Helper differentiationMatrixRow cuts down on copy/pasta

release/4.3a0
Frank Dellaert 2025-03-22 17:31:22 -04:00
parent 392abd6eab
commit 9d79215fda
2 changed files with 69 additions and 71 deletions

View File

@ -62,13 +62,12 @@ Vector Chebyshev2::Points(size_t N, double a, double b) {
namespace {
// Find the index of the Chebyshev point that coincides with x
// within the interval [a, b]. If no such point exists, return nullopt.
static std::optional<size_t> coincidentPoint(size_t N, double x, double a, double b, double tol = 1e-12) {
std::optional<size_t> coincidentPoint(size_t N, double x, double a, double b, double tol = 1e-12) {
if (N == 0) return std::nullopt;
if (N == 1) {
double mid = (a + b) / 2;
if (std::abs(x - mid) < tol) return 0;
}
else {
} else {
// Compute normalized value y such that cos(j*dTheta) = y.
double y = 1.0 - 2.0 * (x - a) / (b - a);
if (y < -1.0 || y > 1.0) return std::nullopt;
@ -81,16 +80,44 @@ namespace {
}
// Get signed distances from x to all Chebyshev points
static Vector signedDistances(size_t N, double x, double a, double b) {
Vector signedDistances(size_t N, double x, double a, double b) {
Vector result(N);
const Vector points = Chebyshev2::Points(N, a, b); // only thing that depends on [a,b]
const Vector points = Chebyshev2::Points(N, a, b);
for (size_t j = 0; j < N; j++) {
const double dj = x - points[j];
result(j) = dj;
}
return result;
}
}
// Helper function to calculate a row of the differentiation matrix, [-1,1] interval
Vector differentiationMatrixRow(size_t N, const Vector& points, size_t i) {
Vector row(N);
double xi = points(i);
double ci = (i == 0 || i == N - 1) ? 2. : 1.;
for (size_t j = 0; j < N; j++) {
if (i == 0 && j == 0) {
// we reverse the sign since we order the cheb points from -1 to 1
row(j) = -(ci * (N - 1) * (N - 1) + 1) / 6.0;
}
else if (i == N - 1 && j == N - 1) {
// we reverse the sign since we order the cheb points from -1 to 1
row(j) = (ci * (N - 1) * (N - 1) + 1) / 6.0;
}
else if (i == j) {
double xi2 = xi * xi;
row(j) = -xi / (2 * (1 - xi2));
}
else {
double xj = points(j);
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
double t = ((i + j) % 2) == 0 ? 1 : -1;
row(j) = (ci / cj) * t / (xi - xj);
}
}
return row;
}
} // namespace
Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
// We start by getting distances from x to all Chebyshev points
@ -123,43 +150,20 @@ Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
}
Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
Weights weightDerivatives(N);
if (auto j = coincidentPoint(N, x, a, b)) {
// exceptional case: x coincides with a Chebyshev point
weightDerivatives.setZero();
// compute the jth row of the differentiation matrix for this point
double cj = (*j == 0 || *j == N - 1) ? 2. : 1.;
for (size_t k = 0; k < N; k++) {
if (*j == 0 && k == 0) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = -(cj * (N - 1) * (N - 1) + 1) / 6.0;
} else if (*j == N - 1 && k == N - 1) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = (cj * (N - 1) * (N - 1) + 1) / 6.0;
} else if (k == *j) {
double xj = Point(N, *j);
double xj2 = xj * xj;
weightDerivatives(k) = -0.5 * xj / (1 - xj2);
} else {
double xj = Point(N, *j);
double xk = Point(N, k);
double ck = (k == 0 || k == N - 1) ? 2. : 1.;
double t = ((*j + k) % 2) == 0 ? 1 : -1;
weightDerivatives(k) = (cj / ck) * t / (xj - xk);
}
}
return 2 * weightDerivatives / (b - a);
return differentiationMatrixRow(N, Points(N), *j) / ((b - a) / 2.0);
}
// This section of code computes the derivative of
// the Barycentric Interpolation weights formula by applying
// the chain rule on the original formula.
// g and k are multiplier terms which represent the derivatives of
// the numerator and denominator
double g = 0, k = 0;
double w = 1;
double w;
const Vector distances = signedDistances(N, x, a, b);
for (size_t j = 0; j < N; j++) {
if (j == 0 || j == N - 1) {
@ -167,18 +171,19 @@ Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
} else {
w = 1.0;
}
double t = (j % 2 == 0) ? 1 : -1;
double c = t / distances(j);
g += w * c;
k += (w * c / distances(j));
}
double s = 1; // changes sign s at every iteration
double g2 = g * g;
for (size_t j = 0; j < N; j++, s = -s) {
Weights weightDerivatives(N);
for (size_t j = 0; j < N; j++) {
// Beginning of interval, j = 0, x0 = -1.0 and end of interval, j = N-1,
// x0 = 1.0
if (j == 0 || j == N - 1) {
@ -189,11 +194,26 @@ Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
}
weightDerivatives(j) = (w * -s / (g * distances(j) * distances(j))) -
(w * -s * k / (g2 * distances(j)));
s *= -1;
}
return weightDerivatives;
}
Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N) {
DiffMatrix D(N, N);
if (N == 1) {
D(0, 0) = 1;
return D;
}
const Vector points = Points(N);
for (size_t i = 0; i < N; i++) {
D.row(i) = differentiationMatrixRow(N, points, i);
}
return D;
}
Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a, double b) {
DiffMatrix D(N, N);
if (N == 1) {
@ -201,30 +221,8 @@ Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a, dou
return D;
}
const Vector points = Points(N); // a,b dependence is done at return
for (size_t i = 0; i < N; i++) {
double xi = points(i);
double ci = (i == 0 || i == N - 1) ? 2. : 1.;
for (size_t j = 0; j < N; j++) {
if (i == 0 && j == 0) {
// we reverse the sign since we order the cheb points from -1 to 1
D(i, j) = -(ci * (N - 1) * (N - 1) + 1) / 6.0;
} else if (i == N - 1 && j == N - 1) {
// we reverse the sign since we order the cheb points from -1 to 1
D(i, j) = (ci * (N - 1) * (N - 1) + 1) / 6.0;
} else if (i == j) {
double xi2 = xi * xi;
D(i, j) = -xi / (2 * (1 - xi2));
} else {
double xj = points(j);
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
double t = ((i + j) % 2) == 0 ? 1 : -1;
D(i, j) = (ci / cj) * t / (xi - xj);
}
}
}
// scale the matrix to the range
return D / ((b - a) / 2.0);
// Calculate for [-1,1] and scale for [a,b]
return DifferentiationMatrix(N) / ((b - a) / 2.0);
}
Weights Chebyshev2::IntegrationWeights(size_t N) {

