commit
a0c298a123
|
@ -262,9 +262,29 @@ namespace gtsam {
|
||||||
static Rot3 AlignTwoPairs(const Unit3& a_p, const Unit3& b_p, //
|
static Rot3 AlignTwoPairs(const Unit3& a_p, const Unit3& b_p, //
|
||||||
const Unit3& a_q, const Unit3& b_q);
|
const Unit3& a_q, const Unit3& b_q);
|
||||||
|
|
||||||
/// Static, named constructor that finds Rot3 element closest to M in Frobenius norm.
|
/**
|
||||||
|
* Static, named constructor that finds Rot3 element closest to M in Frobenius norm.
|
||||||
|
*
|
||||||
|
* Uses Full SVD to compute the orthogonal matrix, thus is highly accurate and robust.
|
||||||
|
*
|
||||||
|
* N. J. Higham. Matrix nearness problems and applications.
|
||||||
|
* In M. J. C. Gover and S. Barnett, editors, Applications of Matrix Theory, pages 1–27.
|
||||||
|
* Oxford University Press, 1989.
|
||||||
|
*/
|
||||||
static Rot3 ClosestTo(const Matrix3& M) { return Rot3(SO3::ClosestTo(M)); }
|
static Rot3 ClosestTo(const Matrix3& M) { return Rot3(SO3::ClosestTo(M)); }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Normalize rotation so that its determinant is 1.
|
||||||
|
* This means either re-orthogonalizing the Matrix representation or
|
||||||
|
* normalizing the quaternion representation.
|
||||||
|
*
|
||||||
|
* This method is akin to `ClosestTo` but uses a computationally cheaper
|
||||||
|
* algorithm.
|
||||||
|
*
|
||||||
|
* Ref: https://drive.google.com/file/d/0B9rLLz1XQKmaZTlQdV81QjNoZTA/view
|
||||||
|
*/
|
||||||
|
Rot3 normalized() const;
|
||||||
|
|
||||||
/// @}
|
/// @}
|
||||||
/// @name Testable
|
/// @name Testable
|
||||||
/// @{
|
/// @{
|
||||||
|
|
|
@ -108,6 +108,33 @@ Rot3 Rot3::RzRyRx(double x, double y, double z, OptionalJacobian<3, 1> Hx,
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Rot3 Rot3::normalized() const {
|
||||||
|
/// Implementation from here: https://stackoverflow.com/a/23082112/1236990
|
||||||
|
|
||||||
|
/// Essentially, this computes the orthogonalization error, distributes the
|
||||||
|
/// error to the x and y rows, and then performs a Taylor expansion to
|
||||||
|
/// orthogonalize.
|
||||||
|
|
||||||
|
Matrix3 rot = rot_.matrix(), rot_orth;
|
||||||
|
|
||||||
|
// Check if determinant is already 1.
|
||||||
|
// If yes, then return the current Rot3.
|
||||||
|
if (std::fabs(rot.determinant()-1) < 1e-12) return Rot3(rot_);
|
||||||
|
|
||||||
|
Vector3 x = rot.block<1, 3>(0, 0), y = rot.block<1, 3>(1, 0);
|
||||||
|
double error = x.dot(y);
|
||||||
|
|
||||||
|
Vector3 x_ort = x - (error / 2) * y, y_ort = y - (error / 2) * x;
|
||||||
|
Vector3 z_ort = x_ort.cross(y_ort);
|
||||||
|
|
||||||
|
rot_orth.block<1, 3>(0, 0) = 0.5 * (3 - x_ort.dot(x_ort)) * x_ort;
|
||||||
|
rot_orth.block<1, 3>(1, 0) = 0.5 * (3 - y_ort.dot(y_ort)) * y_ort;
|
||||||
|
rot_orth.block<1, 3>(2, 0) = 0.5 * (3 - z_ort.dot(z_ort)) * z_ort;
|
||||||
|
|
||||||
|
return Rot3(rot_orth);
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
Rot3 Rot3::operator*(const Rot3& R2) const {
|
Rot3 Rot3::operator*(const Rot3& R2) const {
|
||||||
return Rot3(rot_*R2.rot_);
|
return Rot3(rot_*R2.rot_);
|
||||||
|
|
|
@ -86,6 +86,10 @@ namespace gtsam {
|
||||||
gtsam::Quaternion(Eigen::AngleAxisd(x, Eigen::Vector3d::UnitX())));
|
gtsam::Quaternion(Eigen::AngleAxisd(x, Eigen::Vector3d::UnitX())));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Rot3 Rot3::normalized() const {
|
||||||
|
return Rot3(quaternion_.normalized());
|
||||||
|
}
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
Rot3 Rot3::operator*(const Rot3& R2) const {
|
Rot3 Rot3::operator*(const Rot3& R2) const {
|
||||||
return Rot3(quaternion_ * R2.quaternion_);
|
return Rot3(quaternion_ * R2.quaternion_);
|
||||||
|
|
|
@ -910,6 +910,26 @@ TEST(Rot3, yaw_derivative) {
|
||||||
CHECK(assert_equal(num, calc));
|
CHECK(assert_equal(num, calc));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
TEST(Rot3, determinant) {
|
||||||
|
size_t degree = 1;
|
||||||
|
Rot3 R_w0; // Zero rotation
|
||||||
|
Rot3 R_w1 = Rot3::Ry(degree * M_PI / 180);
|
||||||
|
|
||||||
|
Rot3 R_01, R_w2;
|
||||||
|
double actual, expected = 1.0;
|
||||||
|
|
||||||
|
for (size_t i = 2; i < 360; ++i) {
|
||||||
|
R_01 = R_w0.between(R_w1);
|
||||||
|
R_w2 = R_w1 * R_01;
|
||||||
|
R_w0 = R_w1;
|
||||||
|
R_w1 = R_w2.normalized();
|
||||||
|
actual = R_w2.matrix().determinant();
|
||||||
|
|
||||||
|
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-7);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
int main() {
|
int main() {
|
||||||
TestResult tr;
|
TestResult tr;
|
||||||
|
|
Loading…
Reference in New Issue