Merge remote-tracking branch 'origin/develop' into feature/AHRSFactor
commit
9afee71399
40
.cproject
40
.cproject
|
@ -1,19 +1,17 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<?fileVersion 4.0.0?>
|
||||
|
||||
<cproject storage_type_id="org.eclipse.cdt.core.XmlProjectDescriptionStorage">
|
||||
<?fileVersion 4.0.0?><cproject storage_type_id="org.eclipse.cdt.core.XmlProjectDescriptionStorage">
|
||||
<storageModule moduleId="org.eclipse.cdt.core.settings">
|
||||
<cconfiguration id="cdt.managedbuild.toolchain.gnu.macosx.base.1359703544">
|
||||
<storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="cdt.managedbuild.toolchain.gnu.macosx.base.1359703544" moduleId="org.eclipse.cdt.core.settings" name="MacOSX GCC">
|
||||
<externalSettings/>
|
||||
<extensions>
|
||||
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.MachO64" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.MachO64" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
</extensions>
|
||||
</storageModule>
|
||||
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
|
||||
|
@ -62,13 +60,13 @@
|
|||
<storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="cdt.managedbuild.toolchain.gnu.macosx.base.1359703544.1441575890" moduleId="org.eclipse.cdt.core.settings" name="Timing">
|
||||
<externalSettings/>
|
||||
<extensions>
|
||||
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.MachO64" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.MachO64" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
</extensions>
|
||||
</storageModule>
|
||||
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
|
||||
|
@ -118,13 +116,13 @@
|
|||
<storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="cdt.managedbuild.toolchain.gnu.macosx.base.1359703544.127261216" moduleId="org.eclipse.cdt.core.settings" name="fast">
|
||||
<externalSettings/>
|
||||
<extensions>
|
||||
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.MachO64" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/>
|
||||
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
<extension id="org.eclipse.cdt.core.MachO64" point="org.eclipse.cdt.core.BinaryParser"/>
|
||||
</extensions>
|
||||
</storageModule>
|
||||
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
|
||||
|
@ -2654,6 +2652,30 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testGPSFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testGPSFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testGaussMarkov1stOrderFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testGaussMarkov1stOrderFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testImplicitSchurFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testImplicitSchurFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="SimpleRotation.run" path="build/examples" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j2</buildArguments>
|
||||
|
|
|
@ -3,4 +3,5 @@
|
|||
*.pyc
|
||||
*.DS_Store
|
||||
/examples/Data/dubrovnik-3-7-pre-rewritten.txt
|
||||
/examples/Data/pose2example-rewritten.txt
|
||||
/examples/Data/pose2example-rewritten.txt
|
||||
/examples/Data/pose3example-rewritten.txt
|
||||
|
|
|
@ -2,6 +2,12 @@
|
|||
project(GTSAM CXX C)
|
||||
cmake_minimum_required(VERSION 2.6)
|
||||
|
||||
# new feature to Cmake Version > 2.8.12
|
||||
# Mac ONLY. Define Relative Path on Mac OS
|
||||
if(NOT DEFINED CMAKE_MACOSX_RPATH)
|
||||
set(CMAKE_MACOSX_RPATH 0)
|
||||
endif()
|
||||
|
||||
# Set the version number for the library
|
||||
set (GTSAM_VERSION_MAJOR 3)
|
||||
set (GTSAM_VERSION_MINOR 1)
|
||||
|
@ -123,6 +129,11 @@ else()
|
|||
endif()
|
||||
|
||||
|
||||
if(${Boost_VERSION} EQUAL 105600)
|
||||
message("Ignoring Boost restriction on optional lvalue assignment from rvalues")
|
||||
add_definitions(-DBOOST_OPTIONAL_ALLOW_BINDING_TO_RVALUES)
|
||||
endif()
|
||||
|
||||
###############################################################################
|
||||
# Find TBB
|
||||
find_package(TBB)
|
||||
|
@ -169,9 +180,9 @@ endif()
|
|||
|
||||
###############################################################################
|
||||
# Find OpenMP (if we're also using MKL)
|
||||
if(GTSAM_WITH_EIGEN_MKL AND GTSAM_USE_EIGEN_MKL_OPENMP AND GTSAM_USE_EIGEN_MKL)
|
||||
find_package(OpenMP)
|
||||
find_package(OpenMP) # do this here to generate correct message if disabled
|
||||
|
||||
if(GTSAM_WITH_EIGEN_MKL AND GTSAM_WITH_EIGEN_MKL_OPENMP AND GTSAM_USE_EIGEN_MKL)
|
||||
if(OPENMP_FOUND AND GTSAM_USE_EIGEN_MKL AND GTSAM_WITH_EIGEN_MKL_OPENMP)
|
||||
set(GTSAM_USE_EIGEN_MKL_OPENMP 1) # This will go into config.h
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
|
||||
|
|
|
@ -58,6 +58,7 @@ FIND_PATH(MKL_ROOT_DIR
|
|||
/opt/intel/mkl/*/
|
||||
/opt/intel/cmkl/
|
||||
/opt/intel/cmkl/*/
|
||||
/opt/intel/*/mkl/
|
||||
/Library/Frameworks/Intel_MKL.framework/Versions/Current/lib/universal
|
||||
"C:/Program Files (x86)/Intel/ComposerXE-2011/mkl"
|
||||
"C:/Program Files (x86)/Intel/Composer XE 2013/mkl"
|
||||
|
@ -136,13 +137,16 @@ ELSE() # UNIX and macOS
|
|||
${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}
|
||||
${MKL_ROOT_DIR}/lib/
|
||||
)
|
||||
|
||||
FIND_LIBRARY(MKL_GNUTHREAD_LIBRARY
|
||||
mkl_gnu_thread
|
||||
PATHS
|
||||
${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}
|
||||
${MKL_ROOT_DIR}/lib/
|
||||
)
|
||||
|
||||
# MKL on Mac OS doesn't ship with GNU thread versions, only Intel versions (see above)
|
||||
IF(NOT APPLE)
|
||||
FIND_LIBRARY(MKL_GNUTHREAD_LIBRARY
|
||||
mkl_gnu_thread
|
||||
PATHS
|
||||
${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}
|
||||
${MKL_ROOT_DIR}/lib/
|
||||
)
|
||||
ENDIF()
|
||||
|
||||
# Intel Libraries
|
||||
IF("${MKL_ARCH_DIR}" STREQUAL "32")
|
||||
|
@ -226,7 +230,12 @@ ELSE() # UNIX and macOS
|
|||
endforeach()
|
||||
endforeach()
|
||||
|
||||
SET(MKL_LIBRARIES ${MKL_LP_GNUTHREAD_LIBRARIES})
|
||||
IF(APPLE)
|
||||
SET(MKL_LIBRARIES ${MKL_LP_INTELTHREAD_LIBRARIES})
|
||||
ELSE()
|
||||
SET(MKL_LIBRARIES ${MKL_LP_GNUTHREAD_LIBRARIES})
|
||||
ENDIF()
|
||||
|
||||
MARK_AS_ADVANCED(MKL_CORE_LIBRARY MKL_LP_LIBRARY MKL_ILP_LIBRARY
|
||||
MKL_SEQUENTIAL_LIBRARY MKL_INTELTHREAD_LIBRARY MKL_GNUTHREAD_LIBRARY)
|
||||
ENDIF()
|
||||
|
|
|
@ -28,13 +28,13 @@ endif()
|
|||
# finding the LaTeX mex program (totally unrelated to MATLAB Mex) when LaTeX is
|
||||
# on the system path.
|
||||
list(REVERSE matlab_bin_directories) # Reverse list so the highest version (sorted alphabetically) is preferred
|
||||
find_program(mex_command ${mex_program_name}
|
||||
find_program(MEX_COMMAND ${mex_program_name}
|
||||
PATHS ${matlab_bin_directories} ENV PATH
|
||||
NO_DEFAULT_PATH)
|
||||
mark_as_advanced(FORCE mex_command)
|
||||
mark_as_advanced(FORCE MEX_COMMAND)
|
||||
# Now that we have mex, trace back to find the Matlab installation root
|
||||
get_filename_component(mex_command "${mex_command}" REALPATH)
|
||||
get_filename_component(mex_path "${mex_command}" PATH)
|
||||
get_filename_component(MEX_COMMAND "${MEX_COMMAND}" REALPATH)
|
||||
get_filename_component(mex_path "${MEX_COMMAND}" PATH)
|
||||
get_filename_component(MATLAB_ROOT "${mex_path}/.." ABSOLUTE)
|
||||
set(MATLAB_ROOT "${MATLAB_ROOT}" CACHE PATH "Path to MATLAB installation root (e.g. /usr/local/MATLAB/R2012a)")
|
||||
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
718.856 718.856 0.0 607.1928 185.2157 0.5371657189
|
|
@ -0,0 +1 @@
|
|||
718.856 718.856 0.0 607.1928 185.2157 0.5371657189
|
|
@ -0,0 +1,135 @@
|
|||
0 1 0 0 0 0 1 0 0 -0 0 1 0 0 0 0 1
|
||||
1 0.99999 -0.00268679 -0.00354618 6.43221e-05 0.00267957 0.999994 -0.00204036 -0.0073023 0.00355164 0.00203084 0.999992 0.676456 0 0 0 1
|
||||
2 0.999969 -0.00120771 -0.00772489 -0.0100328 0.00117985 0.999993 -0.003611 -0.0111185 0.00772919 0.00360178 0.999964 1.37125 0 0 0 1
|
||||
3 0.999931 -0.00128098 -0.0117006 -0.0237327 0.00122052 0.999986 -0.00517227 -0.0136538 0.0117071 0.00515763 0.999918 2.08563 0 0 0 1
|
||||
4 0.99986 5.79321e-05 -0.0167106 -0.0402272 -0.000155312 0.999983 -0.00582618 -0.0194327 0.01671 0.00582796 0.999843 2.81528 0 0 0 1
|
||||
5 0.999772 -0.00118366 -0.0213077 -0.0572378 0.0010545 0.999981 -0.00607208 -0.0278191 0.0213145 0.00604822 0.999755 3.56204 0 0 0 1
|
||||
6 0.999662 0.000544425 -0.0259946 -0.081545 -0.000735472 0.999973 -0.00734051 -0.0358844 0.0259899 0.00735714 0.999635 4.32265 0 0 0 1
|
||||
7 0.999513 0.0032602 -0.0310324 -0.112137 -0.0035101 0.999962 -0.00800188 -0.0447209 0.0310051 0.00810691 0.999486 5.09668 0 0 0 1
|
||||
8 0.999361 0.00349173 -0.0355658 -0.143594 -0.00372162 0.999973 -0.00639979 -0.0532611 0.0355425 0.00652807 0.999347 5.88701 0 0 0 1
|
||||
9 0.999185 0.00268131 -0.040271 -0.176401 -0.0028332 0.999989 -0.00371493 -0.0632884 0.0402606 0.003826 0.999182 6.6897 0 0 0 1
|
||||
10 0.99903 0.00226305 -0.0439747 -0.211687 -0.00231163 0.999997 -0.00105382 -0.072362 0.0439722 0.00115445 0.999032 7.50361 0 0 0 1
|
||||
11 0.998896 0.00366482 -0.0468376 -0.254125 -0.00374515 0.999992 -0.00162734 -0.0820263 0.0468312 0.00180096 0.998901 8.32333 0 0 0 1
|
||||
12 0.998775 0.00304285 -0.0493866 -0.295424 -0.00313866 0.999993 -0.00186268 -0.0885739 0.0493806 0.00201541 0.998778 9.15211 0 0 0 1
|
||||
13 0.998682 7.09894e-05 -0.0513155 -0.334647 -0.000203775 0.999997 -0.00258241 -0.0938889 0.0513152 0.00258946 0.998679 9.98839 0 0 0 1
|
||||
14 0.998565 -8.82523e-05 -0.0535542 -0.380835 -9.36659e-06 0.999998 -0.00182255 -0.10173 0.0535542 0.00182044 0.998563 10.832 0 0 0 1
|
||||
15 0.998481 -0.00146793 -0.0550718 -0.429135 0.0013525 0.999997 -0.00213307 -0.111427 0.0550748 0.00205535 0.99848 11.687 0 0 0 1
|
||||
16 0.998373 0.000738731 -0.0570218 -0.483426 -0.000993083 0.99999 -0.00443241 -0.122139 0.0570179 0.00448183 0.998363 12.5483 0 0 0 1
|
||||
17 0.998285 0.00120595 -0.0585258 -0.540056 -0.00162301 0.999974 -0.00707907 -0.132598 0.0585158 0.00716191 0.998261 13.4179 0 0 0 1
|
||||
18 0.998165 0.00516151 -0.060337 -0.6023 -0.00570195 0.999945 -0.00878826 -0.143753 0.0602883 0.00911617 0.998139 14.2952 0 0 0 1
|
||||
19 0.998101 0.00610094 -0.0612993 -0.66308 -0.00663017 0.999942 -0.00843386 -0.157854 0.0612443 0.00882427 0.998084 15.1802 0 0 0 1
|
||||
20 0.998014 0.0052997 -0.0627662 -0.722045 -0.00574767 0.999959 -0.0069587 -0.172847 0.0627268 0.00730564 0.998004 16.074 0 0 0 1
|
||||
21 0.99792 0.00591748 -0.0641975 -0.78346 -0.00627924 0.999966 -0.00543487 -0.186221 0.0641631 0.00582667 0.997922 16.9738 0 0 0 1
|
||||
22 0.997857 0.00547694 -0.0651993 -0.845347 -0.00584101 0.999968 -0.00539455 -0.199741 0.0651677 0.00576382 0.997858 17.8786 0 0 0 1
|
||||
23 0.997737 0.00536917 -0.0670282 -0.908218 -0.00579979 0.999964 -0.0062316 -0.212775 0.0669924 0.00660624 0.997732 18.7877 0 0 0 1
|
||||
24 0.997663 0.00386695 -0.0682185 -0.971291 -0.00435203 0.999966 -0.00696344 -0.226442 0.0681893 0.00724406 0.997646 19.7046 0 0 0 1
|
||||
25 0.997629 0.00410637 -0.0687004 -1.03663 -0.00448288 0.999976 -0.00532714 -0.239555 0.0686769 0.00562249 0.997623 20.6257 0 0 0 1
|
||||
26 0.997617 0.00588773 -0.0687501 -1.10557 -0.0060349 0.99998 -0.00193325 -0.254273 0.0687373 0.00234355 0.997632 21.55 0 0 0 1
|
||||
27 0.997662 0.00693766 -0.0679906 -1.17297 -0.00682806 0.999975 0.0018442 -0.26563 0.0680017 -0.00137565 0.997684 22.4875 0 0 0 1
|
||||
28 0.997774 0.00579785 -0.0664343 -1.23728 -0.00550265 0.999974 0.00462554 -0.271962 0.0664594 -0.00424968 0.99778 23.4285 0 0 0 1
|
||||
29 0.997872 0.00589563 -0.0649408 -1.30214 -0.00556012 0.99997 0.00534586 -0.277922 0.0649704 -0.0049734 0.997875 24.3732 0 0 0 1
|
||||
30 0.997958 0.00627024 -0.0635595 -1.36462 -0.00612984 0.999978 0.00240374 -0.285335 0.0635732 -0.00200922 0.997975 25.314 0 0 0 1
|
||||
31 0.998004 0.00714074 -0.0627411 -1.42783 -0.00731158 0.99997 -0.00249375 -0.293171 0.0627215 0.00294751 0.998027 26.2605 0 0 0 1
|
||||
32 0.99808 0.0063692 -0.0616159 -1.48954 -0.00671918 0.999962 -0.00547459 -0.302321 0.0615787 0.00587809 0.998085 27.2168 0 0 0 1
|
||||
33 0.99813 0.00376787 -0.0610159 -1.54654 -0.00404632 0.999982 -0.0044408 -0.313516 0.0609981 0.00467938 0.998127 28.1829 0 0 0 1
|
||||
34 0.998113 0.00193972 -0.0613743 -1.60668 -0.00191171 0.999998 0.000515183 -0.324411 0.0613752 -0.000396881 0.998115 29.1626 0 0 0 1
|
||||
35 0.99806 -0.0017885 -0.062228 -1.66532 0.00203402 0.99999 0.00388232 -0.335656 0.0622204 -0.00400136 0.998054 30.1428 0 0 0 1
|
||||
36 0.997945 -0.00917543 -0.0634115 -1.72059 0.00939451 0.999951 0.00315749 -0.343316 0.0633794 -0.00374672 0.997982 31.1244 0 0 0 1
|
||||
37 0.997825 -0.0112684 -0.0649459 -1.78049 0.011242 0.999937 -0.000771312 -0.350864 0.0649504 3.95099e-05 0.997888 32.1064 0 0 0 1
|
||||
38 0.997739 -0.0110126 -0.0662983 -1.85007 0.0107254 0.999932 -0.00468596 -0.361068 0.0663454 0.00396429 0.997789 33.0886 0 0 0 1
|
||||
39 0.997597 -0.00959503 -0.0686163 -1.92119 0.00924037 0.999942 -0.00548426 -0.373466 0.0686649 0.00483704 0.997628 34.0774 0 0 0 1
|
||||
40 0.99755 -0.0095802 -0.0693031 -1.99331 0.00931271 0.999948 -0.00418184 -0.387047 0.0693396 0.00352619 0.997587 35.0736 0 0 0 1
|
||||
41 0.997473 -0.00634387 -0.0707596 -2.0707 0.00626661 0.99998 -0.0013139 -0.403858 0.0707665 0.00086716 0.997493 36.0721 0 0 0 1
|
||||
42 0.99739 -0.00624366 -0.0719343 -2.14553 0.00625582 0.99998 -5.62375e-05 -0.416888 0.0719332 -0.000393917 0.997409 37.0728 0 0 0 1
|
||||
43 0.997312 -0.00473093 -0.0731254 -2.21909 0.00492848 0.999985 0.00252135 -0.428625 0.0731123 -0.00287497 0.99732 38.0643 0 0 0 1
|
||||
44 0.997318 -0.00467696 -0.0730348 -2.29215 0.00509473 0.999972 0.00553481 -0.440023 0.0730068 -0.00589206 0.997314 39.0618 0 0 0 1
|
||||
45 0.997274 0.00138304 -0.0737801 -2.37574 -0.000811217 0.999969 0.00777971 -0.447869 0.0737886 -0.00769865 0.997244 40.0548 0 0 0 1
|
||||
46 0.997262 0.00149131 -0.0739326 -2.45529 -0.000969511 0.999974 0.00709318 -0.454763 0.0739413 -0.00700208 0.997238 41.0557 0 0 0 1
|
||||
47 0.997266 0.00175929 -0.0738699 -2.53081 -0.00136899 0.999985 0.00533379 -0.460519 0.0738782 -0.00521809 0.997254 42.0518 0 0 0 1
|
||||
48 0.997253 0.00408494 -0.0739555 -2.61212 -0.00386552 0.999988 0.00310988 -0.469863 0.0739673 -0.00281546 0.997257 43.0493 0 0 0 1
|
||||
49 0.997185 0.00365371 -0.0748884 -2.68799 -0.00342799 0.999989 0.00314243 -0.47951 0.0748991 -0.00287687 0.997187 44.0473 0 0 0 1
|
||||
50 0.997077 0.00181435 -0.0763845 -2.76071 -0.00149292 0.99999 0.00426495 -0.487845 0.0763915 -0.00413845 0.997069 45.0403 0 0 0 1
|
||||
51 0.997018 0.00246727 -0.0771352 -2.84117 -0.00206285 0.999984 0.00532227 -0.499132 0.0771471 -0.00514727 0.997006 46.0244 0 0 0 1
|
||||
52 0.996991 0.00504805 -0.0773507 -2.92304 -0.00493379 0.999986 0.00166824 -0.510863 0.0773581 -0.00128158 0.997003 46.994 0 0 0 1
|
||||
53 0.996911 0.00581773 -0.0783264 -3.00373 -0.00604061 0.999978 -0.00260888 -0.521193 0.0783095 0.00307396 0.996924 47.9551 0 0 0 1
|
||||
54 0.996846 0.00678413 -0.0790757 -3.08343 -0.00711636 0.999967 -0.00392044 -0.534186 0.0790465 0.00447081 0.996861 48.9236 0 0 0 1
|
||||
55 0.996843 0.00557268 -0.0792034 -3.16262 -0.00562268 0.999984 -0.000408328 -0.54901 0.0791999 0.000852374 0.996858 49.9005 0 0 0 1
|
||||
56 0.996831 0.00375007 -0.0794568 -3.23868 -0.00354655 0.99999 0.00270227 -0.563036 0.0794661 -0.0024119 0.996835 50.8752 0 0 0 1
|
||||
57 0.996805 0.00190455 -0.0798474 -3.31582 -0.00164885 0.999993 0.00326822 -0.574113 0.0798531 -0.00312612 0.996802 51.8394 0 0 0 1
|
||||
58 0.996782 -0.00124932 -0.0801505 -3.39153 0.00141878 0.999997 0.0020573 -0.586659 0.0801477 -0.00216439 0.996781 52.8005 0 0 0 1
|
||||
59 0.996745 -0.0038025 -0.0805262 -3.4676 0.0038689 0.999992 0.000668539 -0.59892 0.080523 -0.00097791 0.996752 53.7575 0 0 0 1
|
||||
60 0.996643 -0.00519016 -0.0817059 -3.54489 0.00535256 0.999984 0.00176869 -0.60864 0.0816955 -0.00220009 0.996655 54.708 0 0 0 1
|
||||
61 0.996534 -0.0079249 -0.0828082 -3.62139 0.00842977 0.999948 0.00574894 -0.618858 0.0827583 -0.00642707 0.996549 55.6588 0 0 0 1
