Slim down example to remove verbosity, added explanation on orderingType
parent
ffae14d42e
commit
9c2dcfb70c
|
@ -17,68 +17,34 @@
|
|||
*/
|
||||
|
||||
/**
|
||||
* Example of a simple 2D localization example
|
||||
* - Robot poses are facing along the X axis (horizontal, to the right in 2D)
|
||||
* - The robot moves 2 meters each step
|
||||
* - We have full odometry between poses
|
||||
* Example of a simple 2D localization example optimized using METIS ordering
|
||||
* - For more details on the full optimization pipeline, see OdometryExample.cpp
|
||||
*/
|
||||
|
||||
// We will use Pose2 variables (x, y, theta) to represent the robot positions
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
|
||||
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
||||
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
|
||||
// Here we will use Between factors for the relative motion described by odometry measurements.
|
||||
// Also, we will initialize the robot at the origin using a Prior factor.
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
|
||||
// are nonlinear factors, we will need a Nonlinear Factor Graph.
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
// Finally, once all of the factors have been added to our factor graph, we will want to
|
||||
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
|
||||
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
|
||||
// Levenberg-Marquardt solver
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
|
||||
// Once the optimized values have been calculated, we can also calculate the marginal covariance
|
||||
// of desired variables
|
||||
#include <gtsam/nonlinear/Marginals.h>
|
||||
|
||||
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
|
||||
// nonlinear functions around an initial linearization point, then solve the linear system
|
||||
// to update the linearization point. This happens repeatedly until the solver converges
|
||||
// to a consistent set of variable values. This requires us to specify an initial guess
|
||||
// for each variable, held in a Values container.
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
// Create an empty nonlinear factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// Add a prior on the first pose, setting it to the origin
|
||||
// A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1));
|
||||
graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));
|
||||
|
||||
// Add odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0);
|
||||
// For simplicity, we will use the same noise model for each odometry factor
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// Create the data structure to hold the initialEstimate estimate to the solution
|
||||
// For illustrative purposes, these have been deliberately set to incorrect values
|
||||
Values initial;
|
||||
initial.insert(1, Pose2(0.5, 0.0, 0.2));
|
||||
initial.insert(2, Pose2(2.3, 0.1, -0.2));
|
||||
|
@ -87,17 +53,12 @@ int main(int argc, char** argv) {
|
|||
|
||||
// optimize using Levenberg-Marquardt optimization
|
||||
LevenbergMarquardtParams params;
|
||||
// In order to specify the ordering type, we need to se the NonlinearOptimizerParameter "orderingType"
|
||||
// By default this parameter is set to OrderingType::COLAMD
|
||||
params.orderingType = OrderingType::METIS;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, initial, params);
|
||||
Values result = optimizer.optimize();
|
||||
result.print("Final Result:\n");
|
||||
|
||||
// Calculate and print marginal covariances for all variables
|
||||
cout.precision(2);
|
||||
Marginals marginals(graph, result);
|
||||
cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
|
||||
cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
|
||||
cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue