From 9f2229fad57e633ac1066415a927435057f8cb08 Mon Sep 17 00:00:00 2001 From: Varun Agrawal Date: Fri, 2 Sep 2022 21:30:10 -0400 Subject: [PATCH] remove unused blocks --- .../tests/testHybridNonlinearFactorGraph.cpp | 69 +------------------ 1 file changed, 1 insertion(+), 68 deletions(-) diff --git a/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp b/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp index 018b017a9..6c07331ab 100644 --- a/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp +++ b/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp @@ -257,14 +257,6 @@ TEST(GaussianElimination, Eliminate_x1) { // Add first hybrid factor factors.push_back(self.linearizedFactorGraph[1]); - // TODO(Varun) remove this block since sum is no longer exposed. - // // Check that sum works: - // auto sum = factors.sum(); - // Assignment mode; - // mode[M(1)] = 1; - // auto actual = sum(mode); // Selects one of 2 modes. - // EXPECT_LONGS_EQUAL(2, actual.size()); // Prior and motion model. - // Eliminate x1 Ordering ordering; ordering += X(1); @@ -289,15 +281,6 @@ TEST(HybridsGaussianElimination, Eliminate_x2) { factors.push_back(self.linearizedFactorGraph[1]); // involves m1 factors.push_back(self.linearizedFactorGraph[2]); // involves m2 - // TODO(Varun) remove this block since sum is no longer exposed. - // // Check that sum works: - // auto sum = factors.sum(); - // Assignment mode; - // mode[M(1)] = 0; - // mode[M(2)] = 1; - // auto actual = sum(mode); // Selects one of 4 mode - // combinations. EXPECT_LONGS_EQUAL(2, actual.size()); // 2 motion models. - // Eliminate x2 Ordering ordering; ordering += X(2); @@ -366,49 +349,6 @@ TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) { EXPECT(discreteFactor->root_->isLeaf() == false); } -// /* -// ****************************************************************************/ -// /// Test the toDecisionTreeFactor method -// TEST(HybridFactorGraph, ToDecisionTreeFactor) { -// size_t K = 3; - -// // Provide tight sigma values so that the errors are visibly different. -// double between_sigma = 5e-8, prior_sigma = 1e-7; - -// Switching self(K, between_sigma, prior_sigma); - -// // Clear out discrete factors since sum() cannot hanldle those -// HybridGaussianFactorGraph linearizedFactorGraph( -// self.linearizedFactorGraph.gaussianGraph(), DiscreteFactorGraph(), -// self.linearizedFactorGraph.dcGraph()); - -// auto decisionTreeFactor = linearizedFactorGraph.toDecisionTreeFactor(); - -// auto allAssignments = -// DiscreteValues::CartesianProduct(linearizedFactorGraph.discreteKeys()); - -// // Get the error of the discrete assignment m1=0, m2=1. -// double actual = (*decisionTreeFactor)(allAssignments[1]); - -// /********************************************/ -// // Create equivalent factor graph for m1=0, m2=1 -// GaussianFactorGraph graph = linearizedFactorGraph.gaussianGraph(); - -// for (auto &p : linearizedFactorGraph.dcGraph()) { -// if (auto mixture = -// boost::dynamic_pointer_cast(p)) { -// graph.add((*mixture)(allAssignments[1])); -// } -// } - -// VectorValues values = graph.optimize(); -// double expected = graph.probPrime(values); -// /********************************************/ -// EXPECT_DOUBLES_EQUAL(expected, actual, 1e-12); -// // REGRESSION: -// EXPECT_DOUBLES_EQUAL(0.6125, actual, 1e-4); -// } - /**************************************************************************** * Test partial elimination */ @@ -428,7 +368,6 @@ TEST(HybridFactorGraph, Partial_Elimination) { linearizedFactorGraph.eliminatePartialSequential(ordering); CHECK(hybridBayesNet); - // GTSAM_PRINT(*hybridBayesNet); // HybridBayesNet EXPECT_LONGS_EQUAL(3, hybridBayesNet->size()); EXPECT(hybridBayesNet->at(0)->frontals() == KeyVector{X(1)}); EXPECT(hybridBayesNet->at(0)->parents() == KeyVector({X(2), M(1)})); @@ -438,7 +377,6 @@ TEST(HybridFactorGraph, Partial_Elimination) { EXPECT(hybridBayesNet->at(2)->parents() == KeyVector({M(1), M(2)})); CHECK(remainingFactorGraph); - // GTSAM_PRINT(*remainingFactorGraph); // HybridFactorGraph EXPECT_LONGS_EQUAL(3, remainingFactorGraph->size()); EXPECT(remainingFactorGraph->at(0)->keys() == KeyVector({M(1)})); EXPECT(remainingFactorGraph->at(1)->keys() == KeyVector({M(2), M(1)})); @@ -721,13 +659,8 @@ TEST(HybridFactorGraph, DefaultDecisionTree) { moving = boost::make_shared(X(0), X(1), odometry, noise_model); std::vector motion_models = {still, moving}; - // TODO(Varun) Make a templated constructor for MixtureFactor which does this? - std::vector components; - for (auto&& f : motion_models) { - components.push_back(boost::dynamic_pointer_cast(f)); - } fg.emplace_hybrid( - contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components); + contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, motion_models); // Add Range-Bearing measurements to from X0 to L0 and X1 to L1. // create a noise model for the landmark measurements