Merge pull request #463 from borglab/feature/sfm_binary_measurement
Update translation averaging to use vector of binary measurements instead of maprelease/4.3a0
commit
9bcdbe8b78
22
gtsam.h
22
gtsam.h
|
@ -2569,10 +2569,12 @@ virtual class BetweenFactor : gtsam::NoiseModelFactor {
|
|||
void serialize() const;
|
||||
};
|
||||
|
||||
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
template<T = {gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::SO3, gtsam::SO4, gtsam::SOn, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::PinholeCameraCal3_S2, gtsam::imuBias::ConstantBias}>
|
||||
template <T = {gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2,
|
||||
gtsam::SO3, gtsam::SO4, gtsam::SOn, gtsam::Rot3, gtsam::Pose2,
|
||||
gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera,
|
||||
gtsam::SimpleCamera, gtsam::PinholeCameraCal3_S2,
|
||||
gtsam::imuBias::ConstantBias}>
|
||||
virtual class NonlinearEquality : gtsam::NoiseModelFactor {
|
||||
// Constructor - forces exact evaluation
|
||||
NonlinearEquality(size_t j, const T& feasible);
|
||||
|
@ -2583,7 +2585,6 @@ virtual class NonlinearEquality : gtsam::NoiseModelFactor {
|
|||
void serialize() const;
|
||||
};
|
||||
|
||||
|
||||
#include <gtsam/sam/RangeFactor.h>
|
||||
template<POSE, POINT>
|
||||
virtual class RangeFactor : gtsam::NoiseModelFactor {
|
||||
|
@ -2881,6 +2882,19 @@ virtual class FrobeniusWormholeFactor : gtsam::NoiseModelFactor {
|
|||
Vector evaluateError(const gtsam::SOn& Q1, const gtsam::SOn& Q2);
|
||||
};
|
||||
|
||||
#include <gtsam/sfm/BinaryMeasurement.h>
|
||||
template<T>
|
||||
class BinaryMeasurement {
|
||||
BinaryMeasurement(size_t key1, size_t key2, const T& measured,
|
||||
const gtsam::noiseModel::Base* model);
|
||||
size_t key1() const;
|
||||
size_t key2() const;
|
||||
T measured() const;
|
||||
};
|
||||
|
||||
typedef gtsam::BinaryMeasurement<gtsam::Unit3> BinaryMeasurementUnit3;
|
||||
typedef gtsam::BinaryMeasurement<gtsam::Rot3> BinaryMeasurementRot3;
|
||||
|
||||
//*************************************************************************
|
||||
// Navigation
|
||||
//*************************************************************************
|
||||
|
|
|
@ -0,0 +1,92 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
#pragma once
|
||||
|
||||
/**
|
||||
* @file BinaryMeasurement.h
|
||||
* @author Akshay Krishnan
|
||||
* @date July 2020
|
||||
* @brief Binary measurement represents a measurement between two keys in a graph.
|
||||
* A binary measurement is similar to a BetweenFactor, except that it does not contain
|
||||
* an error function. It is a measurement (along with a noise model) from one key to
|
||||
* another. Note that the direction is important. A measurement from key1 to key2 is not
|
||||
* the same as the same measurement from key2 to key1.