|
||||
62 0.996473 -0.00854289 -0.0834829 -3.69959 0.00945654 0.9999 0.0105549 -0.624401 0.0833844 -0.0113071 0.996453 56.6119 0 0 0 1
|
||||
63 0.996447 -0.00664747 -0.083957 -3.78502 0.00773966 0.99989 0.0126902 -0.629769 0.0838633 -0.0132949 0.996389 57.5607 0 0 0 1
|
||||
64 0.996335 -0.00522633 -0.0853755 -3.8689 0.00597793 0.999946 0.00855017 -0.636709 0.0853262 -0.0090292 0.996312 58.4941 0 0 0 1
|
||||
65 0.996221 -0.00343661 -0.0867892 -3.95276 0.00350579 0.999994 0.000644619 -0.644008 0.0867865 -0.000946448 0.996226 59.4131 0 0 0 1
|
||||
66 0.996144 -0.00149623 -0.0877201 -4.03806 0.00112725 0.99999 -0.00425562 -0.655271 0.0877256 0.00414033 0.996136 60.3236 0 0 0 1
|
||||
67 0.996055 0.00375138 -0.0886573 -4.12895 -0.00406723 0.999986 -0.00338223 -0.671324 0.0886434 0.00372948 0.996056 61.2274 0 0 0 1
|
||||
68 0.995922 0.00719305 -0.0899263 -4.21985 -0.0073202 0.999973 -0.00108421 -0.691307 0.089916 0.00173807 0.995948 62.125 0 0 0 1
|
||||
69 0.99582 0.00967277 -0.0908194 -4.30702 -0.00966905 0.999953 0.000481019 -0.708494 0.0908198 0.000399128 0.995867 63.0134 0 0 0 1
|
||||
70 0.995713 0.0102896 -0.0919182 -4.39131 -0.0103098 0.999947 0.000255248 -0.721276 0.091916 0.000693502 0.995767 63.8776 0 0 0 1
|
||||
71 0.99554 0.0119225 -0.0935844 -4.477 -0.0118725 0.999929 0.00109156 -0.734766 0.0935908 2.43836e-05 0.995611 64.7307 0 0 0 1
|
||||
72 0.995397 0.0126524 -0.0950024 -4.56121 -0.0125521 0.99992 0.00165348 -0.749039 0.0950157 -0.000453392 0.995476 65.5703 0 0 0 1
|
||||
73 0.995256 0.0126635 -0.0964665 -4.64297 -0.0125254 0.999919 0.00203772 -0.761909 0.0964846 -0.00081977 0.995334 66.3938 0 0 0 1
|
||||
74 0.995133 0.0127023 -0.0977168 -4.72623 -0.0124698 0.999918 0.00298947 -0.7711 0.0977468 -0.00175641 0.99521 67.2017 0 0 0 1
|
||||
75 0.994948 0.015548 -0.0991814 -4.81287 -0.0150604 0.999871 0.00566291 -0.780301 0.0992566 -0.0041406 0.995053 67.9995 0 0 0 1
|
||||
76 0.994794 0.0171065 -0.100462 -4.90076 -0.0162095 0.999821 0.009738 -0.788037 0.100611 -0.00805885 0.994893 68.7922 0 0 0 1
|
||||
77 0.994568 0.0201446 -0.102122 -4.98771 -0.0190681 0.999752 0.0115061 -0.794955 0.102328 -0.00949629 0.994705 69.5653 0 0 0 1
|
||||
78 0.99437 0.0229894 -0.10344 -5.07707 -0.0223435 0.999723 0.00739861 -0.804841 0.103581 -0.00504575 0.994608 70.3178 0 0 0 1
|
||||
79 0.99423 0.0228747 -0.1048 -5.16223 -0.0229899 0.999736 0.000108822 -0.81531 0.104774 0.00230114 0.994493 71.0475 0 0 0 1
|
||||
80 0.994077 0.0219938 -0.106431 -5.24094 -0.0227304 0.999725 -0.00571252 -0.825441 0.106276 0.00809789 0.994304 71.7584 0 0 0 1
|
||||
81 0.994023 0.0228054 -0.106762 -5.32437 -0.0236929 0.999694 -0.00705161 -0.831667 0.106569 0.00953897 0.99426 72.4548 0 0 0 1
|
||||
82 0.99386 0.0255543 -0.107653 -5.40648 -0.0260808 0.999654 -0.00348505 -0.846106 0.107527 0.00627133 0.994182 73.1337 0 0 0 1
|
||||
83 0.993702 0.0257681 -0.109048 -5.48436 -0.02605 0.99966 -0.00116096 -0.865059 0.108981 0.00399435 0.994036 73.7942 0 0 0 1
|
||||
84 0.99367 0.0225468 -0.110051 -5.5561 -0.0231761 0.999722 -0.00444219 -0.879535 0.10992 0.00696462 0.993916 74.4324 0 0 0 1
|
||||
85 0.993802 0.0143509 -0.110234 -5.61528 -0.0155198 0.999832 -0.00975281 -0.89282 0.110075 0.0114032 0.993858 75.0504 0 0 0 1
|
||||
86 0.993949 0.0102 -0.10937 -5.67796 -0.0118817 0.999821 -0.0147354 -0.904058 0.1092 0.0159457 0.993892 75.6535 0 0 0 1
|
||||
87 0.994244 0.0126451 -0.106395 -5.74524 -0.014328 0.999784 -0.0150673 -0.916949 0.106181 0.016505 0.99421 76.2455 0 0 0 1
|
||||
88 0.994592 0.0175824 -0.102356 -5.81375 -0.0189231 0.999747 -0.0121417 -0.930972 0.102117 0.0140129 0.994674 76.8222 0 0 0 1
|
||||
89 0.995077 0.0159295 -0.0978149 -5.86699 -0.0169123 0.999814 -0.00922648 -0.942909 0.0976498 0.0108353 0.995162 77.3862 0 0 0 1
|
||||
90 0.995665 0.0122046 -0.0922106 -5.90659 -0.0127358 0.999906 -0.00517412 -0.954487 0.0921387 0.00632606 0.995726 77.9355 0 0 0 1
|
||||
91 0.996426 0.00781104 -0.084105 -5.94257 -0.00798227 0.999967 -0.0016998 -0.970792 0.0840889 0.00236507 0.996455 78.4692 0 0 0 1
|
||||
92 0.997233 0.0114593 -0.0734453 -5.98049 -0.0116369 0.99993 -0.00198965 -0.981019 0.0734174 0.00283882 0.997297 78.9883 0 0 0 1
|
||||
93 0.998165 0.0165636 -0.0582361 -6.0154 -0.0167456 0.999856 -0.0026387 -0.99003 0.058184 0.00360906 0.998299 79.4952 0 0 0 1
|
||||
95 0.999635 0.0200255 -0.0181151 -6.02981 -0.0200623 0.999797 -0.00185529 -1.00502 0.0180742 0.00221804 0.999834 80.4727 0 0 0 1
|
||||
97 0.999162 0.015548 0.037857 -5.96801 -0.0155684 0.999879 0.000243918 -1.02389 -0.0378486 -0.000833085 0.999283 81.4025 0 0 0 1
|
||||
99 0.993959 0.0151454 0.108698 -5.84553 -0.0154328 0.999879 0.0018028 -1.04109 -0.108657 -0.00346942 0.994073 82.2952 0 0 0 1
|
||||
101 0.980499 0.0151504 0.195937 -5.64466 -0.0157106 0.999876 0.00130478 -1.05761 -0.195893 -0.00435763 0.980616 83.1489 0 0 0 1
|
||||
103 0.954186 0.0182833 0.298656 -5.36588 -0.0179595 0.999831 -0.00382887 -1.08348 -0.298675 -0.00171027 0.954353 83.9397 0 0 0 1
|
||||
105 0.910736 0.0194893 0.412529 -4.99648 -0.0175815 0.99981 -0.00842014 -1.10057 -0.412615 0.000415655 0.910905 84.6633 0 0 0 1
|
||||
107 0.848724 0.0183908 0.528517 -4.54701 -0.0135972 0.999824 -0.0129557 -1.12003 -0.528662 0.00380946 0.848824 85.2983 0 0 0 1
|
||||
109 0.772259 0.0170098 0.63508 -4.0183 -0.0106749 0.999848 -0.0137989 -1.14244 -0.635218 0.00387688 0.772323 85.8601 0 0 0 1
|
||||
111 0.684256 0.0156411 0.729074 -3.42903 -0.0102231 0.999877 -0.0118561 -1.16079 -0.72917 0.000659179 0.684332 86.3474 0 0 0 1
|
||||
113 0.590745 0.011826 0.806772 -2.77931 -0.000173089 0.999894 -0.0145301 -1.17886 -0.806858 0.00844396 0.590684 86.7443 0 0 0 1
|
||||
115 0.496173 0.0169181 0.868059 -2.10955 -0.00504039 0.999849 -0.0166057 -1.20339 -0.868209 0.00386392 0.496183 87.0847 0 0 0 1
|
||||
117 0.408192 0.0165355 0.912746 -1.40862 0.00231553 0.999814 -0.0191484 -1.2249 -0.912893 0.00992974 0.408078 87.3396 0 0 0 1
|
||||
119 0.333443 0.00543386 0.942754 -0.671521 0.0223493 0.999657 -0.0136666 -1.23662 -0.942505 0.025627 0.333208 87.522 0 0 0 1
|
||||
121 0.269054 0.0173163 0.962969 0.0638526 0.00961829 0.99974 -0.0206648 -1.26307 -0.963077 0.0148221 0.268818 87.7199 0 0 0 1
|
||||
123 0.214897 0.0233915 0.976357 0.843046 0.00677025 0.999653 -0.0254398 -1.30009 -0.976613 0.0120771 0.214664 87.8763 0 0 0 1
|
||||
125 0.171479 0.031054 0.984698 1.66216 0.0212619 0.999154 -0.0352125 -1.3179 -0.984958 0.0269747 0.170674 87.9743 0 0 0 1
|
||||
127 0.134011 0.0386308 0.990227 2.52547 0.0207141 0.998912 -0.041773 -1.34147 -0.990763 0.0261097 0.133065 88.0809 0 0 0 1
|
||||
129 0.10418 0.0310179 0.994075 3.44652 0.0195614 0.999256 -0.0332297 -1.39013 -0.994366 0.0229074 0.103496 88.1692 0 0 0 1
|
||||
131 0.0794366 0.027788 0.996453 4.42556 0.0261822 0.999208 -0.0299521 -1.42776 -0.996496 0.0284686 0.0786462 88.2295 0 0 0 1
|
||||
132 0.0693462 0.028443 0.997187 4.93885 0.0294969 0.999098 -0.0305488 -1.44582 -0.997156 0.0315324 0.0684447 88.2553 0 0 0 1
|
||||
133 0.0615414 0.0290168 0.997683 5.46907 0.0316982 0.999016 -0.0310108 -1.46406 -0.997601 0.0335332 0.0605611 88.2814 0 0 0 1
|
||||
134 0.0559347 0.029371 0.998002 6.0151 0.0334765 0.99895 -0.0312751 -1.48373 -0.997873 0.035159 0.0548927 88.307 0 0 0 1
|
||||
135 0.0504312 0.0304374 0.998264 6.58025 0.0349281 0.99887 -0.0322204 -1.50267 -0.998117 0.0364923 0.0493112 88.3306 0 0 0 1
|
||||
136 0.0445067 0.0311103 0.998525 7.16082 0.0355578 0.998832 -0.0327048 -1.52353 -0.998376 0.0369609 0.0433485 88.3531 0 0 0 1
|
||||
137 0.040243 0.0311989 0.998703 7.76375 0.0381603 0.998735 -0.0327376 -1.54487 -0.998461 0.0394283 0.0390016 88.3716 0 0 0 1
|
||||
138 0.0373982 0.0312027 0.998813 8.38568 0.0397152 0.998676 -0.0326855 -1.56772 -0.998511 0.0408905 0.0361095 88.3901 0 0 0 1
|
||||
139 0.0343726 0.0307634 0.998936 9.02449 0.0406913 0.998654 -0.0321549 -1.59059 -0.99858 0.0417533 0.0330745 88.4092 0 0 0 1
|
||||
140 0.0320861 0.0302694 0.999027 9.68038 0.0427798 0.998584 -0.03163 -1.61442 -0.998569 0.043753 0.0307457 88.4263 0 0 0 1
|
||||
141 0.0316452 0.0299561 0.99905 10.3542 0.0473602 0.998383 -0.0314363 -1.63856 -0.998376 0.04831 0.0301753 88.4381 0 0 0 1
|
||||
142 0.0327723 0.029714 0.999021 11.0457 0.0507142 0.998221 -0.0313539 -1.66282 -0.998175 0.0516921 0.031207 88.4556 0 0 0 1
|
||||
143 0.0353027 0.0297602 0.998933 11.7546 0.0522842 0.998133 -0.0315841 -1.68678 -0.998008 0.0533435 0.0336808 88.4781 0 0 0 1
|
||||
144 0.0392372 0.0297502 0.998787 12.4771 0.0547241 0.997993 -0.0318763 -1.71289 -0.99773 0.0559084 0.0375304 88.5062 0 0 0 1
|
||||
145 0.0437096 0.0293188 0.998614 13.219 0.0550685 0.997979 -0.0317105 -1.73922 -0.997525 0.0563782 0.0420067 88.5387 0 0 0 1
|
||||
146 0.0477725 0.0278103 0.998471 13.9764 0.0564652 0.997939 -0.0304971 -1.76499 -0.997261 0.0578358 0.0461037 88.5751 0 0 0 1
|
||||
147 0.0518486 0.0263145 0.998308 14.7472 0.0562418 0.997989 -0.0292271 -1.79222 -0.99707 0.057662 0.0502644 88.6178 0 0 0 1
|
||||
148 0.0560658 0.0242863 0.998132 15.5313 0.0531494 0.998214 -0.0272738 -1.82056 -0.997011 0.0545792 0.0546748 88.6693 0 0 0 1
|
||||
149 0.0600218 0.0233355 0.997924 16.3271 0.0522059 0.998285 -0.0264839 -1.84733 -0.996831 0.0536871 0.0587006 88.7243 0 0 0 1
|
||||
150 0.0641513 0.0243795 0.997642 17.1258 0.0492204 0.998408 -0.0275632 -1.87761 -0.996726 0.0508726 0.0628492 88.7821 0 0 0 1
|
||||
151 0.0672583 0.028483 0.997329 17.929 0.0470717 0.998389 -0.0316877 -1.91204 -0.996625 0.0490772 0.0658092 88.842 0 0 0 1
|
||||
152 0.0688453 0.0337446 0.997056 18.7357 0.0413971 0.99847 -0.0366509 -1.9468 -0.996768 0.0437985 0.067343 88.9041 0 0 0 1
|
||||
153 0.0686545 0.0370247 0.996953 19.5482 0.0387033 0.99846 -0.0397459 -1.98038 -0.996889 0.0413142 0.0671158 88.9665 0 0 0 1
|
|
@ -0,0 +1,77 @@
|
|||
0 1 0 0 0 0 1 0 0 -0 0 1 0 0 0 0 1
|
||||
1 0.99999 -0.00268679 -0.00354618 6.43221e-05 0.00267957 0.999994 -0.00204036 -0.0073023 0.00355164 0.00203084 0.999992 0.676456 0 0 0 1
|
||||
2 0.999969 -0.00120771 -0.00772489 -0.0100328 0.00117985 0.999993 -0.003611 -0.0111185 0.00772919 0.00360178 0.999964 1.37125 0 0 0 1
|
||||
3 0.999931 -0.00128098 -0.0117006 -0.0237327 0.00122052 0.999986 -0.00517227 -0.0136538 0.0117071 0.00515763 0.999918 2.08563 0 0 0 1
|
||||
4 0.99986 5.79321e-05 -0.0167106 -0.0402272 -0.000155312 0.999983 -0.00582618 -0.0194327 0.01671 0.00582796 0.999843 2.81528 0 0 0 1
|
||||
5 0.999772 -0.00118366 -0.0213077 -0.0572378 0.0010545 0.999981 -0.00607208 -0.0278191 0.0213145 0.00604822 0.999755 3.56204 0 0 0 1
|
||||
6 0.999662 0.000544425 -0.0259946 -0.081545 -0.000735472 0.999973 -0.00734051 -0.0358844 0.0259899 0.00735714 0.999635 4.32265 0 0 0 1
|
||||
7 0.999513 0.0032602 -0.0310324 -0.112137 -0.0035101 0.999962 -0.00800188 -0.0447209 0.0310051 0.00810691 0.999486 5.09668 0 0 0 1
|
||||
8 0.999361 0.00349173 -0.0355658 -0.143594 -0.00372162 0.999973 -0.00639979 -0.0532611 0.0355425 0.00652807 0.999347 5.88701 0 0 0 1
|
||||
9 0.999185 0.00268131 -0.040271 -0.176401 -0.0028332 0.999989 -0.00371493 -0.0632884 0.0402606 0.003826 0.999182 6.6897 0 0 0 1
|
||||
10 0.99903 0.00226305 -0.0439747 -0.211687 -0.00231163 0.999997 -0.00105382 -0.072362 0.0439722 0.00115445 0.999032 7.50361 0 0 0 1
|
||||
11 0.998896 0.00366482 -0.0468376 -0.254125 -0.00374515 0.999992 -0.00162734 -0.0820263 0.0468312 0.00180096 0.998901 8.32333 0 0 0 1
|
||||
12 0.998775 0.00304285 -0.0493866 -0.295424 -0.00313866 0.999993 -0.00186268 -0.0885739 0.0493806 0.00201541 0.998778 9.15211 0 0 0 1
|
||||
13 0.998682 7.09894e-05 -0.0513155 -0.334647 -0.000203775 0.999997 -0.00258241 -0.0938889 0.0513152 0.00258946 0.998679 9.98839 0 0 0 1
|
||||
14 0.998565 -8.82523e-05 -0.0535542 -0.380835 -9.36659e-06 0.999998 -0.00182255 -0.10173 0.0535542 0.00182044 0.998563 10.832 0 0 0 1
|
||||
15 0.998481 -0.00146793 -0.0550718 -0.429135 0.0013525 0.999997 -0.00213307 -0.111427 0.0550748 0.00205535 0.99848 11.687 0 0 0 1
|
||||
16 0.998373 0.000738731 -0.0570218 -0.483426 -0.000993083 0.99999 -0.00443241 -0.122139 0.0570179 0.00448183 0.998363 12.5483 0 0 0 1
|
||||
17 0.998285 0.00120595 -0.0585258 -0.540056 -0.00162301 0.999974 -0.00707907 -0.132598 0.0585158 0.00716191 0.998261 13.4179 0 0 0 1
|
||||
18 0.998165 0.00516151 -0.060337 -0.6023 -0.00570195 0.999945 -0.00878826 -0.143753 0.0602883 0.00911617 0.998139 14.2952 0 0 0 1
|
||||
19 0.998101 0.00610094 -0.0612993 -0.66308 -0.00663017 0.999942 -0.00843386 -0.157854 0.0612443 0.00882427 0.998084 15.1802 0 0 0 1
|
||||
20 0.998014 0.0052997 -0.0627662 -0.722045 -0.00574767 0.999959 -0.0069587 -0.172847 0.0627268 0.00730564 0.998004 16.074 0 0 0 1
|
||||
21 0.99792 0.00591748 -0.0641975 -0.78346 -0.00627924 0.999966 -0.00543487 -0.186221 0.0641631 0.00582667 0.997922 16.9738 0 0 0 1
|
||||
22 0.997857 0.00547694 -0.0651993 -0.845347 -0.00584101 0.999968 -0.00539455 -0.199741 0.0651677 0.00576382 0.997858 17.8786 0 0 0 1
|
||||
23 0.997737 0.00536917 -0.0670282 -0.908218 -0.00579979 0.999964 -0.0062316 -0.212775 0.0669924 0.00660624 0.997732 18.7877 0 0 0 1
|
||||
24 0.997663 0.00386695 -0.0682185 -0.971291 -0.00435203 0.999966 -0.00696344 -0.226442 0.0681893 0.00724406 0.997646 19.7046 0 0 0 1
|
||||
25 0.997629 0.00410637 -0.0687004 -1.03663 -0.00448288 0.999976 -0.00532714 -0.239555 0.0686769 0.00562249 0.997623 20.6257 0 0 0 1
|
||||
26 0.997617 0.00588773 -0.0687501 -1.10557 -0.0060349 0.99998 -0.00193325 -0.254273 0.0687373 0.00234355 0.997632 21.55 0 0 0 1
|
||||
27 0.997662 0.00693766 -0.0679906 -1.17297 -0.00682806 0.999975 0.0018442 -0.26563 0.0680017 -0.00137565 0.997684 22.4875 0 0 0 1
|
||||
28 0.997774 0.00579785 -0.0664343 -1.23728 -0.00550265 0.999974 0.00462554 -0.271962 0.0664594 -0.00424968 0.99778 23.4285 0 0 0 1
|
||||
29 0.997872 0.00589563 -0.0649408 -1.30214 -0.00556012 0.99997 0.00534586 -0.277922 0.0649704 -0.0049734 0.997875 24.3732 0 0 0 1
|
||||
30 0.997958 0.00627024 -0.0635595 -1.36462 -0.00612984 0.999978 0.00240374 -0.285335 0.0635732 -0.00200922 0.997975 25.314 0 0 0 1
|
||||
31 0.998004 0.00714074 -0.0627411 -1.42783 -0.00731158 0.99997 -0.00249375 -0.293171 0.0627215 0.00294751 0.998027 26.2605 0 0 0 1
|
||||
32 0.99808 0.0063692 -0.0616159 -1.48954 -0.00671918 0.999962 -0.00547459 -0.302321 0.0615787 0.00587809 0.998085 27.2168 0 0 0 1
|
||||
33 0.99813 0.00376787 -0.0610159 -1.54654 -0.00404632 0.999982 -0.0044408 -0.313516 0.0609981 0.00467938 0.998127 28.1829 0 0 0 1
|
||||
34 0.998113 0.00193972 -0.0613743 -1.60668 -0.00191171 0.999998 0.000515183 -0.324411 0.0613752 -0.000396881 0.998115 29.1626 0 0 0 1
|
||||
35 0.99806 -0.0017885 -0.062228 -1.66532 0.00203402 0.99999 0.00388232 -0.335656 0.0622204 -0.00400136 0.998054 30.1428 0 0 0 1
|
||||
36 0.997945 -0.00917543 -0.0634115 -1.72059 0.00939451 0.999951 0.00315749 -0.343316 0.0633794 -0.00374672 0.997982 31.1244 0 0 0 1
|
||||
37 0.997825 -0.0112684 -0.0649459 -1.78049 0.011242 0.999937 -0.000771312 -0.350864 0.0649504 3.95099e-05 0.997888 32.1064 0 0 0 1
|
||||
38 0.997739 -0.0110126 -0.0662983 -1.85007 0.0107254 0.999932 -0.00468596 -0.361068 0.0663454 0.00396429 0.997789 33.0886 0 0 0 1
|
||||
39 0.997597 -0.00959503 -0.0686163 -1.92119 0.00924037 0.999942 -0.00548426 -0.373466 0.0686649 0.00483704 0.997628 34.0774 0 0 0 1
|
||||
40 0.99755 -0.0095802 -0.0693031 -1.99331 0.00931271 0.999948 -0.00418184 -0.387047 0.0693396 0.00352619 0.997587 35.0736 0 0 0 1
|
||||
41 0.997473 -0.00634387 -0.0707596 -2.0707 0.00626661 0.99998 -0.0013139 -0.403858 0.0707665 0.00086716 0.997493 36.0721 0 0 0 1
|
||||
42 0.99739 -0.00624366 -0.0719343 -2.14553 0.00625582 0.99998 -5.62375e-05 -0.416888 0.0719332 -0.000393917 0.997409 37.0728 0 0 0 1
|
||||
43 0.997312 -0.00473093 -0.0731254 -2.21909 0.00492848 0.999985 0.00252135 -0.428625 0.0731123 -0.00287497 0.99732 38.0643 0 0 0 1
|
||||
44 0.997318 -0.00467696 -0.0730348 -2.29215 0.00509473 0.999972 0.00553481 -0.440023 0.0730068 -0.00589206 0.997314 39.0618 0 0 0 1