View File

@ -85,22 +85,22 @@ class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
* obtain a linear map from parameter vectors f to interpolated values f(x).
* Optional [a,b] interval can be specified as well.
*/
static Weights CalculateWeights(size_t N, double x, double a = -1,
double b = 1);
static Weights CalculateWeights(size_t N, double x, double a = -1, double b = 1);
/**
* Evaluate derivative of barycentric weights.
* This is easy and efficient via the DifferentiationMatrix.
*/
static Weights DerivativeWeights(size_t N, double x, double a = -1,
double b = 1);
static Weights DerivativeWeights(size_t N, double x, double a = -1, double b = 1);
/// compute D = differentiation matrix, Trefethen00book p.53
/// when given a parameter vector f of function values at the Chebyshev
/// Compute D = differentiation matrix, Trefethen00book p.53
/// When given a parameter vector f of function values at the Chebyshev
/// points, D*f are the values of f'.
/// https://people.maths.ox.ac.uk/trefethen/8all.pdf Theorem 8.4
static DiffMatrix DifferentiationMatrix(size_t N, double a = -1,
double b = 1);
static DiffMatrix DifferentiationMatrix(size_t N);
/// Compute D = differentiation matrix, for interval [a,b]
static DiffMatrix DifferentiationMatrix(size_t N, double a, double b);
/**
* Evaluate Clenshaw-Curtis integration weights.