Converted first 2 matlab examples to not use slam namespaces
parent
f97869cf20
commit
9e278b394a
|
@ -16,51 +16,47 @@
|
|||
% - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
|
||||
graph = pose2SLAM.Graph;
|
||||
graph = gtsam.NonlinearFactorGraph;
|
||||
|
||||
%% Add two odometry factors
|
||||
import gtsam.*
|
||||
odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
|
||||
graph.addRelativePose(1, 2, odometry, odometryNoise);
|
||||
graph.addRelativePose(2, 3, odometry, odometryNoise);
|
||||
graph.add(BetweenFactorPose2(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(2, 3, odometry, odometryNoise));
|
||||
|
||||
%% Add three "GPS" measurements
|
||||
import gtsam.*
|
||||
% We use Pose2 Priors here with high variance on theta
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.1; 0.1; 10]);
|
||||
graph.addPosePrior(1, Pose2(0.0, 0.0, 0.0), priorNoise);
|
||||
graph.addPosePrior(2, Pose2(2.0, 0.0, 0.0), priorNoise);
|
||||
graph.addPosePrior(3, Pose2(4.0, 0.0, 0.0), priorNoise);
|
||||
graph.add(PriorFactorPose2(1, Pose2(0.0, 0.0, 0.0), priorNoise));
|
||||
graph.add(PriorFactorPose2(2, Pose2(2.0, 0.0, 0.0), priorNoise));
|
||||
graph.add(PriorFactorPose2(3, Pose2(4.0, 0.0, 0.0), priorNoise));
|
||||
|
||||
%% print
|
||||
graph.print(sprintf('\nFactor graph:\n'));
|
||||
|
||||
%% Initialize to noisy points
|
||||
import gtsam.*
|
||||
initialEstimate = pose2SLAM.Values;
|
||||
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
|
||||
initialEstimate = Values;
|
||||
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insert(2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1));
|
||||
initialEstimate.print(sprintf('\nInitial estimate:\n '));
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
import gtsam.*
|
||||
result = graph.optimize(initialEstimate,1);
|
||||
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
|
||||
result = optimizer.optimizeSafely();
|
||||
result.print(sprintf('\nFinal result:\n '));
|
||||
|
||||
%% Plot Covariance Ellipses
|
||||
%% Plot trajectory and covariance ellipses
|
||||
import gtsam.*
|
||||
cla;
|
||||
X=result.poses();
|
||||
plot(X(:,1),X(:,2),'k*-'); hold on
|
||||
marginals = graph.marginals(result);
|
||||
P={};
|
||||
for i=1:result.size()
|
||||
pose_i = result.pose(i);
|
||||
P{i}=marginals.marginalCovariance(i);
|
||||
plotPose2(pose_i,'g',P{i})
|
||||
end
|
||||
hold on;
|
||||
|
||||
plot2DTrajectory(result, Marginals(graph, result));
|
||||
|
||||
axis([-0.6 4.8 -1 1])
|
||||
axis equal
|
||||
view(2)
|
||||
|
|
|
@ -16,48 +16,44 @@
|
|||
% - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
|
||||
graph = pose2SLAM.Graph;
|
||||
graph = gtsam.NonlinearFactorGraph;
|
||||
|
||||
%% Add a Gaussian prior on pose x_1
|
||||
import gtsam.*
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); % 30cm std on x,y, 0.1 rad on theta
|
||||
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
|
||||
graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Add two odometry factors
|
||||
import gtsam.*
|
||||
odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
|
||||
graph.addRelativePose(1, 2, odometry, odometryNoise);
|
||||
graph.addRelativePose(2, 3, odometry, odometryNoise);
|
||||
graph.add(BetweenFactorPose2(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(2, 3, odometry, odometryNoise));
|
||||
|
||||
%% print
|
||||
graph.print(sprintf('\nFactor graph:\n'));
|
||||
|
||||
%% Initialize to noisy points
|
||||
import gtsam.*
|
||||
initialEstimate = pose2SLAM.Values;
|
||||
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
|
||||
initialEstimate = Values;
|
||||
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insert(2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1));
|
||||
initialEstimate.print(sprintf('\nInitial estimate:\n '));
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
result = graph.optimize(initialEstimate,1);
|
||||
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
|
||||
result = optimizer.optimizeSafely();
|
||||
result.print(sprintf('\nFinal result:\n '));
|
||||
|
||||
%% Plot Covariance Ellipses
|
||||
%% Plot trajectory and covariance ellipses
|
||||
import gtsam.*
|
||||
cla;
|
||||
X=result.poses();
|
||||
plot(X(:,1),X(:,2),'k*-'); hold on
|
||||
marginals = graph.marginals(result);
|
||||
P={};
|
||||
for i=1:result.size()
|
||||
pose_i = result.pose(i);
|
||||
P{i}=marginals.marginalCovariance(i);
|
||||
plotPose2(pose_i,'g',P{i})
|
||||
end
|
||||
hold on;
|
||||
|
||||
plot2DTrajectory(result, Marginals(graph, result));
|
||||
|
||||
axis([-0.6 4.8 -1 1])
|
||||
axis equal
|
||||
view(2)
|
||||
|
|
Loading…
Reference in New Issue