revert from fixed size vectors to make it compile with existing numericalDerivatives
parent
941d6dfe07
commit
a0be48ef75
|
|
@ -138,12 +138,7 @@ TEST( Rot3, rodriguez4)
|
|||
TEST( Rot3, retract)
|
||||
{
|
||||
Vector v = zero(3);
|
||||
CHECK(assert_equal(R, R.retract(v)));
|
||||
|
||||
// test Canonical coordinates
|
||||
Canonical<Rot3> chart;
|
||||
Vector v2 = chart.apply(R);
|
||||
CHECK(assert_equal(R, chart.retract(v2)));
|
||||
CHECK(assert_equal(R.retract(v), R));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -206,9 +201,9 @@ Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta){
|
|||
TEST( Rot3, rightJacobianExpMapSO3 )
|
||||
{
|
||||
// Linearization point
|
||||
Vector3 thetahat; thetahat << 0.1, 0, 0;
|
||||
Vector thetahat = (Vector(3) << 0.1, 0, 0);
|
||||
|
||||
Matrix expectedJacobian = numericalDerivative11<Rot3, Vector3>(
|
||||
Matrix expectedJacobian = numericalDerivative11<Rot3, LieVector>(
|
||||
boost::bind(&Rot3::Expmap, _1), thetahat);
|
||||
Matrix actualJacobian = Rot3::rightJacobianExpMapSO3(thetahat);
|
||||
CHECK(assert_equal(expectedJacobian, actualJacobian));
|
||||
|
|
@ -218,10 +213,10 @@ TEST( Rot3, rightJacobianExpMapSO3 )
|
|||
TEST( Rot3, rightJacobianExpMapSO3inverse )
|
||||
{
|
||||
// Linearization point
|
||||
Vector3 thetahat; thetahat << 0.1,0.1,0; ///< Current estimate of rotation rate bias
|
||||
Vector3 deltatheta; deltatheta << 0, 0, 0;
|
||||
Vector thetahat = (Vector(3) << 0.1,0.1,0); ///< Current estimate of rotation rate bias
|
||||
Vector deltatheta = (Vector(3) << 0, 0, 0);
|
||||
|
||||
Matrix expectedJacobian = numericalDerivative11<Vector3,Vector3>(
|
||||
Matrix expectedJacobian = numericalDerivative11<LieVector>(
|
||||
boost::bind(&evaluateLogRotation, thetahat, _1), deltatheta);
|
||||
Matrix actualJacobian = Rot3::rightJacobianExpMapSO3inverse(thetahat);
|
||||
EXPECT(assert_equal(expectedJacobian, actualJacobian));
|
||||
|
|
@ -397,8 +392,8 @@ Vector3 testDexpL(const Vector3& dw) {
|
|||
|
||||
TEST( Rot3, dexpL) {
|
||||
Matrix actualDexpL = Rot3::dexpL(w);
|
||||
Matrix expectedDexpL = numericalDerivative11<Vector3, Vector3>(testDexpL,
|
||||
Vector3::Zero(), 1e-2);
|
||||
Matrix expectedDexpL = numericalDerivative11<LieVector>(testDexpL,
|
||||
LieVector(zero(3)), 1e-2);
|
||||
EXPECT(assert_equal(expectedDexpL, actualDexpL, 1e-5));
|
||||
|
||||
Matrix actualDexpInvL = Rot3::dexpInvL(w);
|
||||
|
|
|
|||
Loading…
Reference in New Issue