commit
a0870fc736
|
@ -104,6 +104,9 @@ virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
|
||||||
DiscreteConditional(const gtsam::DecisionTreeFactor& joint,
|
DiscreteConditional(const gtsam::DecisionTreeFactor& joint,
|
||||||
const gtsam::DecisionTreeFactor& marginal,
|
const gtsam::DecisionTreeFactor& marginal,
|
||||||
const gtsam::Ordering& orderedKeys);
|
const gtsam::Ordering& orderedKeys);
|
||||||
|
DiscreteConditional(const gtsam::DiscreteKey& key,
|
||||||
|
const gtsam::DiscreteKeys& parents,
|
||||||
|
const std::vector<double>& table);
|
||||||
|
|
||||||
// Standard interface
|
// Standard interface
|
||||||
double logNormalizationConstant() const;
|
double logNormalizationConstant() const;
|
||||||
|
|
|
@ -66,7 +66,7 @@ void GaussianMixtureFactor::print(const std::string &s,
|
||||||
[&](const sharedFactor &gf) -> std::string {
|
[&](const sharedFactor &gf) -> std::string {
|
||||||
RedirectCout rd;
|
RedirectCout rd;
|
||||||
std::cout << ":\n";
|
std::cout << ":\n";
|
||||||
if (gf && !gf->empty()) {
|
if (gf) {
|
||||||
gf->print("", formatter);
|
gf->print("", formatter);
|
||||||
return rd.str();
|
return rd.str();
|
||||||
} else {
|
} else {
|
||||||
|
|
|
@ -92,7 +92,10 @@ class GaussianMixture : gtsam::HybridFactor {
|
||||||
const std::vector<gtsam::GaussianConditional::shared_ptr>&
|
const std::vector<gtsam::GaussianConditional::shared_ptr>&
|
||||||
conditionalsList);
|
conditionalsList);
|
||||||
|
|
||||||
gtsam::GaussianMixtureFactor* likelihood(const gtsam::VectorValues &frontals) const;
|
gtsam::GaussianMixtureFactor* likelihood(
|
||||||
|
const gtsam::VectorValues& frontals) const;
|
||||||
|
double logProbability(const gtsam::HybridValues& values) const;
|
||||||
|
double evaluate(const gtsam::HybridValues& values) const;
|
||||||
|
|
||||||
void print(string s = "GaussianMixture\n",
|
void print(string s = "GaussianMixture\n",
|
||||||
const gtsam::KeyFormatter& keyFormatter =
|
const gtsam::KeyFormatter& keyFormatter =
|
||||||
|
|
|
@ -489,7 +489,7 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
|
||||||
GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S,
|
GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S,
|
||||||
size_t name2, Matrix T,
|
size_t name2, Matrix T,
|
||||||
const gtsam::noiseModel::Diagonal* sigmas);
|
const gtsam::noiseModel::Diagonal* sigmas);
|
||||||
GaussianConditional(const vector<std::pair<gtsam::Key, Matrix>> terms,
|
GaussianConditional(const std::vector<std::pair<gtsam::Key, Matrix>> terms,
|
||||||
size_t nrFrontals, Vector d,
|
size_t nrFrontals, Vector d,
|
||||||
const gtsam::noiseModel::Diagonal* sigmas);
|
const gtsam::noiseModel::Diagonal* sigmas);
|
||||||
|
|
||||||
|
|
|
@ -63,6 +63,6 @@ A RegularJacobianFactor that uses some badly documented reduction on the Jacobia
|
||||||
|
|
||||||
A RegularJacobianFactor that eliminates a point using sequential elimination.
|
A RegularJacobianFactor that eliminates a point using sequential elimination.
|
||||||
|
|
||||||
### JacobianFactorQR
|
### JacobianFactorSVD
|
||||||
|
|
||||||
A RegularJacobianFactor that uses the "Nullspace Trick" by Mourikis et al. See the documentation in the file, which *is* well documented.
|
A RegularJacobianFactor that uses the "Nullspace Trick" by Mourikis et al. See the documentation in the file, which *is* well documented.
|
Loading…
Reference in New Issue