|
||||
*/
|
||||
|
||||
#include <ostream>
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/Lie.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
template<class VALUE>
|
||||
class BinaryMeasurement {
|
||||
// Check that VALUE type is testable
|
||||
BOOST_CONCEPT_ASSERT((IsTestable<VALUE>));
|
||||
|
||||
public:
|
||||
typedef VALUE T;
|
||||
|
||||
// shorthand for a smart pointer to a measurement
|
||||
typedef typename boost::shared_ptr<BinaryMeasurement> shared_ptr;
|
||||
|
||||
private:
|
||||
Key key1_, key2_; /** Keys */
|
||||
|
||||
VALUE measured_; /** The measurement */
|
||||
|
||||
SharedNoiseModel noiseModel_; /** Noise model */
|
||||
|
||||
public:
|
||||
/** Constructor */
|
||||
BinaryMeasurement(Key key1, Key key2, const VALUE &measured,
|
||||
const SharedNoiseModel &model = nullptr) :
|
||||
key1_(key1), key2_(key2), measured_(measured), noiseModel_(model) {
|
||||
}
|
||||
|
||||
Key key1() const { return key1_; }
|
||||
|
||||
Key key2() const { return key2_; }
|
||||
|
||||
const SharedNoiseModel &noiseModel() const { return noiseModel_; }
|
||||
|
||||
/** implement functions needed for Testable */
|
||||
|
||||
/** print */
|
||||
void print(const std::string &s, const KeyFormatter &keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << "BinaryMeasurement("
|
||||
<< keyFormatter(this->key1()) << ","
|
||||
<< keyFormatter(this->key2()) << ")\n";
|
||||
traits<T>::Print(measured_, " measured: ");
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
}
|
||||
|
||||
/** equals */
|
||||
bool equals(const BinaryMeasurement &expected, double tol = 1e-9) const {
|
||||
const BinaryMeasurement<VALUE> *e = dynamic_cast<const BinaryMeasurement<VALUE> *> (&expected);
|
||||
return e != nullptr && key1_ == e->key1_ &&
|
||||
key2_ == e->key2_
|
||||
&& traits<VALUE>::Equals(this->measured_, e->measured_, tol) &&
|
||||
noiseModel_->equals(*expected.noiseModel());
|
||||
}
|
||||
|
||||
/** return the measured value */
|
||||
VALUE measured() const {
|
||||
return measured_;
|
||||
}
|
||||
}; // \class BetweenMeasurement
|
||||
}
|
|
@ -36,6 +36,8 @@ namespace gtsam {
|
|||
* normalized(Tb - Ta) - w_aZb.point3()
|
||||
*
|
||||
* @addtogroup SFM
|
||||
*
|
||||
*
|
||||
*/
|
||||
class TranslationFactor : public NoiseModelFactor2<Point3, Point3> {
|
||||
private:
|
||||
|
|
|
@ -10,10 +10,10 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file TranslationRecovery.h
|
||||
* @file TranslationRecovery.cpp
|
||||
* @author Frank Dellaert
|
||||
* @date March 2020
|
||||
* @brief test recovering translations when rotations are given.
|
||||
* @brief Source code for recovering translations when rotations are given
|
||||
*/
|
||||
|
||||
#include <gtsam/sfm/TranslationRecovery.h>
|
||||
|
@ -33,30 +33,25 @@ using namespace gtsam;
|
|||
using namespace std;
|
||||
|
||||
NonlinearFactorGraph TranslationRecovery::buildGraph() const {
|
||||
auto noiseModel = noiseModel::Isotropic::Sigma(3, 0.01);
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// Add all relative translation edges
|
||||
for (auto edge : relativeTranslations_) {
|
||||
Key a, b;
|
||||
tie(a, b) = edge.first;
|
||||
const Unit3 w_aZb = edge.second;
|
||||
graph.emplace_shared<TranslationFactor>(a, b, w_aZb, noiseModel);
|
||||
graph.emplace_shared<TranslationFactor>(edge.key1(), edge.key2(),
|
||||
edge.measured(), edge.noiseModel());
|
||||
}
|
||||
|
||||
return graph;
|
||||
}
|
||||
|
||||
void TranslationRecovery::addPrior(const double scale,
|
||||
NonlinearFactorGraph* graph) const {
|
||||
