Merge branch 'develop' into fix/expressions

release/4.3a0
Frank Dellaert 2023-02-12 07:12:23 -08:00
commit 9cc00a85f6
11 changed files with 106 additions and 32 deletions

View File

@ -121,8 +121,8 @@ namespace gtsam {
for (auto&& factor : factors) product = (*factor) * product;
gttoc(product);
// Sum all the potentials by pretending all keys are frontal:
auto normalization = product.sum(product.size());
// Max over all the potentials by pretending all keys are frontal:
auto normalization = product.max(product.size());
// Normalize the product factor to prevent underflow.
product = product / (*normalization);
@ -210,6 +210,12 @@ namespace gtsam {
for (auto&& factor : factors) product = (*factor) * product;
gttoc(product);
// Max over all the potentials by pretending all keys are frontal:
auto normalization = product.max(product.size());
// Normalize the product factor to prevent underflow.
product = product / (*normalization);
// sum out frontals, this is the factor on the separator
gttic(sum);
DecisionTreeFactor::shared_ptr sum = product.sum(frontalKeys);

View File

@ -108,7 +108,14 @@ TEST(DiscreteFactorGraph, test) {
// Test EliminateDiscrete
const Ordering frontalKeys{0};
const auto [conditional, newFactor] = EliminateDiscrete(graph, frontalKeys);
const auto [conditional, newFactorPtr] = EliminateDiscrete(graph, frontalKeys);
DecisionTreeFactor newFactor = *newFactorPtr;
// Normalize newFactor by max for comparison with expected
auto normalization = newFactor.max(newFactor.size());
newFactor = newFactor / *normalization;
// Check Conditional
CHECK(conditional);
@ -117,9 +124,13 @@ TEST(DiscreteFactorGraph, test) {
EXPECT(assert_equal(expectedConditional, *conditional));
// Check Factor
CHECK(newFactor);
CHECK(&newFactor);
DecisionTreeFactor expectedFactor(B & A, "10 6 6 10");
EXPECT(assert_equal(expectedFactor, *newFactor));
// Normalize by max.
normalization = expectedFactor.max(expectedFactor.size());
// Ensure normalization is correct.
expectedFactor = expectedFactor / *normalization;
EXPECT(assert_equal(expectedFactor, newFactor));
// Test using elimination tree
const Ordering ordering{0, 1, 2};

View File

@ -59,17 +59,12 @@ public:
/// @name Advanced Constructors
/// @{
explicit PinholeBaseK(const Vector &v) :
PinholeBase(v) {
}
explicit PinholeBaseK(const Vector& v) : PinholeBase(v) {}
/// @}
/// @name Standard Interface
/// @{
virtual ~PinholeBaseK() override {
}
/// return calibration
virtual const CALIBRATION& calibration() const = 0;

View File

@ -52,7 +52,7 @@ public:
/// @{
/** Default constructor is origin */
Pose3() : R_(traits<Rot3>::Identity()), t_(traits<Point3>::Identity()) {}
Pose3() : R_(traits<Rot3>::Identity()), t_(traits<Point3>::Identity()) {}
/** Copy constructor */
Pose3(const Pose3& pose) :

View File

@ -42,6 +42,9 @@ namespace gtsam {
typedef std::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
typedef Factor Base; ///< Our base class
/// @name Standard Constructors
/// @{
/** Default constructor creates empty factor */
GaussianFactor() {}
@ -50,19 +53,22 @@ namespace gtsam {
template<typename CONTAINER>
GaussianFactor(const CONTAINER& keys) : Base(keys) {}
/** Destructor */
virtual ~GaussianFactor() override {}
/// @}
/// @name Testable
/// @{
// Implementing Testable interface
/// print
/// print with optional string
void print(
const std::string& s = "",
const KeyFormatter& formatter = DefaultKeyFormatter) const override = 0;
/** Equals for testable */
/// assert equality up to a tolerance
virtual bool equals(const GaussianFactor& lf, double tol = 1e-9) const = 0;
/// @}
/// @name Standard Interface
/// @{
/**
* In Gaussian factors, the error function returns either the negative log-likelihood, e.g.,
* 0.5*(A*x-b)'*D*(A*x-b)
@ -144,6 +150,10 @@ namespace gtsam {
virtual void updateHessian(const KeyVector& keys,
SymmetricBlockMatrix* info) const = 0;
/// @}
/// @name Operator interface
/// @{
/// y += alpha * A'*A*x
virtual void multiplyHessianAdd(double alpha, const VectorValues& x, VectorValues& y) const = 0;
@ -156,12 +166,18 @@ namespace gtsam {
/// Gradient wrt a key at any values
virtual Vector gradient(Key key, const VectorValues& x) const = 0;
/// @}
/// @name Advanced Interface
/// @{
// Determine position of a given key
template <typename CONTAINER>
static DenseIndex Slot(const CONTAINER& keys, Key key) {
return std::find(keys.begin(), keys.end(), key) - keys.begin();
}
/// @}
private:
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
/** Serialization function */
@ -171,7 +187,6 @@ namespace gtsam {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
}
#endif
}; // GaussianFactor
/// traits

View File

@ -107,9 +107,6 @@ namespace gtsam {
template<class DERIVEDFACTOR>
GaussianFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph) : Base(graph) {}
/** Virtual destructor */
virtual ~GaussianFactorGraph() override {}
/// @}
/// @name Testable
/// @{

View File

@ -130,7 +130,7 @@ namespace gtsam {
GTSAM_EXPORT std::ostream& operator<<(std::ostream& os, const VectorValues& v) {
// Change print depending on whether we are using TBB
#ifdef GTSAM_USE_TBB
map<Key, Vector> sorted;
std::map<Key, Vector> sorted;
for (const auto& [key,value] : v) {
sorted.emplace(key, value);
}

View File

@ -105,9 +105,6 @@ public:
/// @name Standard Interface
/// @{
/** Destructor */
virtual ~NonlinearFactor() override {}
/**
* In nonlinear factors, the error function returns the negative log-likelihood
* as a non-linear function of the values in a \class Values object.

View File

@ -78,9 +78,6 @@ namespace gtsam {
template<class DERIVEDFACTOR>
NonlinearFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph) : Base(graph) {}
/// Destructor
virtual ~NonlinearFactorGraph() override {}
/// @}
/// @name Testable
/// @{

View File

@ -79,8 +79,6 @@ namespace gtsam {
/** Create symbolic version of any factor */
explicit SymbolicFactor(const Factor& factor) : Base(factor.keys()) {}
virtual ~SymbolicFactor() override {}
/// Copy this object as its actual derived type.
SymbolicFactor::shared_ptr clone() const { return std::make_shared<This>(*this); }

View File

@ -14,7 +14,7 @@ Author: Frank Dellaert
import unittest
import numpy as np
from gtsam import DiscreteConditional, DiscreteFactorGraph, DiscreteKeys, DiscreteValues, Ordering, Symbol
from gtsam import DecisionTreeFactor, DiscreteConditional, DiscreteFactorGraph, DiscreteKeys, DiscreteValues, Ordering, Symbol
from gtsam.utils.test_case import GtsamTestCase
OrderingType = Ordering.OrderingType
@ -216,5 +216,63 @@ class TestDiscreteFactorGraph(GtsamTestCase):
self.assertEqual(vals, [desired_state]*num_obs)
def test_sumProduct_chain(self):
"""
Test for numerical underflow in EliminateDiscrete on long chains.
Adapted from the toy problem of @pcl15423
Ref: https://github.com/borglab/gtsam/issues/1448
"""
num_states = 3
chain_length = 400
desired_state = 1
states = list(range(num_states))
# Helper function to mimic the behavior of gtbook.Variables discrete_series function
def make_key(character, index, cardinality):
symbol = Symbol(character, index)
key = symbol.key()
return (key, cardinality)
X = {index: make_key("X", index, len(states)) for index in range(chain_length)}
graph = DiscreteFactorGraph()
# Construct test transition matrix
transitions = np.diag([1.0, 0.5, 0.1])
transitions += 0.1/(num_states)
# Ensure that the transition matrix is Markov (columns sum to 1)
transitions /= np.sum(transitions, axis=0)
# The stationary distribution is the eigenvector corresponding to eigenvalue 1
eigvals, eigvecs = np.linalg.eig(transitions)
stationary_idx = np.where(np.isclose(eigvals, 1.0))
stationary_dist = eigvecs[:, stationary_idx]
# Ensure that the stationary distribution is positive and normalized
stationary_dist /= np.sum(stationary_dist)
expected = DecisionTreeFactor(X[chain_length-1], stationary_dist.flatten())
# The transition matrix parsed by DiscreteConditional is a row-wise CPT
transitions = transitions.T
transition_cpt = []
for i in range(0, num_states):
transition_row = "/".join([str(x) for x in transitions[i]])
transition_cpt.append(transition_row)
transition_cpt = " ".join(transition_cpt)
for i in reversed(range(1, chain_length)):
transition_conditional = DiscreteConditional(X[i], [X[i-1]], transition_cpt)
graph.push_back(transition_conditional)
# Run sum product using natural ordering so the resulting Bayes net has the form:
# X_0 <- X_1 <- ... <- X_n
sum_product = graph.sumProduct(OrderingType.NATURAL)
# Get the DiscreteConditional representing the marginal on the last factor
last_marginal = sum_product.at(chain_length - 1)
# Ensure marginal probabilities are close to the stationary distribution
self.gtsamAssertEquals(expected, last_marginal)
if __name__ == "__main__":
unittest.main()