|
||||
45 0.997274 0.00138304 -0.0737801 -2.37574 -0.000811217 0.999969 0.00777971 -0.447869 0.0737886 -0.00769865 0.997244 40.0548 0 0 0 1
|
||||
46 0.997262 0.00149131 -0.0739326 -2.45529 -0.000969511 0.999974 0.00709318 -0.454763 0.0739413 -0.00700208 0.997238 41.0557 0 0 0 1
|
||||
47 0.997266 0.00175929 -0.0738699 -2.53081 -0.00136899 0.999985 0.00533379 -0.460519 0.0738782 -0.00521809 0.997254 42.0518 0 0 0 1
|
||||
48 0.997253 0.00408494 -0.0739555 -2.61212 -0.00386552 0.999988 0.00310988 -0.469863 0.0739673 -0.00281546 0.997257 43.0493 0 0 0 1
|
||||
49 0.997185 0.00365371 -0.0748884 -2.68799 -0.00342799 0.999989 0.00314243 -0.47951 0.0748991 -0.00287687 0.997187 44.0473 0 0 0 1
|
||||
50 0.997077 0.00181435 -0.0763845 -2.76071 -0.00149292 0.99999 0.00426495 -0.487845 0.0763915 -0.00413845 0.997069 45.0403 0 0 0 1
|
||||
51 0.997018 0.00246727 -0.0771352 -2.84117 -0.00206285 0.999984 0.00532227 -0.499132 0.0771471 -0.00514727 0.997006 46.0244 0 0 0 1
|
||||
52 0.996991 0.00504805 -0.0773507 -2.92304 -0.00493379 0.999986 0.00166824 -0.510863 0.0773581 -0.00128158 0.997003 46.994 0 0 0 1
|
||||
53 0.996911 0.00581773 -0.0783264 -3.00373 -0.00604061 0.999978 -0.00260888 -0.521193 0.0783095 0.00307396 0.996924 47.9551 0 0 0 1
|
||||
54 0.996846 0.00678413 -0.0790757 -3.08343 -0.00711636 0.999967 -0.00392044 -0.534186 0.0790465 0.00447081 0.996861 48.9236 0 0 0 1
|
||||
55 0.996843 0.00557268 -0.0792034 -3.16262 -0.00562268 0.999984 -0.000408328 -0.54901 0.0791999 0.000852374 0.996858 49.9005 0 0 0 1
|
||||
56 0.996831 0.00375007 -0.0794568 -3.23868 -0.00354655 0.99999 0.00270227 -0.563036 0.0794661 -0.0024119 0.996835 50.8752 0 0 0 1
|
||||
57 0.996805 0.00190455 -0.0798474 -3.31582 -0.00164885 0.999993 0.00326822 -0.574113 0.0798531 -0.00312612 0.996802 51.8394 0 0 0 1
|
||||
58 0.996782 -0.00124932 -0.0801505 -3.39153 0.00141878 0.999997 0.0020573 -0.586659 0.0801477 -0.00216439 0.996781 52.8005 0 0 0 1
|
||||
59 0.996745 -0.0038025 -0.0805262 -3.4676 0.0038689 0.999992 0.000668539 -0.59892 0.080523 -0.00097791 0.996752 53.7575 0 0 0 1
|
||||
60 0.996643 -0.00519016 -0.0817059 -3.54489 0.00535256 0.999984 0.00176869 -0.60864 0.0816955 -0.00220009 0.996655 54.708 0 0 0 1
|
||||
61 0.996534 -0.0079249 -0.0828082 -3.62139 0.00842977 0.999948 0.00574894 -0.618858 0.0827583 -0.00642707 0.996549 55.6588 0 0 0 1
|
||||
62 0.996473 -0.00854289 -0.0834829 -3.69959 0.00945654 0.9999 0.0105549 -0.624401 0.0833844 -0.0113071 0.996453 56.6119 0 0 0 1
|
||||
63 0.996447 -0.00664747 -0.083957 -3.78502 0.00773966 0.99989 0.0126902 -0.629769 0.0838633 -0.0132949 0.996389 57.5607 0 0 0 1
|
||||
64 0.996335 -0.00522633 -0.0853755 -3.8689 0.00597793 0.999946 0.00855017 -0.636709 0.0853262 -0.0090292 0.996312 58.4941 0 0 0 1
|
||||
65 0.996221 -0.00343661 -0.0867892 -3.95276 0.00350579 0.999994 0.000644619 -0.644008 0.0867865 -0.000946448 0.996226 59.4131 0 0 0 1
|
||||
66 0.996144 -0.00149623 -0.0877201 -4.03806 0.00112725 0.99999 -0.00425562 -0.655271 0.0877256 0.00414033 0.996136 60.3236 0 0 0 1
|
||||
67 0.996055 0.00375138 -0.0886573 -4.12895 -0.00406723 0.999986 -0.00338223 -0.671324 0.0886434 0.00372948 0.996056 61.2274 0 0 0 1
|
||||
68 0.995922 0.00719305 -0.0899263 -4.21985 -0.0073202 0.999973 -0.00108421 -0.691307 0.089916 0.00173807 0.995948 62.125 0 0 0 1
|
||||
69 0.99582 0.00967277 -0.0908194 -4.30702 -0.00966905 0.999953 0.000481019 -0.708494 0.0908198 0.000399128 0.995867 63.0134 0 0 0 1
|
||||
70 0.995713 0.0102896 -0.0919182 -4.39131 -0.0103098 0.999947 0.000255248 -0.721276 0.091916 0.000693502 0.995767 63.8776 0 0 0 1
|
||||
71 0.99554 0.0119225 -0.0935844 -4.477 -0.0118725 0.999929 0.00109156 -0.734766 0.0935908 2.43836e-05 0.995611 64.7307 0 0 0 1
|
||||
72 0.995397 0.0126524 -0.0950024 -4.56121 -0.0125521 0.99992 0.00165348 -0.749039 0.0950157 -0.000453392 0.995476 65.5703 0 0 0 1
|
||||
73 0.995256 0.0126635 -0.0964665 -4.64297 -0.0125254 0.999919 0.00203772 -0.761909 0.0964846 -0.00081977 0.995334 66.3938 0 0 0 1
|
||||
74 0.995133 0.0127023 -0.0977168 -4.72623 -0.0124698 0.999918 0.00298947 -0.7711 0.0977468 -0.00175641 0.99521 67.2017 0 0 0 1
|
||||
75 0.994948 0.015548 -0.0991814 -4.81287 -0.0150604 0.999871 0.00566291 -0.780301 0.0992566 -0.0041406 0.995053 67.9995 0 0 0 1
|
||||
76 0.994794 0.0171065 -0.100462 -4.90076 -0.0162095 0.999821 0.009738 -0.788037 0.100611 -0.00805885 0.994893 68.7922 0 0 0 1
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,71 @@
|
|||
VERTEX_SE3:QUAT 0 1.63791e-12 7.56548e-14 -3.02811e-12 5.35657e-13 2.43616e-13 9.71152e-14 1
|
||||
VERTEX_SE3:QUAT 1 1.01609 0.00274307 -0.0351514 -0.499545 0.247735 0.723569 -0.406854
|
||||
VERTEX_SE3:QUAT 2 1.99996 0.0304956 -0.040662 0.403501 -0.294714 -0.4254 0.754563
|
||||
VERTEX_SE3:QUAT 3 1.94371 1.06535 0.0118614 -0.0471731 -0.541615 0.820893 0.17482
|
||||
VERTEX_SE3:QUAT 4 0.962753 0.999477 0.0211017 -0.19663 -0.66009 0.470743 0.551379
|
||||
VERTEX_SE3:QUAT 5 -0.00956768 0.965396 -0.021854 -0.320221 -0.518368 0.47521 0.634766
|
||||
VERTEX_SE3:QUAT 6 -0.0863793 1.97682 0.000531117 -0.0173439 -0.573793 -0.450627 0.683663
|
||||
VERTEX_SE3:QUAT 7 0.918905 2.01556 -0.0139773 0.56169 -0.440513 0.199057 0.671438
|
||||
VERTEX_SE3:QUAT 8 1.92094 2.05524 0.0469884 0.0073084 -0.372357 -0.467582 0.801663
|
||||
VERTEX_SE3:QUAT 9 1.86182 2.05449 1.09237 0.0131731 -0.05784 0.0335652 0.997674
|
||||
VERTEX_SE3:QUAT 10 0.880176 2.02406 1.00997 -0.39342 -0.287909 0.757918 0.433462
|
||||
VERTEX_SE3:QUAT 11 -0.0960463 1.98653 0.995791 0.434103 -0.199044 0.585176 0.655367
|
||||
VERTEX_SE3:QUAT 12 -0.0911401 0.997117 0.988217 -0.0925477 0.572872 0.537294 0.612019
|
||||
VERTEX_SE3:QUAT 13 0.948316 1.02239 0.991745 0.142484 0.560062 0.750078 0.321578
|
||||
VERTEX_SE3:QUAT 14 1.92631 1.08945 1.06749 0.23878 0.380837 0.796564 -0.404269
|
||||
VERTEX_SE3:QUAT 15 1.95398 0.0777667 0.982353 -0.384392 0.58733 0.685207 -0.194366
|
||||
VERTEX_SE3:QUAT 16 0.946032 0.0482667 0.952308 -0.218979 0.186315 -0.494185 0.820437
|
||||
VERTEX_SE3:QUAT 17 -0.0625076 -0.034424 0.942171 0.514725 -0.185043 -0.44771 0.707371
|
||||
VERTEX_SE3:QUAT 18 -0.083807 -0.0106666 1.9853 0.00792651 1.98919e-05 -0.00128106 0.999968
|
||||
VERTEX_SE3:QUAT 19 0.918067 -0.000897795 1.92157 -0.342141 0.241241 -0.726975 0.544288
|
||||
VERTEX_SE3:QUAT 20 1.90041 0.0323631 2.00636 0.412572 -0.0930131 -0.133075 0.896339
|
||||
VERTEX_SE3:QUAT 21 1.84895 1.05013 2.0738 -0.580757 0.35427 0.729393 -0.0721062
|
||||
VERTEX_SE3:QUAT 22 0.880221 1.00671 1.99021 0.147752 0.355662 0.917953 0.095058
|
||||
VERTEX_SE3:QUAT 23 -0.0950872 1.00374 1.95013 -0.29909 -0.0578461 0.857019 0.415594
|
||||
VERTEX_SE3:QUAT 24 -0.111581 1.97979 1.98762 0.565153 0.214463 -0.523058 0.600848
|
||||
VERTEX_SE3:QUAT 25 0.837568 2.01589 2.03075 -0.284756 0.369992 0.875484 -0.124692
|
||||
VERTEX_SE3:QUAT 26 1.82708 2.05081 2.07052 0.254696 0.250865 0.653216 0.667462
|
||||
EDGE_SE3:QUAT 0 1 1.00497 0.002077 -0.015539 -0.508004 0.250433 0.711222 -0.416386 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 1 2 -0.200593 0.339956 -0.908079 -0.093598 0.151993 0.42829 0.885836 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 2 3 -0.922791 0.330629 -0.292682 0.365657 -0.051986 0.924849 -0.090813 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 3 4 0.893075 0.246476 0.331154 -0.285927 0.341221 -0.267609 0.854517 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 4 5 0.280674 0.244242 0.923726 0.035064 0.21101 0.083834 0.973251 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 5 6 0.955621 0.355669 -0.025152 -0.306713 0.131221 -0.781587 0.527096 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 6 7 -0.076631 0.636081 -0.771439 0.702021 0.326514 0.122181 0.620988 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 7 8 0.582761 -0.721177 -0.376875 -0.733841 -0.170725 -0.256653 0.605359 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 8 9 0.600312 0.298765 0.767014 0.057612 0.332574 0.486324 0.805956 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 9 10 -0.986649 0.03008 -0.008766 -0.362177 -0.253215 0.763748 0.470531 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 10 11 0.275109 0.534769 0.823463 0.450708 -0.472399 -0.432689 0.621677 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 11 12 -0.61882 0.024878 0.773748 0.0927029 0.786162 -0.21122 0.573359 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 12 13 -0.175537 -0.730832 0.634529 -0.018628 0.006375 0.428306 0.903419 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 13 14 -0.700208 -0.245198 0.637353 -0.035865 0.273394 0.645363 0.712374 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 14 15 0.373495 0.373768 -0.846199 0.400323 0.310362 -0.422222 0.751762 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 15 16 0.648588 0.157829 0.72252 0.781502 -0.210141 -0.501005 -0.30674 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 16 17 -0.390339 -0.702656 -0.572321 0.765815 0.055816 0.032478 0.63981 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 17 18 -0.261114 0.908685 0.421318 -0.501833 0.166567 0.448468 0.720622 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 18 19 1.00815 0.012634 -0.029822 -0.347007 0.205082 -0.740641 0.537569 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 19 20 -0.162376 0.581623 0.810804 0.628338 0.075411 0.650639 0.41973 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 20 21 -0.358942 0.627689 -0.704045 -0.469133 0.542456 0.530583 -0.451816 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 21 22 0.362417 0.298352 0.854822 0.004058 -0.696926 0.140345 0.703265 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 22 23 0.934942 0.020321 -0.358044 -0.445461 0.260916 -0.379862 0.767589 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 23 24 0.741887 -0.657659 0.215293 -0.584859 0.196138 0.688031 0.38221 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 24 25 0.300145 0.82011 -0.39974 0.46538 -0.593595 -0.202131 0.624668 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 25 26 -0.85591 0.022701 -0.510794 0.12929 -0.685192 -0.503707 0.509978 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 0 5 0.026721 0.990497 -0.007651 -0.317476 -0.510239 0.467341 0.648427 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 3 8 0.390516 -0.401461 -0.830724 0.503106 -0.367814 0.780584 0.047806 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 4 1 -0.813838 -0.446181 0.319175 0.224903 -0.031827 0.97265 0.048561 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 4 13 0.571273 -0.805401 0.077339 0.892031 0.329761 0.275468 0.140201 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 5 12 0.389794 -0.882655 0.268063 0.712423 0.550662 0.275339 0.33677 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 6 11 0.800298 0.505022 0.361738 0.739335 0.419366 0.443817 0.283801 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 10 13 -0.912531 0.430955 -0.018942 0.830493 -0.093519 0.272041 0.477001 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 12 23 -0.797606 0.437737 0.311476 -0.657137 -0.196625 0.136652 0.714728 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 13 22 -0.116836 0.952032 0.269398 -0.216437 0.086571 0.260965 0.936781 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 14 21 0.749295 0.373389 0.581641 0.253048 0.511007 -0.537262 0.621439 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 16 1 0.160985 0.555966 -0.811911 0.748057 0.122381 -0.369631 0.537407 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 18 23 0.028909 1.02689 -0.00265 -0.294167 -0.071607 0.850901 0.429308 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 19 16 -0.230711 0.750637 -0.607511 0.14647 -0.102538 0.297899 0.937704 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 20 15 -0.031986 -0.741129 -0.728721 -0.278926 0.731172 0.404675 -0.473103 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 22 19 -0.332601 0.704401 -0.687251 -0.372165 -0.054346 0.713024 0.591725 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 22 25 0.347067 -0.634646 0.657147 0.018567 0.476762 0.040939 0.877882 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 25 10 0.388971 -0.723981 -0.559653 -0.373459 -0.014654 -0.696123 0.612965 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 26 21 -0.979482 -0.024822 0.043763 -0.326753 0.819942 0.292615 0.367837 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
|
@ -0,0 +1,3 @@
|
|||
VERTEX_SE3:QUAT 0 0 0 0 0 0 0 1
|
||||
VERTEX_SE3:QUAT 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423
|
||||
EDGE_SE3:QUAT 0 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423 10000 1 1 1 1 1 10000 2 2 2 2 10000 3 3 3 10000 4 4 10000 5 10000
|
|
@ -0,0 +1,3 @@
|
|||
VERTEX_SE3:QUAT 0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000
|
||||
VERTEX_SE3:QUAT 1 1.001367 0.015390 0.004948 0.190253 0.283162 -0.392318 0.854230
|
||||
EDGE_SE3:QUAT 0 1 1.001367 0.015390 0.004948 0.190253 0.283162 -0.392318 0.854230 10000.000000 1.000000 1.000000 1.000000 1.000000 1.000000 10000.000000 2.000000 2.000000 2.000000 2.000000 10000.000000 3.000000 3.000000 3.000000 10000.000000 4.000000 4.000000 10000.000000 5.000000 10000.0000
|
|
@ -0,0 +1,11 @@
|
|||
VERTEX_SE3:QUAT 0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000
|
||||
VERTEX_SE3:QUAT 1 1.001367 0.015390 0.004948 0.190253 0.283162 -0.392318 0.854230
|
||||
VERTEX_SE3:QUAT 2 1.993500 0.023275 0.003793 -0.351729 -0.597838 0.584174 0.421446
|
||||
VERTEX_SE3:QUAT 3 2.004291 1.024305 0.018047 0.331798 -0.200659 0.919323 0.067024
|
||||
VERTEX_SE3:QUAT 4 0.999908 1.055073 0.020212 -0.035697 -0.462490 0.445933 0.765488
|
||||
EDGE_SE3:QUAT 0 1 1.001367 0.015390 0.004948 0.190253 0.283162 -0.392318 0.854230 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 1 2 0.523923 0.776654 0.326659 0.311512 0.656877 -0.678505 0.105373 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 2 3 0.910927 0.055169 -0.411761 0.595795 -0.561677 0.079353 0.568551 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 3 4 0.775288 0.228798 -0.596923 -0.592077 0.303380 -0.513226 0.542221 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 1 4 -0.577841 0.628016 -0.543592 -0.125250 -0.534379 0.769122 0.327419 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 3 0 -0.623267 0.086928 0.773222 0.104639 0.627755 0.766795 0.083672 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
|
@ -0,0 +1,11 @@
|
|||
VERTEX_SE3:QUAT 0 0.000000 0.000000 0.000000 0.0008187 0.0011723 0.0895466 0.9959816
|
||||
VERTEX_SE3:QUAT 1 0.000000 -0.000000 0.000000 0.0010673 0.0015636 0.1606931 0.9870026
|
||||
VERTEX_SE3:QUAT 2 -0.388822 0.632954 0.001223 0.0029920 0.0014066 0.0258235 0.9996610
|
||||
VERTEX_SE3:QUAT 3 -1.143204 0.050638 0.006026 -0.0012800 -0.0002767 -0.2850291 0.9585180
|
||||
VERTEX_SE3:QUAT 4 -0.512416 0.486441 0.005171 0.0002681 0.0023574 0.0171476 0.9998502
|
||||
EDGE_SE3:QUAT 1 2 1.000000 2.000000 0.000000 0.0000000 0.0000000 0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 2 3 -0.000000 1.000000 0.000000 0.0000000 0.0000000 0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 3 4 1.000000 1.000000 0.000000 0.0000000 0.0000000 0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 3 1 0.000001 2.000000 0.000000 0.0000000 0.0000000 1.0000000 0.0000002 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 1 4 -1.000000 1.000000 0.000000 0.0000000 0.0000000 -0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 0 1 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 1.0000000 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
|
@ -120,15 +120,15 @@ int main(int argc, char** argv) {
|
|||
// For simplicity, we will use the same noise model for each odometry factor
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
|
||||
// 2b. Add "GPS-like" measurements
|
||||
// We will use our custom UnaryFactor for this.
|
||||
noiseModel::Diagonal::shared_ptr unaryNoise = noiseModel::Diagonal::Sigmas((Vector(2) << 0.1, 0.1)); // 10cm std on x,y
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// 3. Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
|
|
@ -65,15 +65,15 @@ int main(int argc, char** argv) {
|
|||
// A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1));
|
||||
graph.push_back(PriorFactor<Pose2>(1, priorMean, priorNoise));
|
||||
graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));
|
||||
|
||||
// Add odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0);
|
||||
// For simplicity, we will use the same noise model for each odometry factor
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.push_back(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
|
||||
graph.push_back(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
|
|
@ -81,13 +81,13 @@ int main(int argc, char** argv) {
|
|||
// Add a prior on pose x1 at the origin. A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
||||
graph.push_back(PriorFactor<Pose2>(x1, prior, priorNoise)); // add directly to graph
|
||||
graph.add(PriorFactor<Pose2>(x1, prior, priorNoise)); // add directly to graph
|
||||
|
||||
// Add two odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
|
||||
graph.push_back(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
|
||||
graph.push_back(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));
|
||||
|
||||
// Add Range-Bearing measurements to two different landmarks
|
||||
// create a noise model for the landmark measurements
|
||||
|
@ -101,9 +101,9 @@ int main(int argc, char** argv) {
|
|||
range32 = 2.0;
|
||||
|
||||
// Add Bearing-Range factors
|
||||
graph.push_back(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
|
||||
graph.push_back(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
|
||||
graph.push_back(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));
|
||||
graph.add(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
|
||||
graph.add(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
|
||||
graph.add(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));
|
||||
|
||||
// Print
|
||||
graph.print("Factor Graph:\n");
|
||||
|
|
|
@ -72,23 +72,23 @@ int main(int argc, char** argv) {
|
|||
// 2a. Add a prior on the first pose, setting it to the origin
|
||||
// A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1));
|
||||
graph.push_back(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
|
||||
graph.add(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
|
||||
|
||||
// For simplicity, we will use the same noise model for odometry and loop closures
|
||||
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
|
||||
// 2b. Add odometry factors
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0 ), model));
|
||||
graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
|
||||
graph.push_back(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
|
||||
graph.push_back(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0 ), model));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
|
||||
|
||||
// 2c. Add the loop closure constraint
|
||||
// This factor encodes the fact that we have returned to the same pose. In real systems,
|
||||
// these constraints may be identified in many ways, such as appearance-based techniques
|
||||
// with camera images. We will use another Between Factor to enforce this constraint:
|
||||
graph.push_back(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// 3. Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
|
|
@ -26,36 +26,72 @@
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// HOWTO: ./Pose2SLAMExample_g2o inputFile outputFile (maxIterations) (tukey/huber)
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("noisyToyGraph.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
string kernelType = "none";
|
||||
int maxIterations = 100; // default
|
||||
string g2oFile = findExampleDataFile("noisyToyGraph.txt"); // default
|
||||
|
||||
// Parse user's inputs
|
||||
if (argc > 1){
|
||||
g2oFile = argv[1]; // input dataset filename
|
||||
// outputFile = g2oFile = argv[2]; // done later
|
||||
}
|
||||
if (argc > 3){
|
||||
maxIterations = atoi(argv[3]); // user can specify either tukey or huber
|
||||
}
|
||||
if (argc > 4){
|
||||
kernelType = argv[4]; // user can specify either tukey or huber
|
||||
}
|
||||
|
||||
// reading file and creating factor graph
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile);
|
||||
bool is3D = false;
|
||||
if(kernelType.compare("none") == 0){
|
||||
boost::tie(graph, initial) = readG2o(g2oFile,is3D);
|
||||
}
|
||||
if(kernelType.compare("huber") == 0){
|
||||
std::cout << "Using robust kernel: huber " << std::endl;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile,is3D, KernelFunctionTypeHUBER);
|
||||
}
|
||||
if(kernelType.compare("tukey") == 0){
|
||||
std::cout << "Using robust kernel: tukey " << std::endl;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile,is3D, KernelFunctionTypeTUKEY);
|
||||
}
|
||||
|
||||
// Add prior on the pose having index (key) = 0
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
|
||||
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
|
||||
std::cout << "Adding prior on pose 0 " << std::endl;
|
||||
|
||||
GaussNewtonParams params;
|
||||
params.setVerbosity("TERMINATION");
|
||||
if (argc > 3) {
|
||||
params.maxIterations = maxIterations;
|
||||
std::cout << "User required to perform maximum " << params.maxIterations << " iterations "<< std::endl;
|
||||
}
|
||||
|
||||
std::cout << "Optimizing the factor graph" << std::endl;
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial);
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial, params);
|
||||
Values result = optimizer.optimize();
|
||||
std::cout << "Optimization complete" << std::endl;
|
||||
|
||||
std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
|
||||
std::cout << "final error=" <<graph->error(result)<< std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
result.print("result");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, result, outputFile);
|
||||
NonlinearFactorGraph::shared_ptr graphNoKernel;
|
||||
Values::shared_ptr initial2;
|
||||
boost::tie(graphNoKernel, initial2) = readG2o(g2oFile);
|
||||
writeG2o(*graphNoKernel, result, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
|
|
|
@ -0,0 +1,89 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_changeKeys input.g2o rewritted.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
bool add = false;
|
||||
Key firstKey = 8646911284551352320;
|
||||
|
||||
std::cout << "Using reference key: " << firstKey << std::endl;
|
||||
if(add)
|
||||
std::cout << "adding key " << std::endl;
|
||||
else
|
||||
std::cout << "subtracting key " << std::endl;
|
||||
|
||||
|
||||
if (argc < 3) {
|
||||
std::cout << "Please provide output file to write " << std::endl;
|
||||
} else {
|
||||
const string inputFileRewritten = argv[2];
|
||||
std::cout << "Rewriting input to file: " << inputFileRewritten << std::endl;
|
||||
// Additional: rewrite input with simplified keys 0,1,...
|
||||
Values simpleInitial;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
Key key;
|
||||
if(add)
|
||||
key = key_value.key + firstKey;
|
||||
else
|
||||
key = key_value.key - firstKey;
|
||||
|
||||
simpleInitial.insert(key, initial->at(key_value.key));
|
||||
}
|
||||
NonlinearFactorGraph simpleGraph;
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, *graph) {
|
||||
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
|
||||
if (pose3Between){
|
||||
Key key1, key2;
|
||||
if(add){
|
||||
key1 = pose3Between->key1() + firstKey;
|
||||
key2 = pose3Between->key2() + firstKey;
|
||||
}else{
|
||||
key1 = pose3Between->key1() - firstKey;
|
||||
key2 = pose3Between->key2() - firstKey;
|
||||
}
|
||||
NonlinearFactor::shared_ptr simpleFactor(
|
||||
new BetweenFactor<Pose3>(key1, key2, pose3Between->measured(), pose3Between->get_noiseModel()));
|
||||
simpleGraph.add(simpleFactor);
|
||||
}
|
||||
}
|
||||
writeG2o(simpleGraph, simpleInitial, inputFileRewritten);
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,74 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
// Add prior on the first key
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
|
||||
Key firstKey = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
std::cout << "Adding prior to g2o file " << std::endl;
|
||||
firstKey = key_value.key;
|
||||
graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << "Optimizing the factor graph" << std::endl;
|
||||
GaussNewtonParams params;
|
||||
params.setVerbosity("TERMINATION"); // this will show info about stopping conditions
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial, params);
|
||||
Values result = optimizer.optimize();
|
||||
std::cout << "Optimization complete" << std::endl;
|
||||
|
||||
std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
|
||||
std::cout << "final error=" <<graph->error(result)<< std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
result.print("result");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, result, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,68 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
// Add prior on the first key
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
|
||||
Key firstKey = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
std::cout << "Adding prior to g2o file " << std::endl;
|
||||
firstKey = key_value.key;
|
||||
graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << "Initializing Pose3 - chordal relaxation" << std::endl;
|
||||
Values initialization = InitializePose3::initialize(graphWithPrior);
|
||||
std::cout << "done!" << std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
initialization.print("initialization");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, initialization, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,72 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
// Add prior on the first key
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
|
||||
Key firstKey = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
std::cout << "Adding prior to g2o file " << std::endl;
|
||||
firstKey = key_value.key;
|
||||
graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << "Initializing Pose3 - Riemannian gradient" << std::endl;
|
||||
bool useGradient = true;
|
||||
Values initialization = InitializePose3::initialize(graphWithPrior, *initial, useGradient);
|
||||
std::cout << "done!" << std::endl;
|
||||
|
||||
std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
|
||||
std::cout << "initialization error=" <<graph->error(initialization)<< std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
initialization.print("initialization");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, initialization, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -13,6 +13,22 @@
|
|||
* @brief Incremental and batch solving, timing, and accuracy comparisons
|
||||
* @author Richard Roberts
|
||||
* @date August, 2013
|
||||
*
|
||||
* Here is an example. Below, to run in batch mode, we first generate an initialization in incremental mode.
|
||||
*
|
||||
* Solve in incremental and write to file w_inc:
|
||||
* ./SolverComparer --incremental -d w10000 -o w_inc
|
||||
*
|
||||
* You can then perturb that initialization to get batch something to optimize.
|
||||
* Read in w_inc, perturb it with noise of stddev 0.6, and write to w_pert:
|
||||
* ./SolverComparer --perturb 0.6 -i w_inc -o w_pert
|
||||
*
|
||||
* Then optimize with batch, read in w_pert, solve in batch, and write to w_batch:
|
||||
* ./SolverComparer --batch -d w10000 -i w_pert -o w_batch
|
||||
*
|
||||
* And finally compare solutions in w_inc and w_batch to check that batch converged to the global minimum
|
||||
* ./SolverComparer --compare w_inc w_batch
|
||||
*
|
||||
*/
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
* @brief A visualSLAM example for the structure-from-motion problem on a simulated dataset
|
||||
* This version uses iSAM to solve the problem incrementally
|
||||
* @author Duy-Nguyen Ta
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
/**
|
||||
|
@ -61,7 +62,8 @@ int main(int argc, char* argv[]) {
|
|||
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
||||
|
||||
// Define the camera observation noise model
|
||||
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
noiseModel::Isotropic::shared_ptr noise = //
|
||||
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
|
||||
// Create the set of ground-truth landmarks
|
||||
vector<Point3> points = createPoints();
|
||||
|
@ -69,7 +71,8 @@ int main(int argc, char* argv[]) {
|
|||
// Create the set of ground-truth poses
|
||||
vector<Pose3> poses = createPoses();
|
||||
|
||||
// Create a NonlinearISAM object which will relinearize and reorder the variables every "relinearizeInterval" updates
|
||||
// Create a NonlinearISAM object which will relinearize and reorder the variables
|
||||
// every "relinearizeInterval" updates
|
||||
int relinearizeInterval = 3;
|
||||
NonlinearISAM isam(relinearizeInterval);
|
||||
|
||||
|
@ -82,32 +85,44 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Add factors for each landmark observation
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
// Create ground truth measurement
|
||||
SimpleCamera camera(poses[i], *K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
graph.push_back(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K));
|
||||
// Add measurement
|
||||
graph.add(
|
||||
GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, noise,
|
||||
Symbol('x', i), Symbol('l', j), K));
|
||||
}
|
||||
|
||||
// Add an initial guess for the current pose
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
Pose3 noise(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
Pose3 initial_xi = poses[i].compose(noise);
|
||||
|
||||
// Add an initial guess for the current pose
|
||||
initialEstimate.insert(Symbol('x', i), initial_xi);
|
||||
|
||||
// If this is the first iteration, add a prior on the first pose to set the coordinate frame
|
||||
// and a prior on the first landmark to set the scale
|
||||
// Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
|
||||
// adding it to iSAM.
|
||||
if( i == 0) {
|
||||
// Add a prior on pose x0
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
|
||||
if (i == 0) {
|
||||
// Add a prior on pose x0, with 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)));
|
||||
graph.add(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
|
||||
|
||||
// Add a prior on landmark l0
|
||||
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
|
||||
graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
|
||||
noiseModel::Isotropic::shared_ptr pointNoise =
|
||||
noiseModel::Isotropic::Sigma(3, 0.1);
|
||||
graph.add(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise));
|
||||
|
||||
// Add initial guesses to all observed landmarks
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
for (size_t j = 0; j < points.size(); ++j)
|
||||
initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
|
||||
Point3 noise(-0.25, 0.20, 0.15);
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Point3 initial_lj = points[j].compose(noise);
|
||||
initialEstimate.insert(Symbol('l', j), initial_lj);
|
||||
}
|
||||
|
||||
} else {
|
||||
// Update iSAM with the new factors
|
||||
|
|
|
@ -4,14 +4,10 @@
|
|||
## # The following are required to uses Dart and the Cdash dashboard
|
||||
## ENABLE_TESTING()
|
||||
## INCLUDE(CTest)
|
||||
set(CTEST_PROJECT_NAME "Eigen")
|
||||
set(CTEST_PROJECT_NAME "Eigen3.2")
|
||||
set(CTEST_NIGHTLY_START_TIME "00:00:00 UTC")
|
||||
|
||||
set(CTEST_DROP_METHOD "http")
|
||||
set(CTEST_DROP_SITE "manao.inria.fr")
|
||||
set(CTEST_DROP_LOCATION "/CDash/submit.php?project=Eigen")
|
||||
set(CTEST_DROP_LOCATION "/CDash/submit.php?project=Eigen3.2")
|
||||
set(CTEST_DROP_SITE_CDASH TRUE)
|
||||
set(CTEST_PROJECT_SUBPROJECTS
|
||||
Official
|
||||
Unsupported
|
||||
)
|
||||
|
|
|
@ -95,7 +95,7 @@
|
|||
extern "C" {
|
||||
// In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
|
||||
// Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
|
||||
#ifdef __INTEL_COMPILER
|
||||
#if defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1110
|
||||
#include <immintrin.h>
|
||||
#else
|
||||
#include <emmintrin.h>
|
||||
|
@ -165,7 +165,7 @@
|
|||
#endif
|
||||
|
||||
// required for __cpuid, needs to be included after cmath
|
||||
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64))
|
||||
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE))
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
|
|
|
@ -274,30 +274,13 @@ template<> struct ldlt_inplace<Lower>
|
|||
return true;
|
||||
}
|
||||
|
||||
RealScalar cutoff(0), biggest_in_corner;
|
||||
|
||||
for (Index k = 0; k < size; ++k)
|
||||
{
|
||||
// Find largest diagonal element
|
||||
Index index_of_biggest_in_corner;
|
||||
biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||||
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||||
index_of_biggest_in_corner += k;
|
||||
|
||||
if(k == 0)
|
||||
{
|
||||
// The biggest overall is the point of reference to which further diagonals
|
||||
// are compared; if any diagonal is negligible compared
|
||||
// to the largest overall, the algorithm bails.
|
||||
cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
|
||||
}
|
||||
|
||||
// Finish early if the matrix is not full rank.
|
||||
if(biggest_in_corner < cutoff)
|
||||
{
|
||||
for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
|
||||
break;
|
||||
}
|
||||
|
||||
transpositions.coeffRef(k) = index_of_biggest_in_corner;
|
||||
if(k != index_of_biggest_in_corner)
|
||||
{
|
||||
|
@ -328,15 +311,20 @@ template<> struct ldlt_inplace<Lower>
|
|||
|
||||
if(k>0)
|
||||
{
|
||||
temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
|
||||
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
|
||||
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
|
||||
if(rs>0)
|
||||
A21.noalias() -= A20 * temp.head(k);
|
||||
}
|
||||
if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
|
||||
A21 /= mat.coeffRef(k,k);
|
||||
|
||||
|
||||
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
|
||||
// was smaller than the cutoff value. However, soince LDLT is not rank-revealing
|
||||
// we should only make sure we do not introduce INF or NaN values.
|
||||
// LAPACK also uses 0 as the cutoff value.
|
||||
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
|
||||
if((rs>0) && (abs(realAkk) > RealScalar(0)))
|
||||
A21 /= realAkk;
|
||||
|
||||
if (sign == PositiveSemiDef) {
|
||||
if (realAkk < 0) sign = Indefinite;
|
||||
} else if (sign == NegativeSemiDef) {
|
||||
|
@ -516,14 +504,20 @@ struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
|
|||
typedef typename LDLTType::MatrixType MatrixType;
|
||||
typedef typename LDLTType::Scalar Scalar;
|
||||
typedef typename LDLTType::RealScalar RealScalar;
|
||||
const Diagonal<const MatrixType> vectorD = dec().vectorD();
|
||||
RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(),
|
||||
RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS
|
||||
const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
|
||||
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
|
||||
// as motivated by LAPACK's xGELSS:
|
||||
// RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
|
||||
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
|
||||
// diagonal element is not well justified and to numerical issues in some cases.
|
||||
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
|
||||
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
|
||||
|
||||
for (Index i = 0; i < vectorD.size(); ++i) {
|
||||
if(abs(vectorD(i)) > tolerance)
|
||||
dst.row(i) /= vectorD(i);
|
||||
dst.row(i) /= vectorD(i);
|
||||
else
|
||||
dst.row(i).setZero();
|
||||
dst.row(i).setZero();
|
||||
}
|
||||
|
||||
// dst = L^-T (D^-1 L^-1 P b)
|
||||
|
@ -576,7 +570,7 @@ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
|
|||
// L^* P
|
||||
res = matrixU() * res;
|
||||
// D(L^*P)
|
||||
res = vectorD().asDiagonal() * res;
|
||||
res = vectorD().real().asDiagonal() * res;
|
||||
// L(DL^*P)
|
||||
res = matrixL() * res;
|
||||
// P^T (LDL^*P)
|
||||
|
|
|
@ -81,7 +81,7 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
|
|||
&& (InnerStrideAtCompileTime == 1)
|
||||
? PacketAccessBit : 0,
|
||||
MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1) ? LinearAccessBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits<XprType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
|
||||
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
|
||||
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
|
||||
Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
|
||||
|
|
|
@ -47,6 +47,17 @@ struct CommaInitializer :
|
|||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
* absence of return value optimization to avoid assertions during destruction. */
|
||||
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
|
||||
inline CommaInitializer(const CommaInitializer& o)
|
||||
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
|
||||
// Mark original object as finished. In absence of R-value references we need to const_cast:
|
||||
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
|
||||
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
|
||||
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
|
|
|
@ -0,0 +1,154 @@
|
|||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMMAINITIALIZER_H
|
||||
#define EIGEN_COMMAINITIALIZER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CommaInitializer
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Helper class used by the comma initializer operator
|
||||
*
|
||||
* This class is internally used to implement the comma initializer feature. It is
|
||||
* the return type of MatrixBase::operator<<, and most of the time this is the only
|
||||
* way it is used.
|
||||
*
|
||||
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
|
||||
*/
|
||||
template<typename XprType>
|
||||
struct CommaInitializer
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::Index Index;
|
||||
|
||||
inline CommaInitializer(XprType& xpr, const Scalar& s)
|
||||
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
|
||||
{
|
||||
m_xpr.coeffRef(0,0) = s;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
|
||||
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
|
||||
{
|
||||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
* absence of return value optimization to avoid assertions during destruction. */
|
||||
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
|
||||
inline CommaInitializer(const CommaInitializer& o)
|
||||
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
|
||||
// Mark original object as finished. In absence of R-value references we need to const_cast:
|
||||
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
|
||||
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
|
||||
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = 1;
|
||||
eigen_assert(m_row<m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==1);
|
||||
m_xpr.coeffRef(m_row, m_col++) = s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/* inserts a matrix expression in the target matrix */
|
||||
template<typename OtherDerived>
|
||||
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
if(other.cols()==0 || other.rows()==0)
|
||||
return *this;
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = other.rows();
|
||||
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==other.rows());
|
||||
if (OtherDerived::SizeAtCompileTime != Dynamic)
|
||||
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
|
||||
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
|
||||
(m_row, m_col) = other;
|
||||
else
|
||||
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
|
||||
m_col += other.cols();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline ~CommaInitializer()
|
||||
{
|
||||
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
|
||||
&& m_col == m_xpr.cols()
|
||||
&& "Too few coefficients passed to comma initializer (operator<<)");
|
||||
}
|
||||
|
||||
/** \returns the built matrix once all its coefficients have been set.
|
||||
* Calling finished is 100% optional. Its purpose is to write expressions
|
||||
* like this:
|
||||
* \code
|
||||
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
|
||||
* \endcode
|
||||
*/
|
||||
inline XprType& finished() { return m_xpr; }
|
||||
|
||||
XprType& m_xpr; // target expression
|
||||
Index m_row; // current row id
|
||||
Index m_col; // current col id
|
||||
Index m_currentBlockRows; // current block height
|
||||
};
|
||||
|
||||
/** \anchor MatrixBaseCommaInitRef
|
||||
* Convenient operator to set the coefficients of a matrix.
|
||||
*
|
||||
* The coefficients must be provided in a row major order and exactly match
|
||||
* the size of the matrix. Otherwise an assertion is raised.
|
||||
*
|
||||
* Example: \include MatrixBase_set.cpp
|
||||
* Output: \verbinclude MatrixBase_set.out
|
||||
*
|
||||
* \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order.
|
||||
*
|
||||
* \sa CommaInitializer::finished(), class CommaInitializer
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
|
||||
}
|
||||
|
||||
/** \sa operator<<(const Scalar&) */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer<Derived>
|
||||
DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMMAINITIALIZER_H
|
|
@ -24,6 +24,14 @@ namespace internal {
|
|||
|
||||
struct constructor_without_unaligned_array_assert {};
|
||||
|
||||
template<typename T, int Size> void check_static_allocation_size()
|
||||
{
|
||||
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
|
||||
#if EIGEN_STACK_ALLOCATION_LIMIT
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
|
||||
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
|
||||
|
@ -38,12 +46,12 @@ struct plain_array
|
|||
|
||||
plain_array()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -76,12 +84,12 @@ struct plain_array<T, Size, MatrixOrArrayOptions, 16>
|
|||
plain_array()
|
||||
{
|
||||
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf);
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -589,7 +589,7 @@ struct linspaced_op_impl<Scalar,true>
|
|||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
|
||||
|
||||
const Scalar m_low;
|
||||
const Scalar m_step;
|
||||
|
@ -609,7 +609,7 @@ template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_o
|
|||
template <typename Scalar, bool RandomAccess> struct linspaced_op
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
|
||||
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
|
||||
|
|
|
@ -237,6 +237,8 @@ template<typename Derived> class MapBase<Derived, WriteAccessors>
|
|||
using Base::Base::operator=;
|
||||
};
|
||||
|
||||
#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MAPBASE_H
|
||||
|
|
|
@ -101,7 +101,7 @@ struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
|
|||
template<typename Derived> struct match {
|
||||
enum {
|
||||
HasDirectAccess = internal::has_direct_access<Derived>::ret,
|
||||
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
|
||||
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
|
||||
InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic)
|
||||
|| int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime)
|
||||
|| (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1),
|
||||
|
@ -172,8 +172,12 @@ protected:
|
|||
}
|
||||
else
|
||||
::new (static_cast<Base*>(this)) Base(expr.data(), expr.rows(), expr.cols());
|
||||
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
|
||||
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
|
||||
|
||||
if(Expression::IsVectorAtCompileTime && (!PlainObjectType::IsVectorAtCompileTime) && ((Expression::Flags&RowMajorBit)!=(PlainObjectType::Flags&RowMajorBit)))
|
||||
::new (&m_stride) StrideBase(expr.innerStride(), StrideType::InnerStrideAtCompileTime==0?0:1);
|
||||
else
|
||||
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
|
||||
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
|
||||
}
|
||||
|
||||
StrideBase m_stride;
|
||||
|
|
|
@ -278,21 +278,21 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
|||
|
||||
/** Efficient triangular matrix times vector/matrix product */
|
||||
template<typename OtherDerived>
|
||||
TriangularProduct<Mode,true,MatrixType,false,OtherDerived, OtherDerived::IsVectorAtCompileTime>
|
||||
TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
|
||||
operator*(const MatrixBase<OtherDerived>& rhs) const
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
|
||||
<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
|
||||
(m_matrix, rhs.derived());
|
||||
}
|
||||
|
||||
/** Efficient vector/matrix times triangular matrix product */
|
||||
template<typename OtherDerived> friend
|
||||
TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
|
||||
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
|
||||
(lhs.derived(),rhs.m_matrix);
|
||||
}
|
||||
|
||||
|
|
|
@ -54,8 +54,25 @@
|
|||
#endif
|
||||
|
||||
#if defined EIGEN_USE_MKL
|
||||
# include <mkl.h>
|
||||
/*Check IMKL version for compatibility: < 10.3 is not usable with Eigen*/
|
||||
# ifndef INTEL_MKL_VERSION
|
||||
# undef EIGEN_USE_MKL /* INTEL_MKL_VERSION is not even defined on older versions */
|
||||
# elif INTEL_MKL_VERSION < 100305 /* the intel-mkl-103-release-notes say this was when the lapacke.h interface was added*/
|
||||
# undef EIGEN_USE_MKL
|
||||
# endif
|
||||
# ifndef EIGEN_USE_MKL
|
||||
/*If the MKL version is too old, undef everything*/
|
||||
# undef EIGEN_USE_MKL_ALL
|
||||
# undef EIGEN_USE_BLAS
|
||||
# undef EIGEN_USE_LAPACKE
|
||||
# undef EIGEN_USE_MKL_VML
|
||||
# undef EIGEN_USE_LAPACKE_STRICT
|
||||
# undef EIGEN_USE_LAPACKE
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#include <mkl.h>
|
||||
#if defined EIGEN_USE_MKL
|
||||
#include <mkl_lapacke.h>
|
||||
#define EIGEN_MKL_VML_THRESHOLD 128
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
#define EIGEN_WORLD_VERSION 3
|
||||
#define EIGEN_MAJOR_VERSION 2
|
||||
#define EIGEN_MINOR_VERSION 1
|
||||
#define EIGEN_MINOR_VERSION 2
|
||||
|
||||
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
|
||||
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
|
||||
|
@ -289,7 +289,8 @@ namespace Eigen {
|
|||
#endif
|
||||
|
||||
#ifndef EIGEN_STACK_ALLOCATION_LIMIT
|
||||
#define EIGEN_STACK_ALLOCATION_LIMIT 20000
|
||||
// 131072 == 128 KB
|
||||
#define EIGEN_STACK_ALLOCATION_LIMIT 131072
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_DEFAULT_IO_FORMAT
|
||||
|
|
|
@ -272,12 +272,12 @@ inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
|
|||
// The defined(_mm_free) is just here to verify that this MSVC version
|
||||
// implements _mm_malloc/_mm_free based on the corresponding _aligned_
|
||||
// functions. This may not always be the case and we just try to be safe.
|
||||
#if defined(_MSC_VER) && defined(_mm_free)
|
||||
#if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = generic_aligned_realloc(ptr,new_size,old_size);
|
||||
#endif
|
||||
#elif defined(_MSC_VER)
|
||||
#elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = handmade_aligned_realloc(ptr,new_size,old_size);
|
||||
|
@ -630,6 +630,8 @@ template<typename T> class aligned_stack_memory_handler
|
|||
} \
|
||||
void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
void operator delete(void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
void operator delete[](void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
/* in-place new and delete. since (at least afaik) there is no actual */ \
|
||||
/* memory allocated we can safely let the default implementation handle */ \
|
||||
/* this particular case. */ \
|
||||
|
@ -777,9 +779,9 @@ namespace internal {
|
|||
|
||||
#ifdef EIGEN_CPUID
|
||||
|
||||
inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
|
||||
inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
|
||||
{
|
||||
return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
|
||||
return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
|
||||
}
|
||||
|
||||
inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
|
||||
|
@ -921,13 +923,16 @@ inline void queryCacheSizes(int& l1, int& l2, int& l3)
|
|||
{
|
||||
#ifdef EIGEN_CPUID
|
||||
int abcd[4];
|
||||
const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
|
||||
const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
|
||||
const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
|
||||
|
||||
// identify the CPU vendor
|
||||
EIGEN_CPUID(abcd,0x0,0);
|
||||
int max_std_funcs = abcd[1];
|
||||
if(cpuid_is_vendor(abcd,"GenuineIntel"))
|
||||
if(cpuid_is_vendor(abcd,GenuineIntel))
|
||||
queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
|
||||
else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
|
||||
else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
|
||||
queryCacheSizes_amd(l1,l2,l3);
|
||||
else
|
||||
// by default let's use Intel's API
|
||||
|
|
|
@ -203,6 +203,8 @@ public:
|
|||
* \li \c Quaternionf for \c float
|
||||
* \li \c Quaterniond for \c double
|
||||
*
|
||||
* \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
|
||||
*
|
||||
* \sa class AngleAxis, class Transform
|
||||
*/
|
||||
|
||||
|
@ -344,7 +346,7 @@ class Map<const Quaternion<_Scalar>, _Options >
|
|||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
*
|
||||
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
|
||||
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
|
||||
* \code *coeffs == {x, y, z, w} \endcode
|
||||
*
|
||||
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
|
||||
|
@ -464,7 +466,7 @@ QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
|||
// Note that this algorithm comes from the optimization by hand
|
||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||
// It appears to be much faster than the common algorithm found
|
||||
// in the litterature (30 versus 39 flops). It also requires two
|
||||
// in the literature (30 versus 39 flops). It also requires two
|
||||
// Vector3 as temporaries.
|
||||
Vector3 uv = this->vec().cross(v);
|
||||
uv += uv;
|
||||
|
@ -584,7 +586,7 @@ inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Deri
|
|||
// which yields a singular value problem
|
||||
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
|
||||
{
|
||||
c = max<Scalar>(c,-1);
|
||||
c = (max)(c,Scalar(-1));
|
||||
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
||||
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
|
||||
Vector3 axis = svd.matrixV().col(2);
|
||||
|
@ -667,10 +669,10 @@ QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& oth
|
|||
{
|
||||
using std::acos;
|
||||
using std::abs;
|
||||
double d = abs(this->dot(other));
|
||||
if (d>=1.0)
|
||||
Scalar d = abs(this->dot(other));
|
||||
if (d>=Scalar(1))
|
||||
return Scalar(0);
|
||||
return static_cast<Scalar>(2 * acos(d));
|
||||
return Scalar(2) * acos(d);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -194,9 +194,9 @@ public:
|
|||
/** type of the matrix used to represent the linear part of the transformation */
|
||||
typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
|
||||
/** type of read/write reference to the linear part of the transformation */
|
||||
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact)> LinearPart;
|
||||
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
|
||||
/** type of read reference to the linear part of the transformation */
|
||||
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact)> ConstLinearPart;
|
||||
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
|
||||
/** type of read/write reference to the affine part of the transformation */
|
||||
typedef typename internal::conditional<int(Mode)==int(AffineCompact),
|
||||
MatrixType&,
|
||||
|
|
|
@ -113,7 +113,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
const Index n = src.cols(); // number of measurements
|
||||
|
||||
// required for demeaning ...
|
||||
const RealScalar one_over_n = 1 / static_cast<RealScalar>(n);
|
||||
const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
|
||||
|
||||
// computation of mean
|
||||
const VectorType src_mean = src.rowwise().sum() * one_over_n;
|
||||
|
@ -136,16 +136,16 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
|
||||
// Eq. (39)
|
||||
VectorType S = VectorType::Ones(m);
|
||||
if (sigma.determinant()<0) S(m-1) = -1;
|
||||
if (sigma.determinant()<Scalar(0)) S(m-1) = Scalar(-1);
|
||||
|
||||
// Eq. (40) and (43)
|
||||
const VectorType& d = svd.singularValues();
|
||||
Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
|
||||
if (rank == m-1) {
|
||||
if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) {
|
||||
if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) {
|
||||
Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
|
||||
} else {
|
||||
const Scalar s = S(m-1); S(m-1) = -1;
|
||||
const Scalar s = S(m-1); S(m-1) = Scalar(-1);
|
||||
Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
|
||||
S(m-1) = s;
|
||||
}
|
||||
|
@ -156,7 +156,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
if (with_scaling)
|
||||
{
|
||||
// Eq. (42)
|
||||
const Scalar c = 1/src_var * svd.singularValues().dot(S);
|
||||
const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S);
|
||||
|
||||
// Eq. (41)
|
||||
Rt.col(m).head(m) = dst_mean;
|
||||
|
|
|
@ -48,7 +48,7 @@ void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vec
|
|||
typedef typename MatrixType::Index Index;
|
||||
enum { TFactorSize = MatrixType::ColsAtCompileTime };
|
||||
Index nbVecs = vectors.cols();
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize> T(nbVecs,nbVecs);
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, ColMajor> T(nbVecs,nbVecs);
|
||||
make_block_householder_triangular_factor(T, vectors, hCoeffs);
|
||||
|
||||
const TriangularView<const VectorsType, UnitLower>& V(vectors);
|
||||
|
|
|
@ -61,6 +61,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||
VectorType s(n), t(n);
|
||||
|
||||
RealScalar tol2 = tol*tol;
|
||||
RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
|
||||
int i = 0;
|
||||
int restarts = 0;
|
||||
|
||||
|
@ -69,7 +70,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||
Scalar rho_old = rho;
|
||||
|
||||
rho = r0.dot(r);
|
||||
if (internal::isMuchSmallerThan(rho,r0_sqnorm))
|
||||
if (abs(rho) < eps2*r0_sqnorm)
|
||||
{
|
||||
// The new residual vector became too orthogonal to the arbitrarily choosen direction r0
|
||||
// Let's restart with a new r0:
|
||||
|
|
|
@ -20,10 +20,11 @@ namespace Eigen {
|
|||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
|
||||
*
|
||||
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
|
||||
* is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
|
||||
* are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
|
||||
* coefficients) of U are sorted in such a way that any zeros are at the end.
|
||||
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
|
||||
* decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
|
||||
* upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
|
||||
* decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
|
||||
* zeros are at the end.
|
||||
*
|
||||
* This decomposition provides the generic approach to solving systems of linear equations, computing
|
||||
* the rank, invertibility, inverse, kernel, and determinant.
|
||||
|
@ -511,8 +512,8 @@ typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant
|
|||
}
|
||||
|
||||
/** \returns the matrix represented by the decomposition,
|
||||
* i.e., it returns the product: P^{-1} L U Q^{-1}.
|
||||
* This function is provided for debug purpose. */
|
||||
* i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
|
||||
* This function is provided for debug purposes. */
|
||||
template<typename MatrixType>
|
||||
MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
|
||||
{
|
||||
|
|
|
@ -109,7 +109,7 @@ class NaturalOrdering
|
|||
* \class COLAMDOrdering
|
||||
*
|
||||
* Functor computing the \em column \em approximate \em minimum \em degree ordering
|
||||
* The matrix should be in column-major format
|
||||
* The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
|
||||
*/
|
||||
template<typename Index>
|
||||
class COLAMDOrdering
|
||||
|
@ -118,10 +118,14 @@ class COLAMDOrdering
|
|||
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||
typedef Matrix<Index, Dynamic, 1> IndexVector;
|
||||
|
||||
/** Compute the permutation vector form a sparse matrix */
|
||||
/** Compute the permutation vector \a perm form the sparse matrix \a mat
|
||||
* \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void operator() (const MatrixType& mat, PermutationType& perm)
|
||||
{
|
||||
eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
|
||||
|
||||
Index m = mat.rows();
|
||||
Index n = mat.cols();
|
||||
Index nnz = mat.nonZeros();
|
||||
|
@ -132,12 +136,12 @@ class COLAMDOrdering
|
|||
Index stats [COLAMD_STATS];
|
||||
internal::colamd_set_defaults(knobs);
|
||||
|
||||
Index info;
|
||||
IndexVector p(n+1), A(Alen);
|
||||
for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
|
||||
for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
|
||||
// Call Colamd routine to compute the ordering
|
||||
info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||||
Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||||
EIGEN_UNUSED_VARIABLE(info);
|
||||
eigen_assert( info && "COLAMD failed " );
|
||||
|
||||
perm.resize(n);
|
||||
|
|
|
@ -76,7 +76,8 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
|||
m_colsTranspositions(),
|
||||
m_temp(),
|
||||
m_colSqNorms(),
|
||||
m_isInitialized(false) {}
|
||||
m_isInitialized(false),
|
||||
m_usePrescribedThreshold(false) {}
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
|
|
|
@ -375,17 +375,19 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
|||
Scalar z;
|
||||
JacobiRotation<Scalar> rot;
|
||||
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
|
||||
|
||||
if(n==0)
|
||||
{
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
||||
if(work_matrix.coeff(q,q)!=Scalar(0))
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
else
|
||||
z = Scalar(0);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
// otherwise the second row is already zero, so we have nothing to do.
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -415,6 +417,7 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
|||
JacobiRotation<RealScalar> *j_right)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
Matrix<RealScalar,2,2> m;
|
||||
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
|
||||
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
|
||||
|
@ -428,9 +431,11 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
|||
}
|
||||
else
|
||||
{
|
||||
RealScalar u = d / t;
|
||||
rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
|
||||
rot1.s() = rot1.c() * u;
|
||||
RealScalar t2d2 = numext::hypot(t,d);
|
||||
rot1.c() = abs(t)/t2d2;
|
||||
rot1.s() = d/t2d2;
|
||||
if(t<RealScalar(0))
|
||||
rot1.s() = -rot1.s();
|
||||
}
|
||||
m.applyOnTheLeft(0,1,rot1);
|
||||
j_right->makeJacobi(m,0,1);
|
||||
|
@ -531,8 +536,9 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD()
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
m_rows(-1), m_cols(-1), m_diagSize(0)
|
||||
{}
|
||||
|
||||
|
||||
|
@ -545,6 +551,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
|
@ -564,6 +571,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
|
@ -665,6 +673,69 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
return m_nonzeroSingularValues;
|
||||
}
|
||||
|
||||
/** \returns the rank of the matrix of which \c *this is the SVD.
|
||||
*
|
||||
* \note This method has to determine which singular values should be considered nonzero.
|
||||
* For that, it uses the threshold value that you can control by calling
|
||||
* setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline Index rank() const
|
||||
{
|
||||
using std::abs;
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
if(m_singularValues.size()==0) return 0;
|
||||
RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
|
||||
Index i = m_nonzeroSingularValues-1;
|
||||
while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
|
||||
return i+1;
|
||||
}
|
||||
|
||||
/** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
|
||||
* which need to determine when singular values are to be considered nonzero.
|
||||
* This is not used for the SVD decomposition itself.
|
||||
*
|
||||
* When it needs to get the threshold value, Eigen calls threshold().
|
||||
* The default is \c NumTraits<Scalar>::epsilon()
|
||||
*
|
||||
* \param threshold The new value to use as the threshold.
|
||||
*
|
||||
* A singular value will be considered nonzero if its value is strictly greater than
|
||||
* \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
|
||||
*
|
||||
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
||||
*/
|
||||
JacobiSVD& setThreshold(const RealScalar& threshold)
|
||||
{
|
||||
m_usePrescribedThreshold = true;
|
||||
m_prescribedThreshold = threshold;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
||||
* determining the threshold.
|
||||
*
|
||||
* You should pass the special object Eigen::Default as parameter here.
|
||||
* \code svd.setThreshold(Eigen::Default); \endcode
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
JacobiSVD& setThreshold(Default_t)
|
||||
{
|
||||
m_usePrescribedThreshold = false;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Returns the threshold that will be used by certain methods such as rank().