auto noiseModel = noiseModel::Isotropic::Sigma(3, 0.01);
|
||||
NonlinearFactorGraph *graph) const {
|
||||
//TODO(akshay-krishnan): make this an input argument
|
||||
auto priorNoiseModel = noiseModel::Isotropic::Sigma(3, 0.01);
|
||||
auto edge = relativeTranslations_.begin();
|
||||
Key a, b;
|
||||
tie(a, b) = edge->first;
|
||||
const Unit3 w_aZb = edge->second;
|
||||
graph->emplace_shared<PriorFactor<Point3> >(a, Point3(0, 0, 0), noiseModel);
|
||||
graph->emplace_shared<PriorFactor<Point3> >(b, scale * w_aZb.point3(),
|
||||
noiseModel);
|
||||
graph->emplace_shared<PriorFactor<Point3> >(edge->key1(), Point3(0, 0, 0), priorNoiseModel);
|
||||
graph->emplace_shared<PriorFactor<Point3> >(edge->key2(), scale * edge->measured().point3(),
|
||||
edge->noiseModel());
|
||||
}
|
||||
|
||||
Values TranslationRecovery::initalizeRandomly() const {
|
||||
|
@ -71,10 +66,8 @@ Values TranslationRecovery::initalizeRandomly() const {
|
|||
|
||||
// Loop over measurements and add a random translation
|
||||
for (auto edge : relativeTranslations_) {
|
||||
Key a, b;
|
||||
tie(a, b) = edge.first;
|
||||
insert(a);
|
||||
insert(b);
|
||||
insert(edge.key1());
|
||||
insert(edge.key2());
|
||||
}
|
||||
return initial;
|
||||
}
|
||||
|
@ -89,7 +82,8 @@ Values TranslationRecovery::run(const double scale) const {
|
|||
}
|
||||
|
||||
TranslationRecovery::TranslationEdges TranslationRecovery::SimulateMeasurements(
|
||||
const Values& poses, const vector<KeyPair>& edges) {
|
||||
const Values &poses, const vector<KeyPair> &edges) {
|
||||
auto edgeNoiseModel = noiseModel::Isotropic::Sigma(3, 0.01);
|
||||
TranslationEdges relativeTranslations;
|
||||
for (auto edge : edges) {
|
||||
Key a, b;
|
||||
|
@ -97,7 +91,7 @@ TranslationRecovery::TranslationEdges TranslationRecovery::SimulateMeasurements(
|
|||
const Pose3 wTa = poses.at<Pose3>(a), wTb = poses.at<Pose3>(b);
|
||||
const Point3 Ta = wTa.translation(), Tb = wTb.translation();
|
||||
const Unit3 w_aZb(Tb - Ta);
|
||||
relativeTranslations[edge] = w_aZb;
|
||||
relativeTranslations.emplace_back(a, b, w_aZb, edgeNoiseModel);
|
||||
}
|
||||
return relativeTranslations;
|
||||
}
|
||||
|
|
|
@ -13,15 +13,16 @@
|
|||
* @file TranslationRecovery.h
|
||||
* @author Frank Dellaert
|
||||
* @date March 2020
|
||||
* @brief test recovering translations when rotations are given.
|
||||
* @brief Recovering translations in an epipolar graph when rotations are given.
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/Unit3.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/sfm/BinaryMeasurement.h>
|
||||
|
||||
#include <map>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -48,7 +49,7 @@ namespace gtsam {
|
|||
class TranslationRecovery {
|
||||
public:
|
||||
using KeyPair = std::pair<Key, Key>;
|
||||
using TranslationEdges = std::map<KeyPair, Unit3>;
|
||||
using TranslationEdges = std::vector<BinaryMeasurement<Unit3>>;
|
||||
|
||||
private:
|
||||
TranslationEdges relativeTranslations_;
|
||||
|
@ -59,13 +60,14 @@ class TranslationRecovery {
|
|||
* @brief Construct a new Translation Recovery object
|
||||
*
|
||||
* @param relativeTranslations the relative translations, in world coordinate
|
||||
* frames, indexed in a map by a pair of Pose keys.
|
||||
* frames, vector of BinaryMeasurements of Unit3, where each key of a measurement
|
||||
* is a point in 3D.
|
||||
* @param lmParams (optional) gtsam::LavenbergMarquardtParams that can be
|
||||
* used to modify the parameters for the LM optimizer. By default, uses the
|
||||
* default LM parameters.
