Show how expressions make (optimization-based) inverse kinematics easy.
parent
53980ae318
commit
9b7eb34add
|
@ -0,0 +1,92 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file InverseKinematicsExampleExpressions.cpp
|
||||
* @brief Implement inverse kinematics on a three-link arm using expressions.
|
||||
* @date April 15, 2019
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/nonlinear/ExpressionFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/Marginals.h>
|
||||
#include <gtsam/nonlinear/expressions.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/expressions.h>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// Scalar multiplication of a vector, with derivatives.
|
||||
inline Vector3 scalarMultiply(const double& s, const Vector3& v,
|
||||
OptionalJacobian<3, 1> Hs,
|
||||
OptionalJacobian<3, 3> Hv) {
|
||||
if (Hs) *Hs = v;
|
||||
if (Hv) *Hv = s * I_3x3;
|
||||
return s * v;
|
||||
}
|
||||
|
||||
// Expression version of scalar product, using above function.
|
||||
inline Vector3_ operator*(const Double_& s, const Vector3_& v) {
|
||||
return Vector3_(&scalarMultiply, s, v);
|
||||
}
|
||||
|
||||
// Expression version of Pose2::Expmap
|
||||
inline Pose2_ Expmap(const Vector3_& xi) { return Pose2_(&Pose2::Expmap, xi); }
|
||||
|
||||
// Main function
|
||||
int main(int argc, char** argv) {
|
||||
// Three-link planar manipulator specification.
|
||||
const double L1 = 3.5, L2 = 3.5, L3 = 2.5; // link lengths
|
||||
const Pose2 sXt0(0, L1 + L2 + L3, M_PI / 2); // end-effector pose at rest
|
||||
const Vector3 xi1(0, 0, 1), xi2(L1, 0, 1),
|
||||
xi3(L1 + L2, 0, 1); // screw axes at rest
|
||||
|
||||
// Create Expressions for unknowns
|
||||
using symbol_shorthand::Q;
|
||||
Double_ q1(Q(1)), q2(Q(2)), q3(Q(3));
|
||||
|
||||
// Forward kinematics expression as product of exponentials
|
||||
Pose2_ l1Zl1 = Expmap(q1 * Vector3_(xi1));
|
||||
Pose2_ l2Zl2 = Expmap(q2 * Vector3_(xi2));
|
||||
Pose2_ l3Zl3 = Expmap(q3 * Vector3_(xi3));
|
||||
Pose2_ forward = compose(compose(l1Zl1, l2Zl2), compose(l3Zl3, Pose2_(sXt0)));
|
||||
|
||||
// Create a factor graph with a a single expression factor.
|
||||
ExpressionFactorGraph graph;
|
||||
Pose2 desiredEndEffectorPose(3, 2, 0);
|
||||
auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
|
||||
graph.addExpressionFactor(forward, desiredEndEffectorPose, model);
|
||||
|
||||
// Create initial estimate
|
||||
Values initial;
|
||||
initial.insert(Q(1), 0.1);
|
||||
initial.insert(Q(2), 0.2);
|
||||
initial.insert(Q(3), 0.3);
|
||||
initial.print("\nInitial Estimate:\n"); // print
|
||||
GTSAM_PRINT(forward.value(initial));
|
||||
|
||||
// Optimize the initial values using a Gauss-Newton nonlinear optimizer
|
||||
LevenbergMarquardtParams params;
|
||||
params.setlambdaInitial(1e6);
|
||||
LevenbergMarquardtOptimizer optimizer(graph, initial, params);
|
||||
Values result = optimizer.optimize();
|
||||
result.print("Final Result:\n");
|
||||
|
||||
GTSAM_PRINT(forward.value(result));
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue