -62,7 +62,7 @@ private:
|
|||
const GaussianFactorGraph::Eliminate function_; /** algorithm */
|
||||
|
||||
State solve(const GaussianFactorGraph& factorGraph) const;
|
||||
State fuse(const State& p, GaussianFactor::shared_ptr newFactor);
|
||||
State fuse(const State& p, GaussianFactor::shared_ptr newFactor) const;
|
||||
|
||||
public:
|
||||
|
||||
|
|
@ -80,10 +80,10 @@ public:
|
|||
* @param x0 estimate at time 0
|
||||
* @param P0 covariance at time 0, given as a diagonal Gaussian 'model'
|
||||
*/
|
||||
State init(const Vector& x0, const SharedDiagonal& P0);
|
||||
State init(const Vector& x0, const SharedDiagonal& P0) const;
|
||||
|
||||
/// version of init with a full covariance matrix
|
||||
State init(const Vector& x0, const Matrix& P0);
|
||||
State init(const Vector& x0, const Matrix& P0) const;
|
||||
|
||||
/// print
|
||||
void print(const std::string& s = "") const;
|
||||
|
|
@ -102,7 +102,7 @@ public:
|
|||
* and w is zero-mean, Gaussian white noise with covariance Q.
|
||||
*/
|
||||
State predict(const State& p, const Matrix& F, const Matrix& B,
|
||||
const Vector& u, const SharedDiagonal& modelQ);
|
||||
const Vector& u, const SharedDiagonal& modelQ) const;
|
||||
|
||||
/*
|
||||
* Version of predict with full covariance
|
||||
|
|
@ -111,7 +111,7 @@ public:
|
|||
* This version allows more realistic models than a diagonal covariance matrix.
|
||||
*/
|
||||
State predictQ(const State& p, const Matrix& F, const Matrix& B,
|
||||
const Vector& u, const Matrix& Q);
|
||||
const Vector& u, const Matrix& Q) const;
|
||||
|
||||
/**
|
||||
* Predict the state P(x_{t+1}|Z^t)
|
||||
|
|
@ -122,7 +122,7 @@ public:
|
|||
* with an optional noise model.
|
||||
*/
|
||||
State predict2(const State& p, const Matrix& A0, const Matrix& A1,
|
||||
const Vector& b, const SharedDiagonal& model);
|
||||
const Vector& b, const SharedDiagonal& model) const;
|
||||
|
||||
/**
|
||||
* Update Kalman filter with a measurement
|
||||
|
|
@ -133,7 +133,7 @@ public:
|
|||
* In this version, R is restricted to diagonal Gaussians (model parameter)
|
||||
*/
|
||||
State update(const State& p, const Matrix& H, const Vector& z,
|
||||
const SharedDiagonal& model);
|
||||
const SharedDiagonal& model) const;
|
||||
|
||||
/*
|
||||
* Version of update with full covariance
|
||||
|
|
@ -142,7 +142,7 @@ public:
|
|||
* This version allows more realistic models than a diagonal covariance matrix.
|
||||
*/
|
||||
State updateQ(const State& p, const Matrix& H, const Vector& z,
|
||||
const Matrix& Q);
|
||||
const Matrix& Q) const;
|
||||
};
|
||||
|
||||
} // \namespace gtsam
|
||||
|
|
|
|||
Loading…
Reference in New Issue