|
||||
*/
|
||||
TranslationRecovery(const TranslationEdges& relativeTranslations,
|
||||
const LevenbergMarquardtParams& lmParams = LevenbergMarquardtParams())
|
||||
TranslationRecovery(const TranslationEdges &relativeTranslations,
|
||||
const LevenbergMarquardtParams &lmParams = LevenbergMarquardtParams())
|
||||
: relativeTranslations_(relativeTranslations), params_(lmParams) {
|
||||
params_.setVerbosityLM("Summary");
|
||||
}
|
||||
|
@ -83,7 +85,7 @@ class TranslationRecovery {
|
|||
* @param scale scale for first relative translation which fixes gauge.
|
||||
* @param graph factor graph to which prior is added.
|
||||
*/
|
||||
void addPrior(const double scale, NonlinearFactorGraph* graph) const;
|
||||
void addPrior(const double scale, NonlinearFactorGraph *graph) const;
|
||||
|
||||
/**
|
||||
* @brief Create random initial translations.
|
||||
|
@ -105,10 +107,11 @@ class TranslationRecovery {
|
|||
*
|
||||
* @param poses SE(3) ground truth poses stored as Values
|
||||
* @param edges pairs (a,b) for which a measurement w_aZb will be generated.
|
||||
* @return TranslationEdges map from a KeyPair to the simulated Unit3
|
||||
* translation direction measurement between the cameras in KeyPair.
|
||||
* @return TranslationEdges vector of binary measurements where the keys are
|
||||
* the cameras and the measurement is the simulated Unit3 translation
|
||||
* direction between the cameras.
|
||||
*/
|
||||
static TranslationEdges SimulateMeasurements(
|
||||
const Values& poses, const std::vector<KeyPair>& edges);
|
||||
const Values &poses, const std::vector<KeyPair> &edges);
|
||||
};
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testBinaryMeasurement.cpp
|
||||
* @brief Unit tests for BinaryMeasurement class
|
||||
* @author Akshay Krishnan
|
||||
* @date July 2020
|
||||
*/
|
||||
|
||||
#include <gtsam/sfm/BinaryMeasurement.h>
|
||||
|
||||
#include <gtsam/geometry/Rot3.h>
|
||||
#include <gtsam/geometry/Unit3.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
static const Key kKey1(2), kKey2(1);
|
||||
|
||||
// Create noise models for unit3 and rot3
|
||||
static SharedNoiseModel unit3_model(noiseModel::Isotropic::Sigma(2, 0.05));
|
||||
static SharedNoiseModel rot3_model(noiseModel::Isotropic::Sigma(3, 0.05));
|
||||
|
||||
const Unit3 unit3Measured(Vector3(1, 1, 1));
|
||||
const Rot3 rot3Measured;
|
||||
|
||||
TEST(BinaryMeasurement, Unit3) {
|
||||
BinaryMeasurement<Unit3> unit3Measurement(kKey1, kKey2, unit3Measured,
|
||||
unit3_model);
|
||||
EXPECT_LONGS_EQUAL(unit3Measurement.key1(), kKey1);
|
||||
EXPECT_LONGS_EQUAL(unit3Measurement.key2(), kKey2);
|
||||
EXPECT(unit3Measurement.measured().equals(unit3Measured));
|
||||
|
||||
BinaryMeasurement<Unit3> unit3MeasurementCopy(kKey1, kKey2, unit3Measured,
|
||||
unit3_model);
|
||||
EXPECT(unit3Measurement.equals(unit3MeasurementCopy));
|
||||
}
|
||||
|
||||
TEST(BinaryMeasurement, Rot3) {
|
||||
// testing the accessors
|
||||
BinaryMeasurement<Rot3> rot3Measurement(kKey1, kKey2, rot3Measured,
|
||||
rot3_model);
|
||||
EXPECT_LONGS_EQUAL(rot3Measurement.key1(), kKey1);
|
||||
EXPECT_LONGS_EQUAL(rot3Measurement.key2(), kKey2);
|
||||
EXPECT(rot3Measurement.measured().equals(rot3Measured));
|
||||
|
||||
// testing the equals function
|
||||