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
RealScalar threshold() const
|
||||
{
|
||||
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
||||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
: (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
|
@ -677,11 +748,12 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
WorkMatrixType m_workMatrix;
|
||||
bool m_isInitialized, m_isAllocated;
|
||||
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
unsigned int m_computationOptions;
|
||||
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
||||
RealScalar m_prescribedThreshold;
|
||||
|
||||
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
|
@ -764,6 +836,11 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
||||
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
|
||||
}
|
||||
|
||||
// Scaling factor to reduce over/under-flows
|
||||
RealScalar scale = m_workMatrix.cwiseAbs().maxCoeff();
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
m_workMatrix /= scale;
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
|
||||
|
@ -833,6 +910,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
m_singularValues *= scale;
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
|
@ -854,11 +933,11 @@ struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
|||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
|
||||
Index nonzeroSingVals = dec().nonzeroSingularValues();
|
||||
Index rank = dec().rank();
|
||||
|
||||
tmp.noalias() = dec().matrixU().leftCols(nonzeroSingVals).adjoint() * rhs();
|
||||
tmp = dec().singularValues().head(nonzeroSingVals).asDiagonal().inverse() * tmp;
|
||||
dst = dec().matrixV().leftCols(nonzeroSingVals) * tmp;
|
||||
tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
|
||||
tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
|
||||
dst = dec().matrixV().leftCols(rank) * tmp;
|
||||
}
|
||||
};
|
||||
} // end namespace internal
|
||||
|
|
|
@ -37,6 +37,7 @@ class SimplicialCholeskyBase : internal::noncopyable
|
|||
{
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
||||
typedef typename internal::traits<Derived>::OrderingType OrderingType;
|
||||
enum { UpLo = internal::traits<Derived>::UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
|
@ -240,15 +241,16 @@ class SimplicialCholeskyBase : internal::noncopyable
|
|||
RealScalar m_shiftScale;
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLDLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialCholesky;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLDLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialCholesky;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -259,9 +261,10 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixTyp
|
|||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -272,9 +275,10 @@ template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixTyp
|
|||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
};
|
||||
|
||||
|
@ -294,11 +298,12 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_Matr
|
|||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \sa class SimplicialLDLT
|
||||
* \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
@ -382,11 +387,12 @@ public:
|
|||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \sa class SimplicialLLT
|
||||
* \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
@ -467,8 +473,8 @@ public:
|
|||
*
|
||||
* \sa class SimplicialLDLT, class SimplicialLLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
@ -612,15 +618,13 @@ void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixTy
|
|||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
// TODO allows to configure the permutation
|
||||
// Note that amd compute the inverse permutation
|
||||
{
|
||||
CholMatrixType C;
|
||||
C = a.template selfadjointView<UpLo>();
|
||||
// remove diagonal entries:
|
||||
// seems not to be needed
|
||||
// C.prune(keep_diag());
|
||||
internal::minimum_degree_ordering(C, m_Pinv);
|
||||
|
||||
OrderingType ordering;
|
||||
ordering(C,m_Pinv);
|
||||
}
|
||||
|
||||
if(m_Pinv.size()>0)
|
||||
|
|
|
@ -51,8 +51,8 @@ class CompressedStorage
|
|||
CompressedStorage& operator=(const CompressedStorage& other)
|
||||
{
|
||||
resize(other.size());
|
||||
memcpy(m_values, other.m_values, m_size * sizeof(Scalar));
|
||||
memcpy(m_indices, other.m_indices, m_size * sizeof(Index));
|
||||
internal::smart_copy(other.m_values, other.m_values + m_size, m_values);
|
||||
internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices);
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -83,10 +83,10 @@ class CompressedStorage
|
|||
reallocate(m_size);
|
||||
}
|
||||
|
||||
void resize(size_t size, float reserveSizeFactor = 0)
|
||||
void resize(size_t size, double reserveSizeFactor = 0)
|
||||
{
|
||||
if (m_allocatedSize<size)
|
||||
reallocate(size + size_t(reserveSizeFactor*size));
|
||||
reallocate(size + size_t(reserveSizeFactor*double(size)));
|
||||
m_size = size;
|
||||
}
|
||||
|
||||
|
|
|
@ -73,7 +73,8 @@ class CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator
|
|||
typedef internal::sparse_cwise_binary_op_inner_iterator_selector<
|
||||
BinaryOp,Lhs,Rhs, InnerIterator> Base;
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const CwiseBinaryOpImpl& binOp, Index outer)
|
||||
// NOTE: we have to prefix Index by "typename Lhs::" to avoid an ICE with VC11
|
||||
EIGEN_STRONG_INLINE InnerIterator(const CwiseBinaryOpImpl& binOp, typename Lhs::Index outer)
|
||||
: Base(binOp.derived(),outer)
|
||||
{}
|
||||
};
|
||||
|
|
|
@ -19,7 +19,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct SparseDenseProductRet
|
|||
|
||||
template<typename Lhs, typename Rhs> struct SparseDenseProductReturnType<Lhs,Rhs,1>
|
||||
{
|
||||
typedef SparseDenseOuterProduct<Lhs,Rhs,false> Type;
|
||||
typedef typename internal::conditional<
|
||||
Lhs::IsRowMajor,
|
||||
SparseDenseOuterProduct<Rhs,Lhs,true>,
|
||||
SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductReturnType
|
||||
|
@ -29,7 +32,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductRet
|
|||
|
||||
template<typename Lhs, typename Rhs> struct DenseSparseProductReturnType<Lhs,Rhs,1>
|
||||
{
|
||||
typedef SparseDenseOuterProduct<Rhs,Lhs,true> Type;
|
||||
typedef typename internal::conditional<
|
||||
Rhs::IsRowMajor,
|
||||
SparseDenseOuterProduct<Rhs,Lhs,true>,
|
||||
SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
@ -114,17 +120,30 @@ class SparseDenseOuterProduct<Lhs,Rhs,Transpose>::InnerIterator : public _LhsNes
|
|||
typedef typename SparseDenseOuterProduct::Index Index;
|
||||
public:
|
||||
EIGEN_STRONG_INLINE InnerIterator(const SparseDenseOuterProduct& prod, Index outer)
|
||||
: Base(prod.lhs(), 0), m_outer(outer), m_factor(prod.rhs().coeff(outer))
|
||||
{
|
||||
}
|
||||
: Base(prod.lhs(), 0), m_outer(outer), m_factor(get(prod.rhs(), outer, typename internal::traits<Rhs>::StorageKind() ))
|
||||
{ }
|
||||
|
||||
inline Index outer() const { return m_outer; }
|
||||
inline Index row() const { return Transpose ? Base::row() : m_outer; }
|
||||
inline Index col() const { return Transpose ? m_outer : Base::row(); }
|
||||
inline Index row() const { return Transpose ? m_outer : Base::index(); }
|
||||
inline Index col() const { return Transpose ? Base::index() : m_outer; }
|
||||
|
||||
inline Scalar value() const { return Base::value() * m_factor; }
|
||||
|
||||
protected:
|
||||
static Scalar get(const _RhsNested &rhs, Index outer, Dense = Dense())
|
||||
{
|
||||
return rhs.coeff(outer);
|
||||
}
|
||||
|
||||
static Scalar get(const _RhsNested &rhs, Index outer, Sparse = Sparse())
|
||||
{
|
||||
typename Traits::_RhsNested::InnerIterator it(rhs, outer);
|
||||
if (it && it.index()==0)
|
||||
return it.value();
|
||||
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
Index m_outer;
|
||||
Scalar m_factor;
|
||||
};
|
||||
|
|
|
@ -940,7 +940,7 @@ void set_from_triplets(const InputIterator& begin, const InputIterator& end, Spa
|
|||
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
typedef typename SparseMatrixType::Index Index;
|
||||
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor> trMat(mat.rows(),mat.cols());
|
||||
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());
|
||||
|
||||
if(begin!=end)
|
||||
{
|
||||
|
@ -1178,7 +1178,7 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
|
|||
size_t p = m_outerIndex[outer+1];
|
||||
++m_outerIndex[outer+1];
|
||||
|
||||
float reallocRatio = 1;
|
||||
double reallocRatio = 1;
|
||||
if (m_data.allocatedSize()<=m_data.size())
|
||||
{
|
||||
// if there is no preallocated memory, let's reserve a minimum of 32 elements
|
||||
|
@ -1190,13 +1190,13 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
|
|||
{
|
||||
// we need to reallocate the data, to reduce multiple reallocations
|
||||
// we use a smart resize algorithm based on the current filling ratio
|
||||
// in addition, we use float to avoid integers overflows
|
||||
float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
|
||||
reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
|
||||
// in addition, we use double to avoid integers overflows
|
||||
double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
|
||||
reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
|
||||
// furthermore we bound the realloc ratio to:
|
||||
// 1) reduce multiple minor realloc when the matrix is almost filled
|
||||
// 2) avoid to allocate too much memory when the matrix is almost empty
|
||||
reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
|
||||
reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
|
||||
}
|
||||
}
|
||||
m_data.resize(m_data.size()+1,reallocRatio);
|
||||
|
|
|
@ -26,7 +26,7 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
|
|||
inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); }
|
||||
};
|
||||
|
||||
// NOTE: VC10 trigger an ICE if don't put typename TransposeImpl<MatrixType,Sparse>:: in front of Index,
|
||||
// NOTE: VC10 and VC11 trigger an ICE if don't put typename TransposeImpl<MatrixType,Sparse>:: in front of Index,
|
||||
// a typedef typename TransposeImpl<MatrixType,Sparse>::Index Index;
|
||||
// does not fix the issue.
|
||||
// An alternative is to define the nested class in the parent class itself.
|
||||
|
@ -40,8 +40,8 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::InnerItera
|
|||
EIGEN_STRONG_INLINE InnerIterator(const TransposeImpl& trans, typename TransposeImpl<MatrixType,Sparse>::Index outer)
|
||||
: Base(trans.derived().nestedExpression(), outer)
|
||||
{}
|
||||
Index row() const { return Base::col(); }
|
||||
Index col() const { return Base::row(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index row() const { return Base::col(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index col() const { return Base::row(); }
|
||||
};
|
||||
|
||||
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInnerIterator
|
||||
|
@ -54,8 +54,8 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInn
|
|||
EIGEN_STRONG_INLINE ReverseInnerIterator(const TransposeImpl& xpr, typename TransposeImpl<MatrixType,Sparse>::Index outer)
|
||||
: Base(xpr.derived().nestedExpression(), outer)
|
||||
{}
|
||||
Index row() const { return Base::col(); }
|
||||
Index col() const { return Base::row(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index row() const { return Base::col(); }
|
||||
typename TransposeImpl<MatrixType,Sparse>::Index col() const { return Base::row(); }
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
|
|
@ -84,8 +84,10 @@ template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
|
|||
template<typename Lhs, typename Rhs, bool Transpose> class SparseDenseOuterProduct;
|
||||
|
||||
template<typename Lhs, typename Rhs> struct SparseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct DenseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct SparseDenseProductReturnType;
|
||||
template<typename Lhs, typename Rhs,
|
||||
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct DenseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs,
|
||||
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct SparseDenseProductReturnType;
|
||||
template<typename MatrixType,int UpLo> class SparseSymmetricPermutationProduct;
|
||||
|
||||
namespace internal {
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
||||
// Copyright (C) 2012-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
|
@ -58,6 +58,7 @@ namespace internal {
|
|||
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
|
||||
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
|
||||
*
|
||||
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
*/
|
||||
template<typename _MatrixType, typename _OrderingType>
|
||||
|
@ -77,10 +78,23 @@ class SparseQR
|
|||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
{ }
|
||||
|
||||
/** Construct a QR factorization of the matrix \a mat.
|
||||
*
|
||||
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
/** Computes the QR factorization of the sparse matrix \a mat.
|
||||
*
|
||||
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
* \sa analyzePattern(), factorize()
|
||||
*/
|
||||
void compute(const MatrixType& mat)
|
||||
{
|
||||
analyzePattern(mat);
|
||||
|
@ -166,7 +180,7 @@ class SparseQR
|
|||
y.bottomRows(y.rows()-rank).setZero();
|
||||
|
||||
// Apply the column permutation
|
||||
if (m_perm_c.size()) dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
|
||||
if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
|
||||
else dest = y.topRows(cols());
|
||||
|
||||
m_info = Success;
|
||||
|
@ -206,7 +220,7 @@ class SparseQR
|
|||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \returns \c Success if computation was successful,
|
||||
* \c NumericalIssue if the QR factorization reports a numerical problem
|
||||
* \c InvalidInput if the input matrix is invalid
|
||||
*
|
||||
|
@ -255,20 +269,24 @@ class SparseQR
|
|||
};
|
||||
|
||||
/** \brief Preprocessing step of a QR factorization
|
||||
*
|
||||
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*
|
||||
* In this step, the fill-reducing permutation is computed and applied to the columns of A
|
||||
* and the column elimination tree is computed as well. Only the sparcity pattern of \a mat is exploited.
|
||||
* and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
|
||||
*
|
||||
* \note In this step it is assumed that there is no empty row in the matrix \a mat.
|
||||
*/
|
||||
template <typename MatrixType, typename OrderingType>
|
||||
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
{
|
||||
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
|
||||
// Compute the column fill reducing ordering
|
||||
OrderingType ord;
|
||||
ord(mat, m_perm_c);
|
||||
Index n = mat.cols();
|
||||
Index m = mat.rows();
|
||||
Index diagSize = (std::min)(m,n);
|
||||
|
||||
if (!m_perm_c.size())
|
||||
{
|
||||
|
@ -280,20 +298,20 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
|||
m_outputPerm_c = m_perm_c.inverse();
|
||||
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
|
||||
m_R.resize(n, n);
|
||||
m_Q.resize(m, n);
|
||||
m_R.resize(m, n);
|
||||
m_Q.resize(m, diagSize);
|
||||
|
||||
// Allocate space for nonzero elements : rough estimation
|
||||
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
|
||||
m_Q.reserve(2*mat.nonZeros());
|
||||
m_hcoeffs.resize(n);
|
||||
m_hcoeffs.resize(diagSize);
|
||||
m_analysisIsok = true;
|
||||
}
|
||||
|
||||
/** \brief Performs the numerical QR factorization of the input matrix
|
||||
*
|
||||
* The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
|
||||
* a matrix having the same sparcity pattern than \a mat.
|
||||
* a matrix having the same sparsity pattern than \a mat.
|
||||
*
|
||||
* \param mat The sparse column-major matrix
|
||||
*/
|
||||
|
@ -306,11 +324,12 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
|
||||
Index m = mat.rows();
|
||||
Index n = mat.cols();
|
||||
IndexVector mark(m); mark.setConstant(-1); // Record the visited nodes
|
||||
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
|
||||
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
||||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
bool found_diag;
|
||||
Index diagSize = (std::min)(m,n);
|
||||
IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
|
||||
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
|
||||
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
||||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
RealScalar pivotThreshold = m_threshold;
|
||||
|
||||
m_pmat = mat;
|
||||
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
|
||||
|
@ -322,7 +341,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
|
||||
}
|
||||
|
||||
/* Compute the default threshold, see :
|
||||
/* Compute the default threshold as in MatLab, see:
|
||||
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
||||
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
|
||||
*/
|
||||
|
@ -330,24 +349,24 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
{
|
||||
RealScalar max2Norm = 0.0;
|
||||
for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
|
||||
m_threshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
}
|
||||
|
||||
// Initialize the numerical permutation
|
||||
m_pivotperm.setIdentity(n);
|
||||
|
||||
Index nonzeroCol = 0; // Record the number of valid pivots
|
||||
m_Q.startVec(0);
|
||||
|
||||
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
|
||||
for (Index col = 0; col < (std::min)(n,m); ++col)
|
||||
for (Index col = 0; col < n; ++col)
|
||||
{
|
||||
mark.setConstant(-1);
|
||||
m_R.startVec(col);
|
||||
m_Q.startVec(col);
|
||||
mark(nonzeroCol) = col;
|
||||
Qidx(0) = nonzeroCol;
|
||||
nzcolR = 0; nzcolQ = 1;
|
||||
found_diag = col>=m;
|
||||
bool found_diag = nonzeroCol>=m;
|
||||
tval.setZero();
|
||||
|
||||
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
|
||||
|
@ -356,7 +375,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
|
||||
for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
|
||||
{
|
||||
Index curIdx = nonzeroCol ;
|
||||
Index curIdx = nonzeroCol;
|
||||
if(itp) curIdx = itp.row();
|
||||
if(curIdx == nonzeroCol) found_diag = true;
|
||||
|
||||
|
@ -398,7 +417,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
// Browse all the indexes of R(:,col) in reverse order
|
||||
for (Index i = nzcolR-1; i >= 0; i--)
|
||||
{
|
||||
Index curIdx = m_pivotperm.indices()(Ridx(i));
|
||||
Index curIdx = Ridx(i);
|
||||
|
||||
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
|
||||
Scalar tdot(0);
|
||||
|
@ -427,33 +446,37 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
}
|
||||
} // End update current column
|
||||
|
||||
// Compute the Householder reflection that eliminate the current column
|
||||
// FIXME this step should call the Householder module.
|
||||
|
||||
Scalar tau;
|
||||
RealScalar beta;
|
||||
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
|
||||
RealScalar beta = 0;
|
||||
|
||||
// First, the squared norm of Q((col+1):m, col)
|
||||
RealScalar sqrNorm = 0.;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
|
||||
|
||||
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
|
||||
if(nonzeroCol < diagSize)
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
tval(Qidx(0)) = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
beta = std::sqrt(numext::abs2(c0) + sqrNorm);
|
||||
if(numext::real(c0) >= RealScalar(0))
|
||||
beta = -beta;
|
||||
tval(Qidx(0)) = 1;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq)
|
||||
tval(Qidx(itq)) /= (c0 - beta);
|
||||
tau = numext::conj((beta-c0) / beta);
|
||||
|
||||
// Compute the Householder reflection that eliminate the current column
|
||||
// FIXME this step should call the Householder module.
|
||||
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
|
||||
|
||||
// First, the squared norm of Q((col+1):m, col)
|
||||
RealScalar sqrNorm = 0.;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
|
||||
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
tval(Qidx(0)) = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
using std::sqrt;
|
||||
beta = sqrt(numext::abs2(c0) + sqrNorm);
|
||||
if(numext::real(c0) >= RealScalar(0))
|
||||
beta = -beta;
|
||||
tval(Qidx(0)) = 1;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq)
|
||||
tval(Qidx(itq)) /= (c0 - beta);
|
||||
tau = numext::conj((beta-c0) / beta);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Insert values in R
|
||||
|
@ -467,24 +490,25 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
}
|
||||
|
||||
if(abs(beta) >= m_threshold)
|
||||
if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
|
||||
{
|
||||
m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
|
||||
nonzeroCol++;
|
||||
// The householder coefficient
|
||||
m_hcoeffs(col) = tau;
|
||||
m_hcoeffs(nonzeroCol) = tau;
|
||||
// Record the householder reflections
|
||||
for (Index itq = 0; itq < nzcolQ; ++itq)
|
||||
{
|
||||
Index iQ = Qidx(itq);
|
||||
m_Q.insertBackByOuterInnerUnordered(col,iQ) = tval(iQ);
|
||||
m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
|
||||
tval(iQ) = Scalar(0.);
|
||||
}
|
||||
}
|
||||
nonzeroCol++;
|
||||
if(nonzeroCol<diagSize)
|
||||
m_Q.startVec(nonzeroCol);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Zero pivot found: move implicitly this column to the end
|
||||
m_hcoeffs(col) = Scalar(0);
|
||||
for (Index j = nonzeroCol; j < n-1; j++)
|
||||
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
|
||||
|
||||
|
@ -493,6 +517,8 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
|||
}
|
||||
}
|
||||
|
||||
m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
|
||||
|
||||
// Finalize the column pointers of the sparse matrices R and Q
|
||||
m_Q.finalize();
|
||||
m_Q.makeCompressed();
|
||||
|
@ -561,14 +587,16 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
|||
template<typename DesType>
|
||||
void evalTo(DesType& res) const
|
||||
{
|
||||
Index m = m_qr.rows();
|
||||
Index n = m_qr.cols();
|
||||
Index diagSize = (std::min)(m,n);
|
||||
res = m_other;
|
||||
if (m_transpose)
|
||||
{
|
||||
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
|
||||
//Compute res = Q' * other column by column
|
||||
for(Index j = 0; j < res.cols(); j++){
|
||||
for (Index k = 0; k < n; k++)
|
||||
for (Index k = 0; k < diagSize; k++)
|
||||
{
|
||||
Scalar tau = Scalar(0);
|
||||
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
||||
|
@ -581,10 +609,10 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
|||
else
|
||||
{
|
||||
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
|
||||
// Compute res = Q' * other column by column
|
||||
// Compute res = Q * other column by column
|
||||
for(Index j = 0; j < res.cols(); j++)
|
||||
{
|
||||
for (Index k = n-1; k >=0; k--)
|
||||
for (Index k = diagSize-1; k >=0; k--)
|
||||
{
|
||||
Scalar tau = Scalar(0);
|
||||
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
||||
|
@ -618,7 +646,7 @@ struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<Sp
|
|||
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
|
||||
}
|
||||
inline Index rows() const { return m_qr.rows(); }
|
||||
inline Index cols() const { return m_qr.cols(); }
|
||||
inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
|
||||
// To use for operations with the transpose of Q
|
||||
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
|
||||
{
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#ifndef EIGEN_STDDEQUE_H
|
||||
#define EIGEN_STDDEQUE_H
|
||||
|
||||
#include "Eigen/src/StlSupport/details.h"
|
||||
#include "details.h"
|
||||
|
||||
// Define the explicit instantiation (e.g. necessary for the Intel compiler)
|
||||
#if defined(__INTEL_COMPILER) || defined(__GNUC__)
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#ifndef EIGEN_STDLIST_H
|
||||
#define EIGEN_STDLIST_H
|
||||
|
||||
#include "Eigen/src/StlSupport/details.h"
|
||||
#include "details.h"
|
||||
|
||||
// Define the explicit instantiation (e.g. necessary for the Intel compiler)
|
||||
#if defined(__INTEL_COMPILER) || defined(__GNUC__)
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#ifndef EIGEN_STDVECTOR_H
|
||||
#define EIGEN_STDVECTOR_H
|
||||
|
||||
#include "Eigen/src/StlSupport/details.h"
|
||||
#include "details.h"
|
||||
|
||||
/**
|
||||
* This section contains a convenience MACRO which allows an easy specialization of
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
|
||||
This directory contains a BLAS library built on top of Eigen.
|
||||
|
||||
This is currently a work in progress which is far to be ready for use,
|
||||
but feel free to contribute to it if you wish.
|
||||
|
||||
This module is not built by default. In order to compile it, you need to
|
||||
type 'make blas' from within your build dir.
|
||||
|
||||
|
|
|
@ -41,7 +41,7 @@ endif()
|
|||
|
||||
# copy ctest properties, which currently
|
||||
# o raise the warning levels
|
||||
configure_file(${CMAKE_BINARY_DIR}/DartConfiguration.tcl ${CMAKE_BINARY_DIR}/DartConfiguration.tcl)
|
||||
configure_file(${CMAKE_CURRENT_BINARY_DIR}/DartConfiguration.tcl ${CMAKE_BINARY_DIR}/DartConfiguration.tcl)
|
||||
|
||||
# restore default CMAKE_MAKE_PROGRAM
|
||||
set(CMAKE_MAKE_PROGRAM ${CMAKE_MAKE_PROGRAM_SAVE})
|
||||
|
@ -50,7 +50,7 @@ set(CMAKE_MAKE_PROGRAM ${CMAKE_MAKE_PROGRAM_SAVE})
|
|||
set(CMAKE_MAKE_PROGRAM_SAVE)
|
||||
set(EIGEN_MAKECOMMAND_PLACEHOLDER)
|
||||
|
||||
configure_file(${CMAKE_SOURCE_DIR}/CTestCustom.cmake.in ${CMAKE_BINARY_DIR}/CTestCustom.cmake)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/CTestCustom.cmake.in ${CMAKE_BINARY_DIR}/CTestCustom.cmake)
|
||||
|
||||
# some documentation of this function would be nice
|
||||
ei_init_testing()
|
||||
|
|
|
@ -41,8 +41,8 @@ MatrixXd::Ones(rows,cols) // ones(rows,cols)
|
|||
C.setOnes(rows,cols) // C = ones(rows,cols)
|
||||
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
|
||||
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
|
||||
VectorXd::LinSpace(size,low,high) // linspace(low,high,size)'
|
||||
v.setLinSpace(size,low,high) // v = linspace(low,high,size)'
|
||||
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
|
||||
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
|
||||
|
||||
|
||||
// Matrix slicing and blocks. All expressions listed here are read/write.