BinaryMeasurement<Rot3> rot3MeasurementCopy(kKey1, kKey2, rot3Measured,
|
||||
rot3_model);
|
||||
EXPECT(rot3Measurement.equals(rot3MeasurementCopy));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -51,8 +51,6 @@ TEST(TranslationFactor, ZeroError) {
|
|||
// Verify we get the expected error
|
||||
Vector expected = (Vector3() << 0, 0, 0).finished();
|
||||
EXPECT(assert_equal(expected, actualError, 1e-9));
|
||||
|
||||
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -67,13 +65,13 @@ TEST(TranslationFactor, NonZeroError) {
|
|||
Vector actualError(factor.evaluateError(T1, T2));
|
||||
|
||||
// verify we get the expected error
|
||||
Vector expected = (Vector3() << -1, 1/sqrt(2), 1/sqrt(2)).finished();
|
||||
Vector expected = (Vector3() << -1, 1 / sqrt(2), 1 / sqrt(2)).finished();
|
||||
EXPECT(assert_equal(expected, actualError, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector factorError(const Point3& T1, const Point3& T2,
|
||||
const TranslationFactor& factor) {
|
||||
Vector factorError(const Point3 &T1, const Point3 &T2,
|
||||
const TranslationFactor &factor) {
|
||||
return factor.evaluateError(T1, T2);
|
||||
}
|
||||
|
||||
|
|
|
@ -49,15 +49,17 @@ TEST(TranslationRecovery, BAL) {
|
|||
poses, {{0, 1}, {0, 2}, {1, 2}});
|
||||
|
||||
// Check
|
||||
const Pose3 wTa = poses.at<Pose3>(0), wTb = poses.at<Pose3>(1),
|
||||
wTc = poses.at<Pose3>(2);
|
||||
const Point3 Ta = wTa.translation(), Tb = wTb.translation(),
|
||||
Tc = wTc.translation();
|
||||
const Rot3 aRw = wTa.rotation().inverse();
|
||||
const Unit3 w_aZb = relativeTranslations.at({0, 1});
|
||||
EXPECT(assert_equal(Unit3(Tb - Ta), w_aZb));
|
||||
const Unit3 w_aZc = relativeTranslations.at({0, 2});
|
||||
EXPECT(assert_equal(Unit3(Tc - Ta), w_aZc));
|
||||
Unit3 w_aZb_stored; // measurement between 0 and 1 stored for next unit test
|
||||
for(auto& unitTranslation : relativeTranslations) {
|
||||
const Pose3 wTa = poses.at<Pose3>(unitTranslation.key1()),
|
||||
wTb = poses.at<Pose3>(unitTranslation.key2());
|
||||
const Point3 Ta = wTa.translation(), Tb = wTb.translation();
|
||||
const Unit3 w_aZb = unitTranslation.measured();
|
||||
EXPECT(assert_equal(Unit3(Tb - Ta), w_aZb));
|
||||
if(unitTranslation.key1() == 0 && unitTranslation.key2() == 1) {
|
||||
w_aZb_stored = unitTranslation.measured();
|
||||
}
|
||||
}
|
||||
|
||||
TranslationRecovery algorithm(relativeTranslations);
|
||||
const auto graph = algorithm.buildGraph();
|
||||
|
@ -69,10 +71,14 @@ TEST(TranslationRecovery, BAL) {
|
|||
|
||||
// Check result for first two translations, determined by prior
|
||||
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0)));
|
||||
EXPECT(assert_equal(Point3(2 * w_aZb.point3()), result.at<Point3>(1)));
|
||||
EXPECT(assert_equal(Point3(2 * w_aZb_stored.point3()), result.at<Point3>(1)));
|
||||
|
||||
// Check that the third translations is correct
|
||||
Point3 expected = (Tc - Ta) * (scale / (Tb - Ta).norm());
|
||||
Point3 Ta = poses.at<Pose3>(0).translation();
|
||||
Point3 Tb = poses.at<Pose3>(1).translation();
|
||||
Point3 Tc = poses.at<Pose3>(2).translation();
|
||||
Point3 expected =
|
||||
(Tc - Ta) * (scale / (Tb - Ta).norm());
|
||||
EXPECT(assert_equal(expected, result.at<Point3>(2), 1e-4));
|
||||
|
||||
// TODO(frank): how to get stats back?
|
||||
|
|
Loading…
Reference in New Issue