|
||||
|
@ -91,6 +91,8 @@ R.adjoint() // R'
|
|||
R.transpose() // R.' or conj(R')
|
||||
R.diagonal() // diag(R)
|
||||
x.asDiagonal() // diag(x)
|
||||
R.transpose().colwise().reverse(); // rot90(R)
|
||||
R.conjugate() // conj(R)
|
||||
|
||||
// All the same as Matlab, but matlab doesn't have *= style operators.
|
||||
// Matrix-vector. Matrix-matrix. Matrix-scalar.
|
||||
|
@ -167,6 +169,8 @@ x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
|
|||
A.cast<double>(); // double(A)
|
||||
A.cast<float>(); // single(A)
|
||||
A.cast<int>(); // int32(A)
|
||||
A.real(); // real(A)
|
||||
A.imag(); // imag(A)
|
||||
// if the original type equals destination type, no work is done
|
||||
|
||||
// Note that for most operations Eigen requires all operands to have the same type:
|
||||
|
|
|
@ -1,27 +0,0 @@
|
|||
namespace Eigen {
|
||||
|
||||
/** \eigenManualPage LinearLeastSquares Solving linear least squares problems
|
||||
|
||||
lede
|
||||
|
||||
\eigenAutoToc
|
||||
|
||||
\section LinearLeastSquaresCopied Copied
|
||||
|
||||
The best way to do least squares solving is with a SVD decomposition. Eigen provides one as the JacobiSVD class, and its solve()
|
||||
is doing least-squares solving.
|
||||
|
||||
Here is an example:
|
||||
<table class="example">
|
||||
<tr><th>Example:</th><th>Output:</th></tr>
|
||||
<tr>
|
||||
<td>\include TutorialLinAlgSVDSolve.cpp </td>
|
||||
<td>\verbinclude TutorialLinAlgSVDSolve.out </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
For more information, including faster but less reliable methods, read our page concentrating on \ref LinearLeastSquares "linear least squares problems".
|
||||
|
||||
*/
|
||||
|
||||
}
|
|
@ -62,6 +62,8 @@ run time. However, these assertions do cost time and can thus be turned off.
|
|||
expect that any objects passed to it are aligned. This will turn off vectorization. Not defined by default.
|
||||
- \b EIGEN_DONT_ALIGN_STATICALLY - disables alignment of arrays on the stack. Not defined by default, unless
|
||||
\c EIGEN_DONT_ALIGN is defined.
|
||||
- \b EIGEN_DONT_PARALLELIZE - if defined, this disables multi-threading. This is only relevant if you enabled OpenMP.
|
||||
See \ref TopicMultiThreading for details.
|
||||
- \b EIGEN_DONT_VECTORIZE - disables explicit vectorization when defined. Not defined by default, unless
|
||||
alignment is disabled by %Eigen's platform test or the user defining \c EIGEN_DONT_ALIGN.
|
||||
- \b EIGEN_FAST_MATH - enables some optimizations which might affect the accuracy of the result. This currently
|
||||
|
@ -69,7 +71,10 @@ run time. However, these assertions do cost time and can thus be turned off.
|
|||
Define it to 0 to disable.
|
||||
- \b EIGEN_UNROLLING_LIMIT - defines the size of a loop to enable meta unrolling. Set it to zero to disable
|
||||
unrolling. The size of a loop here is expressed in %Eigen's own notion of "number of FLOPS", it does not
|
||||
correspond to the number of iterations or the number of instructions. The default is value 100.
|
||||
correspond to the number of iterations or the number of instructions. The default is value 100.
|
||||
- \b EIGEN_STACK_ALLOCATION_LIMIT - defines the maximum bytes for a buffer to be allocated on the stack. For internal
|
||||
temporary buffers, dynamic memory allocation is employed as a fall back. For fixed-size matrices or arrays, exceeding
|
||||
this threshold raises a compile time assertion. Use 0 to set no limit. Default is 128 KB.
|
||||
|
||||
|
||||
\section TopicPreprocessorDirectivesPlugins Plugins
|
||||
|
|
|
@ -253,12 +253,15 @@ SparseMatrix<double> A, B;
|
|||
B = SparseMatrix<double>(A.transpose()) + A;
|
||||
\endcode
|
||||
|
||||
Binary coefficient wise operators can also mix sparse and dense expressions:
|
||||
Some binary coefficient-wise operators can also mix sparse and dense expressions:
|
||||
\code
|
||||
sm2 = sm1.cwiseProduct(dm1);
|
||||
dm2 = sm1 + dm1;
|
||||
dm1 += sm1;
|
||||
\endcode
|
||||
|
||||
However, it is not yet possible to add a sparse and a dense matrix as in <tt>dm2 = sm1 + dm1</tt>.
|
||||
Please write this as the equivalent <tt>dm2 = dm1; dm2 += sm1</tt> (we plan to lift this restriction
|
||||
in the next release of %Eigen).
|
||||
|
||||
%Sparse expressions also support transposition:
|
||||
\code
|
||||
|
|
|
@ -10,6 +10,26 @@
|
|||
#define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType, typename Index, typename Scalar>
|
||||
typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
|
||||
block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) {
|
||||
// check cwise-Functions:
|
||||
VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
|
||||
VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
|
||||
|
||||
VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMin(s1), m1.cwiseMin(s1).block(r1,c1,r2-r1+1,c2-c1+1));
|
||||
VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMax(s1), m1.cwiseMax(s1).block(r1,c1,r2-r1+1,c2-c1+1));
|
||||
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename Index, typename Scalar>
|
||||
typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
|
||||
block_real_only(const MatrixType &, Index, Index, Index, Index, const Scalar&) {
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
|
||||
template<typename MatrixType> void block(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -37,6 +57,8 @@ template<typename MatrixType> void block(const MatrixType& m)
|
|||
Index c1 = internal::random<Index>(0,cols-1);
|
||||
Index c2 = internal::random<Index>(c1,cols-1);
|
||||
|
||||
block_real_only(m1, r1, r2, c1, c1, s1);
|
||||
|
||||
//check row() and col()
|
||||
VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
|
||||
//check operator(), both constant and non-constant, on row() and col()
|
||||
|
@ -51,7 +73,8 @@ template<typename MatrixType> void block(const MatrixType& m)
|
|||
VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
|
||||
m1.col(c1).col(0) += s1 * m1_copy.col(c2);
|
||||
VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
|
||||
|
||||
|
||||
|
||||
//check block()
|
||||
Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
|
||||
|
||||
|
|
|
@ -68,6 +68,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
|||
Index cols = m.cols();
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
|
@ -179,6 +180,57 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
|||
// restore
|
||||
if(sign == -1)
|
||||
symm = -symm;
|
||||
|
||||
// check matrices coming from linear constraints with Lagrange multipliers
|
||||
if(rows>=3)
|
||||
{
|
||||
SquareMatrixType A = symm;
|
||||
int c = internal::random<int>(0,rows-2);
|
||||
A.bottomRightCorner(c,c).setZero();
|
||||
// Make sure a solution exists:
|
||||
vecX.setRandom();
|
||||
vecB = A * vecX;
|
||||
vecX.setZero();
|
||||
ldltlo.compute(A);
|
||||
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
|
||||
vecX = ldltlo.solve(vecB);
|
||||
VERIFY_IS_APPROX(A * vecX, vecB);
|
||||
}
|
||||
|
||||
// check non-full rank matrices
|
||||
if(rows>=3)
|
||||
{
|
||||
int r = internal::random<int>(1,rows-1);
|
||||
Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r);
|
||||
SquareMatrixType A = a * a.adjoint();
|
||||
// Make sure a solution exists:
|
||||
vecX.setRandom();
|
||||
vecB = A * vecX;
|
||||
vecX.setZero();
|
||||
ldltlo.compute(A);
|
||||
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
|
||||
vecX = ldltlo.solve(vecB);
|
||||
VERIFY_IS_APPROX(A * vecX, vecB);
|
||||
}
|
||||
|
||||
// check matrices with a wide spectrum
|
||||
if(rows>=3)
|
||||
{
|
||||
RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8);
|
||||
Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows);
|
||||
Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(rows);
|
||||
for(int k=0; k<rows; ++k)
|
||||
d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
SquareMatrixType A = a * d.asDiagonal() * a.adjoint();
|
||||
// Make sure a solution exists:
|
||||
vecX.setRandom();
|
||||
vecB = A * vecX;
|
||||
vecX.setZero();
|
||||
ldltlo.compute(A);
|
||||
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
|
||||
vecX = ldltlo.solve(vecB);
|
||||
VERIFY_IS_APPROX(A * vecX, vecB);
|
||||
}
|
||||
}
|
||||
|
||||
// update/downdate
|
||||
|
|
|
@ -53,7 +53,7 @@ void check_aligned_new()
|
|||
|
||||
void check_aligned_stack_alloc()
|
||||
{
|
||||
for(int i = 1; i < 1000; i++)
|
||||
for(int i = 1; i < 400; i++)
|
||||
{
|
||||
ei_declare_aligned_stack_constructed_variable(float,p,i,0);
|
||||
VERIFY(size_t(p)%ALIGNMENT==0);
|
||||
|
@ -87,6 +87,32 @@ template<typename T> void check_dynaligned()
|
|||
delete obj;
|
||||
}
|
||||
|
||||
template<typename T> void check_custom_new_delete()
|
||||
{
|
||||
{
|
||||
T* t = new T;
|
||||
delete t;
|
||||
}
|
||||
|
||||
{
|
||||
std::size_t N = internal::random<std::size_t>(1,10);
|
||||
T* t = new T[N];
|
||||
delete[] t;
|
||||
}
|
||||
|
||||
#ifdef EIGEN_ALIGN
|
||||
{
|
||||
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
|
||||
(T::operator delete)(t, sizeof(T));
|
||||
}
|
||||
|
||||
{
|
||||
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
|
||||
(T::operator delete)(t);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_dynalloc()
|
||||
{
|
||||
// low level dynamic memory allocation
|
||||
|
@ -102,6 +128,12 @@ void test_dynalloc()
|
|||
CALL_SUBTEST(check_dynaligned<Matrix4f>() );
|
||||
CALL_SUBTEST(check_dynaligned<Vector4d>() );
|
||||
CALL_SUBTEST(check_dynaligned<Vector4i>() );
|
||||
CALL_SUBTEST(check_dynaligned<Vector8f>() );
|
||||
|
||||
CALL_SUBTEST( check_custom_new_delete<Vector4f>() );
|
||||
CALL_SUBTEST( check_custom_new_delete<Vector2f>() );
|
||||
CALL_SUBTEST( check_custom_new_delete<Matrix4f>() );
|
||||
CALL_SUBTEST( check_custom_new_delete<MatrixXi>() );
|
||||
}
|
||||
|
||||
// check static allocation, who knows ?
|
||||
|
|
|
@ -67,6 +67,7 @@ template<typename MatrixType, int QRPreconditioner>
|
|||
void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index rows = m.rows();
|
||||
Index cols = m.cols();
|
||||
|
@ -81,9 +82,90 @@ void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
|
|||
|
||||
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
|
||||
JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
|
||||
|
||||
if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
|
||||
else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(1e-4);
|
||||
|
||||
SolutionType x = svd.solve(rhs);
|
||||
|
||||
RealScalar residual = (m*x-rhs).norm();
|
||||
// Check that there is no significantly better solution in the neighborhood of x
|
||||
if(!test_isMuchSmallerThan(residual,rhs.norm()))
|
||||
{
|
||||
// If the residual is very small, then we have an exact solution, so we are already good.
|
||||
for(int k=0;k<x.rows();++k)
|
||||
{
|
||||
SolutionType y(x);
|
||||
y.row(k).array() += 2*NumTraits<RealScalar>::epsilon();
|
||||
RealScalar residual_y = (m*y-rhs).norm();
|
||||
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
|
||||
|
||||
y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon();
|
||||
residual_y = (m*y-rhs).norm();
|
||||
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
|
||||
}
|
||||
}
|
||||
|
||||
// evaluate normal equation which works also for least-squares solutions
|
||||
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
|
||||
if(internal::is_same<RealScalar,double>::value)
|
||||
{
|
||||
// This test is not stable with single precision.
|
||||
// This is probably because squaring m signicantly affects the precision.
|
||||
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
|
||||
}
|
||||
|
||||
// check minimal norm solutions
|
||||
{
|
||||
// generate a full-rank m x n problem with m<n
|
||||
enum {
|
||||
RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
|
||||
RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
|
||||
};
|
||||
typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
|
||||
typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
|
||||
Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
|
||||
MatrixType2 m2(rank,cols);
|
||||
int guard = 0;
|
||||
do {
|
||||
m2.setRandom();
|
||||
} while(m2.jacobiSvd().setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
|
||||
VERIFY(guard<10);
|
||||
RhsType2 rhs2 = RhsType2::Random(rank);
|
||||
// use QR to find a reference minimal norm solution
|
||||
HouseholderQR<MatrixType2T> qr(m2.adjoint());
|
||||
Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
|
||||
tmp.conservativeResize(cols);
|
||||
tmp.tail(cols-rank).setZero();
|
||||
SolutionType x21 = qr.householderQ() * tmp;
|
||||
// now check with SVD
|
||||
JacobiSVD<MatrixType2, ColPivHouseholderQRPreconditioner> svd2(m2, computationOptions);
|
||||
SolutionType x22 = svd2.solve(rhs2);
|
||||
VERIFY_IS_APPROX(m2*x21, rhs2);
|
||||
VERIFY_IS_APPROX(m2*x22, rhs2);
|
||||
VERIFY_IS_APPROX(x21, x22);
|
||||
|
||||
// Now check with a rank deficient matrix
|
||||
typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
|
||||
Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
|
||||
Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
|
||||
MatrixType3 m3 = C * m2;
|
||||
RhsType3 rhs3 = C * rhs2;
|
||||
JacobiSVD<MatrixType3, ColPivHouseholderQRPreconditioner> svd3(m3, computationOptions);
|
||||
SolutionType x3 = svd3.solve(rhs3);
|
||||
if(svd3.rank()!=rank) {
|
||||
std::cout << m3 << "\n\n";
|
||||
std::cout << svd3.singularValues().transpose() << "\n";
|
||||
std::cout << svd3.rank() << " == " << rank << "\n";
|
||||
std::cout << x21.norm() << " == " << x3.norm() << "\n";
|
||||
}
|
||||
// VERIFY_IS_APPROX(m3*x3, rhs3);
|
||||
VERIFY_IS_APPROX(m3*x21, rhs3);
|
||||
VERIFY_IS_APPROX(m2*x3, rhs2);
|
||||
|
||||
VERIFY_IS_APPROX(x21, x3);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
|
@ -92,10 +174,9 @@ void jacobisvd_test_all_computation_options(const MatrixType& m)
|
|||
if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
|
||||
return;
|
||||
JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
|
||||
|
||||
jacobisvd_check_full(m, fullSvd);
|
||||
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV);
|
||||
|
||||
CALL_SUBTEST(( jacobisvd_check_full(m, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV) ));
|
||||
|
||||
#if defined __INTEL_COMPILER
|
||||
// remark #111: statement is unreachable
|
||||
#pragma warning disable 111
|
||||
|
@ -103,20 +184,20 @@ void jacobisvd_test_all_computation_options(const MatrixType& m)
|
|||
if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||
return;
|
||||
|
||||
jacobisvd_compare_to_full(m, ComputeFullU, fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeFullV, fullSvd);
|
||||
jacobisvd_compare_to_full(m, 0, fullSvd);
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, 0, fullSvd) ));
|
||||
|
||||
if (MatrixType::ColsAtCompileTime == Dynamic) {
|
||||
// thin U/V are only available with dynamic number of columns
|
||||
jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeThinV, fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeThinU , fullSvd);
|
||||
jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd);
|
||||
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV);
|
||||
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV);
|
||||
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV);
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU , fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
|
||||
CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV) ));
|
||||
CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV) ));
|
||||
CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV) ));
|
||||
|
||||
// test reconstruction
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
@ -129,12 +210,29 @@ void jacobisvd_test_all_computation_options(const MatrixType& m)
|
|||
template<typename MatrixType>
|
||||
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
||||
{
|
||||
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
|
||||
MatrixType m = a;
|
||||
if(pickrandom)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index diagSize = (std::min)(a.rows(), a.cols());
|
||||
RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4;
|
||||
s = internal::random<RealScalar>(1,s);
|
||||
Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize);
|
||||
for(Index k=0; k<diagSize; ++k)
|
||||
d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
m = Matrix<Scalar,Dynamic,Dynamic>::Random(a.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,a.cols());
|
||||
// cancel some coeffs
|
||||
Index n = internal::random<Index>(0,m.size()-1);
|
||||
for(Index i=0; i<n; ++i)
|
||||
m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0);
|
||||
}
|
||||
|
||||
jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
|
||||
jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
|
||||
jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
|
||||
jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
|
||||
CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m) ));
|
||||
CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m) ));
|
||||
CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m) ));
|
||||
CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m) ));
|
||||
}
|
||||
|
||||
template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
|
||||
|
@ -328,6 +426,7 @@ void test_jacobisvd()
|
|||
TEST_SET_BUT_UNUSED_VARIABLE(r)
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(c)
|
||||
|
||||
CALL_SUBTEST_10(( jacobisvd<MatrixXd>(MatrixXd(r,c)) ));
|
||||
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
|
||||
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
|
||||
(void) r;
|
||||
|
|
|
@ -154,59 +154,79 @@ template<typename PlainObjectType> void check_const_correctness(const PlainObjec
|
|||
VERIFY( !(Ref<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE void call_ref_1(Ref<VectorXf> ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_2(const Ref<const VectorXf>& ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_3(Ref<VectorXf,0,InnerStride<> > ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_4(const Ref<const VectorXf,0,InnerStride<> >& ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_5(Ref<MatrixXf,0,OuterStride<> > ) { }
|
||||
EIGEN_DONT_INLINE void call_ref_6(const Ref<const MatrixXf,0,OuterStride<> >& ) { }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_1(Ref<VectorXf> a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_2(const Ref<const VectorXf>& a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_3(Ref<VectorXf,0,InnerStride<> > a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_4(const Ref<const VectorXf,0,InnerStride<> >& a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_5(Ref<MatrixXf,0,OuterStride<> > a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_6(const Ref<const MatrixXf,0,OuterStride<> >& a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
template<typename B>
|
||||
EIGEN_DONT_INLINE void call_ref_7(Ref<Matrix<float,Dynamic,3> > a, const B &b) { VERIFY_IS_EQUAL(a,b); }
|
||||
|
||||
void call_ref()
|
||||
{
|
||||
VectorXcf ca(10);
|
||||
VectorXf a(10);
|
||||
VectorXcf ca = VectorXcf::Random(10);
|
||||
VectorXf a = VectorXf::Random(10);
|
||||
RowVectorXf b = RowVectorXf::Random(10);
|
||||
MatrixXf A = MatrixXf::Random(10,10);
|
||||
RowVector3f c = RowVector3f::Random();
|
||||
const VectorXf& ac(a);
|
||||
VectorBlock<VectorXf> ab(a,0,3);
|
||||
MatrixXf A(10,10);
|
||||
const VectorBlock<VectorXf> abc(a,0,3);
|
||||
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(a), 0);
|
||||
//call_ref_1(ac); // does not compile because ac is const
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(ab), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(a.head(4)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(abc), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(A.col(3)), 0);
|
||||
// call_ref_1(A.row(3)); // does not compile because innerstride!=1
|
||||
VERIFY_EVALUATION_COUNT( call_ref_3(A.row(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(A.row(3)), 0);
|
||||
//call_ref_1(a+a); // does not compile for obvious reason
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(a,a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(b,b.transpose()), 0);
|
||||
// call_ref_1(ac); // does not compile because ac is const
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(ab,ab), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(a.head(4),a.head(4)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(abc,abc), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_1(A.col(3),A.col(3)), 0);
|
||||
// call_ref_1(A.row(3)); // does not compile because innerstride!=1
|
||||
VERIFY_EVALUATION_COUNT( call_ref_3(A.row(3),A.row(3).transpose()), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(A.row(3),A.row(3).transpose()), 0);
|
||||
// call_ref_1(a+a); // does not compile for obvious reason
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(A*A.col(1)), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ac.head(5)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ac), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ab), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a.head(4)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a+a), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ca.imag()), 1); // evaluated into a temp
|
||||
MatrixXf tmp = A*A.col(1);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(A*A.col(1), tmp), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ac.head(5),ac.head(5)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ac,ac), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a,a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ab,ab), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a.head(4),a.head(4)), 0);
|
||||
tmp = a+a;
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(a+a,tmp), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_2(ca.imag(),ca.imag()), 1); // evaluated into a temp
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(ac.head(5)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(a+a), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(ca.imag()), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(ac.head(5),ac.head(5)), 0);
|
||||
tmp = a+a;
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(a+a,tmp), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_4(ca.imag(),ca.imag()), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a.head(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(A), 0);
|
||||
// call_ref_5(A.transpose()); // does not compile
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(A.block(1,1,2,2)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a,a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a.head(3),a.head(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(A,A), 0);
|
||||
// call_ref_5(A.transpose()); // does not compile
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(A.block(1,1,2,2),A.block(1,1,2,2)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(b,b), 0); // storage order do not match, but this is a degenerate case that should work
|
||||
VERIFY_EVALUATION_COUNT( call_ref_5(a.row(3),a.row(3)), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(a.head(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.row(3)), 1); // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A+A), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.transpose()), 1); // evaluated into a temp because the storage orders do not match
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.block(1,1,2,2)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(a,a), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(a.head(3),a.head(3)), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.row(3),A.row(3)), 1); // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix
|
||||
tmp = A+A;
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A+A,tmp), 1); // evaluated into a temp
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A,A), 0);
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.transpose(),A.transpose()), 1); // evaluated into a temp because the storage orders do not match
|
||||
VERIFY_EVALUATION_COUNT( call_ref_6(A.block(1,1,2,2),A.block(1,1,2,2)), 0);
|
||||
|
||||
VERIFY_EVALUATION_COUNT( call_ref_7(c,c), 0);
|
||||
}
|
||||
|
||||
void test_ref()
|
||||
|
|
|
@ -11,26 +11,31 @@
|
|||
|
||||
template<typename T> void test_simplicial_cholesky_T()
|
||||
{
|
||||
SimplicialCholesky<SparseMatrix<T>, Lower> chol_colmajor_lower;
|
||||
SimplicialCholesky<SparseMatrix<T>, Upper> chol_colmajor_upper;
|
||||
SimplicialLLT<SparseMatrix<T>, Lower> llt_colmajor_lower;
|
||||
SimplicialLDLT<SparseMatrix<T>, Upper> llt_colmajor_upper;
|
||||
SimplicialLDLT<SparseMatrix<T>, Lower> ldlt_colmajor_lower;
|
||||
SimplicialLDLT<SparseMatrix<T>, Upper> ldlt_colmajor_upper;
|
||||
SimplicialCholesky<SparseMatrix<T>, Lower> chol_colmajor_lower_amd;
|
||||
SimplicialCholesky<SparseMatrix<T>, Upper> chol_colmajor_upper_amd;
|
||||
SimplicialLLT<SparseMatrix<T>, Lower> llt_colmajor_lower_amd;
|
||||
SimplicialLLT<SparseMatrix<T>, Upper> llt_colmajor_upper_amd;
|
||||
SimplicialLDLT<SparseMatrix<T>, Lower> ldlt_colmajor_lower_amd;
|
||||
SimplicialLDLT<SparseMatrix<T>, Upper> ldlt_colmajor_upper_amd;
|
||||
SimplicialLDLT<SparseMatrix<T>, Lower, NaturalOrdering<int> > ldlt_colmajor_lower_nat;
|
||||
SimplicialLDLT<SparseMatrix<T>, Upper, NaturalOrdering<int> > ldlt_colmajor_upper_nat;
|
||||
|
||||
check_sparse_spd_solving(chol_colmajor_lower);
|
||||
check_sparse_spd_solving(chol_colmajor_upper);
|
||||
check_sparse_spd_solving(llt_colmajor_lower);
|
||||
check_sparse_spd_solving(llt_colmajor_upper);
|
||||
check_sparse_spd_solving(ldlt_colmajor_lower);
|
||||
check_sparse_spd_solving(ldlt_colmajor_upper);
|
||||
check_sparse_spd_solving(chol_colmajor_lower_amd);
|
||||
check_sparse_spd_solving(chol_colmajor_upper_amd);
|
||||
check_sparse_spd_solving(llt_colmajor_lower_amd);
|
||||
check_sparse_spd_solving(llt_colmajor_upper_amd);
|
||||
check_sparse_spd_solving(ldlt_colmajor_lower_amd);
|
||||
check_sparse_spd_solving(ldlt_colmajor_upper_amd);
|
||||
|
||||
check_sparse_spd_determinant(chol_colmajor_lower);
|
||||
check_sparse_spd_determinant(chol_colmajor_upper);
|
||||
check_sparse_spd_determinant(llt_colmajor_lower);
|
||||
check_sparse_spd_determinant(llt_colmajor_upper);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_lower);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_upper);
|
||||
check_sparse_spd_determinant(chol_colmajor_lower_amd);
|
||||
check_sparse_spd_determinant(chol_colmajor_upper_amd);
|
||||
check_sparse_spd_determinant(llt_colmajor_lower_amd);
|
||||
check_sparse_spd_determinant(llt_colmajor_upper_amd);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_lower_amd);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_upper_amd);
|
||||
|
||||
check_sparse_spd_solving(ldlt_colmajor_lower_nat);
|
||||
check_sparse_spd_solving(ldlt_colmajor_upper_nat);
|
||||
}
|
||||
|
||||
void test_simplicial_cholesky()
|
||||
|
|
|
@ -2,24 +2,24 @@
|
|||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
|
||||
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
#include "sparse.h"
|
||||
#include <Eigen/SparseQR>
|
||||
|
||||
|
||||
template<typename MatrixType,typename DenseMat>
|
||||
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300)
|
||||
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 150)
|
||||
{
|
||||
eigen_assert(maxRows >= maxCols);
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
int rows = internal::random<int>(1,maxRows);
|
||||
int cols = internal::random<int>(1,rows);
|
||||
int cols = internal::random<int>(1,maxCols);
|
||||
double density = (std::max)(8./(rows*cols), 0.01);
|
||||
|
||||
A.resize(rows,rows);
|
||||
dA.resize(rows,rows);
|
||||
A.resize(rows,cols);
|
||||
dA.resize(rows,cols);
|
||||
initSparse<Scalar>(density, dA, A,ForceNonZeroDiag);
|
||||
A.makeCompressed();
|
||||
int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0);
|
||||
|
@ -31,6 +31,13 @@ int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows
|
|||
A.col(j0) = s * A.col(j1);
|
||||
dA.col(j0) = s * dA.col(j1);
|
||||
}
|
||||
|
||||
// if(rows<cols) {
|
||||
// A.conservativeResize(cols,cols);
|
||||
// dA.conservativeResize(cols,cols);
|
||||
// dA.bottomRows(cols-rows).setZero();
|
||||
// }
|
||||
|
||||
return rows;
|
||||
}
|
||||
|
||||
|
@ -42,11 +49,10 @@ template<typename Scalar> void test_sparseqr_scalar()
|
|||
MatrixType A;
|
||||
DenseMat dA;
|
||||
DenseVector refX,x,b;
|
||||
SparseQR<MatrixType, AMDOrdering<int> > solver;
|
||||
SparseQR<MatrixType, COLAMDOrdering<int> > solver;
|
||||
generate_sparse_rectangular_problem(A,dA);
|
||||
|
||||
int n = A.cols();
|
||||
b = DenseVector::Random(n);
|
||||
b = dA * DenseVector::Random(A.cols());
|
||||
solver.compute(A);
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
|
@ -60,17 +66,19 @@ template<typename Scalar> void test_sparseqr_scalar()
|
|||
std::cerr << "sparse QR factorization failed\n";
|
||||
exit(0);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
VERIFY_IS_APPROX(A * x, b);
|
||||
|
||||
//Compare with a dense QR solver
|
||||
ColPivHouseholderQR<DenseMat> dqr(dA);
|
||||
refX = dqr.solve(b);
|
||||
|
||||
VERIFY_IS_EQUAL(dqr.rank(), solver.rank());
|
||||
|
||||
if(solver.rank()<A.cols())
|
||||
VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
|
||||
else
|
||||
if(solver.rank()==A.cols()) // full rank
|
||||
VERIFY_IS_APPROX(x, refX);
|
||||
// else
|
||||
// VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
|
||||
|
||||
// Compute explicitly the matrix Q
|
||||
MatrixType Q, QtQ, idM;
|
||||
|
@ -88,3 +96,4 @@ void test_sparseqr()
|
|||
CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
|
||||
// Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
|
@ -72,16 +72,20 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||
|
||||
VectorType p0 = rhs - mat*x;
|
||||
VectorType r0 = precond.solve(p0);
|
||||
// RealScalar r0_sqnorm = r0.squaredNorm();
|
||||
|
||||
// is initial guess already good enough?
|
||||
if(abs(r0.norm()) < tol) {
|
||||
return true;
|
||||
}
|
||||
|
||||
VectorType w = VectorType::Zero(restart + 1);
|
||||
|
||||
FMatrixType H = FMatrixType::Zero(m, restart + 1);
|
||||
FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix
|
||||
VectorType tau = VectorType::Zero(restart + 1);
|
||||
std::vector < JacobiRotation < Scalar > > G(restart);
|
||||
|
||||
// generate first Householder vector
|
||||
VectorType e;
|
||||
VectorType e(m-1);
|
||||
RealScalar beta;
|
||||
r0.makeHouseholder(e, tau.coeffRef(0), beta);
|
||||
w(0)=(Scalar) beta;
|
||||
|
|
|
@ -127,46 +127,47 @@ template<typename Func> void forward_jacobian(const Func& f)
|
|||
VERIFY_IS_APPROX(j, jref);
|
||||
}
|
||||
|
||||
|
||||
// TODO also check actual derivatives!
|
||||
void test_autodiff_scalar()
|
||||
{
|
||||
std::cerr << foo<float>(1,2) << "\n";
|
||||
Vector2f p = Vector2f::Random();
|
||||
typedef AutoDiffScalar<Vector2f> AD;
|
||||
AD ax(1,Vector2f::UnitX());
|
||||
AD ay(2,Vector2f::UnitY());
|
||||
AD ax(p.x(),Vector2f::UnitX());
|
||||
AD ay(p.y(),Vector2f::UnitY());
|
||||
AD res = foo<AD>(ax,ay);
|
||||
std::cerr << res.value() << " <> "
|
||||
<< res.derivatives().transpose() << "\n\n";
|
||||
VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y()));
|
||||
}
|
||||
|
||||
// TODO also check actual derivatives!
|
||||
void test_autodiff_vector()
|
||||
{
|
||||
std::cerr << foo<Vector2f>(Vector2f(1,2)) << "\n";
|
||||
Vector2f p = Vector2f::Random();
|
||||
typedef AutoDiffScalar<Vector2f> AD;
|
||||
typedef Matrix<AD,2,1> VectorAD;
|
||||
VectorAD p(AD(1),AD(-1));
|
||||
p.x().derivatives() = Vector2f::UnitX();
|
||||
p.y().derivatives() = Vector2f::UnitY();
|
||||
VectorAD ap = p.cast<AD>();
|
||||
ap.x().derivatives() = Vector2f::UnitX();
|
||||
ap.y().derivatives() = Vector2f::UnitY();
|
||||
|
||||
AD res = foo<VectorAD>(p);
|
||||
std::cerr << res.value() << " <> "
|
||||
<< res.derivatives().transpose() << "\n\n";
|
||||
AD res = foo<VectorAD>(ap);
|
||||
VERIFY_IS_APPROX(res.value(), foo(p));
|
||||
}
|
||||
|
||||
void test_autodiff_jacobian()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
|
||||
}
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
|
||||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
|
||||
}
|
||||
|
||||
void test_autodiff()
|
||||
{
|
||||
test_autodiff_scalar();
|
||||
test_autodiff_vector();
|
||||
// test_autodiff_jacobian();
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( test_autodiff_scalar() );
|
||||
CALL_SUBTEST_2( test_autodiff_vector() );
|
||||
CALL_SUBTEST_3( test_autodiff_jacobian() );
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -17,6 +17,10 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#ifndef MKL_BLAS
|
||||
#define MKL_BLAS MKL_DOMAIN_BLAS
|
||||
#endif
|
||||
|
||||
#cmakedefine EIGEN_USE_MKL_ALL // This is also defined in config.h
|
||||
#include <@GTSAM_EIGEN_INCLUDE_PREFIX@Eigen/Dense>
|
||||
#include <@GTSAM_EIGEN_INCLUDE_PREFIX@Eigen/QR>
|
||||
|
|
|
@ -9,7 +9,9 @@ if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
|
|||
endif()
|
||||
endif()
|
||||
|
||||
add_definitions(-Wno-unknown-pragmas)
|
||||
if(NOT ("${CMAKE_C_COMPILER_ID}" MATCHES "MSVC" OR "${CMAKE_CXX_COMPILER_ID}" MATCHES "MSVC"))
|
||||
#add_definitions(-Wno-unknown-pragmas)
|
||||
endif()
|
||||
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.6 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.6)
|
||||
|
|
|
@ -59,9 +59,10 @@ typedef ptrdiff_t ssize_t;
|
|||
#endif
|
||||
|
||||
#ifdef __MSC__
|
||||
#if(_MSC_VER < 1700)
|
||||
/* MSC does not have rint() function */
|
||||
#define rint(x) ((int)((x)+0.5))
|
||||
|
||||
#endif
|
||||
/* MSC does not have INFINITY defined */
|
||||
#ifndef INFINITY
|
||||
#define INFINITY FLT_MAX
|
||||
|
|
|
@ -16,8 +16,9 @@
|
|||
*/
|
||||
|
||||
#pragma once
|
||||
#include <boost/make_shared.hpp>
|
||||
|
||||
#include <gtsam/base/Value.h>
|
||||
#include <boost/make_shared.hpp>
|
||||
|
||||
//////////////////
|
||||
// The following includes windows.h in some MSVC versions, so we undef min, max, and ERROR
|
||||
|
|
|
@ -19,9 +19,9 @@
|
|||
|
||||
#include <cstdarg>
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/base/Lie.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <boost/serialization/nvp.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -40,9 +40,12 @@ struct LieMatrix : public Matrix, public DerivedValue<LieMatrix> {
|
|||
/** initialize from a normal matrix */
|
||||
LieMatrix(const Matrix& v) : Matrix(v) {}
|
||||
|
||||
// Currently TMP constructor causes ICE on MSVS 2013
|
||||
#if (_MSC_VER < 1800)
|
||||
/** initialize from a fixed size normal vector */
|
||||
template<int M, int N>
|
||||
LieMatrix(const Eigen::Matrix<double, M, N>& v) : Matrix(v) {}
|
||||
#endif
|
||||
|
||||
/** constructor with size and initial data, row order ! */
|
||||
LieMatrix(size_t m, size_t n, const double* const data) :
|
||||
|
@ -82,6 +85,7 @@ struct LieMatrix : public Matrix, public DerivedValue<LieMatrix> {
|
|||
inline LieMatrix retract(const Vector& v) const {
|
||||
if(v.size() != this->size())
|
||||
throw std::invalid_argument("LieMatrix::retract called with Vector of incorrect size");
|
||||
|
||||
return LieMatrix(*this +
|
||||
Eigen::Map<const Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic,Eigen::RowMajor> >(
|
||||
&v(0), this->rows(), this->cols()));
|
||||
|
@ -153,7 +157,7 @@ struct LieMatrix : public Matrix, public DerivedValue<LieMatrix> {
|
|||
result.data(), p.rows(), p.cols()) = p;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
|
|
|
@ -33,10 +33,13 @@ struct LieVector : public Vector, public DerivedValue<LieVector> {
|
|||
|
||||
/** initialize from a normal vector */
|
||||
LieVector(const Vector& v) : Vector(v) {}
|
||||
|
||||
|
||||
// Currently TMP constructor causes ICE on MSVS 2013
|
||||
#if (_MSC_VER < 1800)
|
||||
/** initialize from a fixed size normal vector */
|
||||
template<int N>
|
||||
LieVector(const Eigen::Matrix<double, N, 1>& v) : Vector(v) {}
|
||||
#endif
|
||||
|
||||
/** wrap a double */
|
||||
LieVector(double d) : Vector((Vector(1) << d)) {}
|
||||
|
|
|
@ -543,8 +543,7 @@ Matrix collect(size_t nrMatrices, ...)
|
|||
void vector_scale_inplace(const Vector& v, Matrix& A, bool inf_mask) {
|
||||
const DenseIndex m = A.rows();
|
||||
if (inf_mask) {
|
||||
// only scale the first v.size() rows of A to support augmented Matrix
|
||||
for (DenseIndex i=0; i<v.size(); ++i) {
|
||||
for (DenseIndex i=0; i<m; ++i) {
|
||||
const double& vi = v(i);
|
||||
if (std::isfinite(vi))
|
||||
A.row(i) *= vi;
|
||||
|
|
|
@ -398,7 +398,6 @@ GTSAM_EXPORT Matrix collect(size_t nrMatrices, ...);
|
|||
* Arguments (Matrix, Vector) scales the columns,
|
||||
* (Vector, Matrix) scales the rows
|
||||
* @param inf_mask when true, will not scale with a NaN or inf value.
|
||||
* The inplace version also allows v.size()<A.rows() and only scales the first v.size() rows of A.
|
||||
*/
|
||||
GTSAM_EXPORT void vector_scale_inplace(const Vector& v, Matrix& A, bool inf_mask = false); // row
|
||||
GTSAM_EXPORT Matrix vector_scale(const Vector& v, const Matrix& A, bool inf_mask = false); // row
|
||||
|
@ -467,7 +466,7 @@ GTSAM_EXPORT Matrix Cayley(const Matrix& A);
|
|||
/// Implementation of Cayley transform using fixed size matrices to let
|
||||
/// Eigen do more optimization
|
||||
template<int N>
|
||||
Eigen::Matrix<double, N, N> Cayley(const Eigen::Matrix<double, N, N>& A) {
|
||||
Eigen::Matrix<double, N, N> CayleyFixed(const Eigen::Matrix<double, N, N>& A) {
|
||||
typedef Eigen::Matrix<double, N, N> FMat;
|
||||
return (FMat::Identity() - A)*(FMat::Identity() + A).inverse();
|
||||
}
|
||||
|
|
|
@ -36,18 +36,19 @@ namespace gtsam {
|
|||
* Values can operate generically on Value objects, retracting or computing
|
||||
* local coordinates for many Value objects of different types.
|
||||
*
|
||||
* When you implement retract_(), localCoordinates_(), and equals_(), we
|
||||
* suggest first implementing versions of these functions that work directly
|
||||
* with derived objects, then using the provided helper functions to
|
||||
* implement the generic Value versions. This makes your implementation
|
||||
* easier, and also improves performance in situations where the derived type
|
||||
* is in fact known, such as in most implementations of \c evaluateError() in
|
||||
* classes derived from NonlinearFactor.
|
||||
* Inheriting from the DerivedValue class templated provides a generic implementation of
|
||||
* the pure virtual functions retract_(), localCoordinates_(), and equals_(), eliminating
|
||||
* the need to implement these functions in your class. Note that you must inherit from
|
||||
* DerivedValue templated on the class you are defining. For example you cannot define
|
||||
* the following
|
||||
* \code
|
||||
* class Rot3 : public DerivedValue<Point3>{ \\classdef }
|
||||
* \endcode
|
||||
*
|
||||
* Using the above practice, here is an example of implementing a typical
|
||||
* class derived from Value:
|
||||
* \code
|
||||
class Rot3 : public Value {
|
||||
class GTSAM_EXPORT Rot3 : public DerivedValue<Rot3> {
|
||||
public:
|
||||
// Constructor, there is never a need to call the Value base class constructor.
|
||||
Rot3() { ... }
|
||||
|
@ -74,27 +75,6 @@ namespace gtsam {
|
|||
// Math to implement 3D rotation localCoordinates, e.g. logarithm map
|
||||
return Vector(result);
|
||||
}
|
||||
|
||||
// Equals implementing the generic Value interface (virtual, implements Value::equals_())
|
||||
virtual bool equals_(const Value& other, double tol = 1e-9) const {
|
||||
// Call our provided helper function to call your Rot3-specific
|
||||
// equals with appropriate casting.
|
||||
return CallDerivedEquals(this, other, tol);
|
||||
}
|
||||
|
||||
// retract implementing the generic Value interface (virtual, implements Value::retract_())
|
||||
virtual std::auto_ptr<Value> retract_(const Vector& delta) const {
|
||||
// Call our provided helper function to call your Rot3-specific
|
||||
// retract and do the appropriate casting and allocation.
|
||||
return CallDerivedRetract(this, delta);
|
||||
}
|
||||
|
||||
// localCoordinates implementing the generic Value interface (virtual, implements Value::localCoordinates_())
|
||||
virtual Vector localCoordinates_(const Value& value) const {
|
||||
// Call our provided helper function to call your Rot3-specific
|
||||
// localCoordinates and do the appropriate casting.
|
||||
return CallDerivedLocalCoordinates(this, value);
|
||||
}
|
||||
};
|
||||
\endcode
|
||||
*/
|
||||
|
|
|
@ -30,55 +30,11 @@
|
|||
|
||||
#include <gtsam/base/Vector.h>
|
||||
|
||||
//#ifdef WIN32
|
||||
//#include <Windows.h>
|
||||
//#endif
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
void odprintf_(const char *format, ostream& stream, ...) {
|
||||
char buf[4096], *p = buf;
|
||||
|
||||
va_list args;
|
||||
va_start(args, stream);
|
||||
#ifdef WIN32
|
||||
_vsnprintf(p, sizeof buf - 3, format, args); // buf-3 is room for CR/LF/NUL
|
||||
#else
|
||||
vsnprintf(p, sizeof buf - 3, format, args); // buf-3 is room for CR/LF/NUL
|
||||
#endif
|
||||
va_end(args);
|
||||
|
||||
//#ifdef WIN32
|
||||
// OutputDebugString(buf);
|
||||
//#else
|
||||
stream << buf;
|
||||
//#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
void odprintf(const char *format, ...) {
|
||||
char buf[4096], *p = buf;
|
||||
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
#ifdef WIN32
|
||||
_vsnprintf(p, sizeof buf - 3, format, args); // buf-3 is room for CR/LF/NUL
|
||||
#else
|
||||
vsnprintf(p, sizeof buf - 3, format, args); // buf-3 is room for CR/LF/NUL
|
||||
#endif
|
||||
va_end(args);
|
||||
|
||||
//#ifdef WIN32
|
||||
// OutputDebugString(buf);
|
||||
//#else
|
||||
cout << buf;
|
||||
//#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool zero(const Vector& v) {
|
||||
bool result = true;
|
||||
|
@ -101,10 +57,12 @@ Vector delta(size_t n, size_t i, double value) {
|
|||
/* ************************************************************************* */
|
||||
void print(const Vector& v, const string& s, ostream& stream) {
|
||||
size_t n = v.size();
|
||||
odprintf_("%s [", stream, s.c_str());
|
||||
for(size_t i=0; i<n; i++)
|
||||
odprintf_("%g%s", stream, v[i], (i<n-1 ? "; " : ""));
|
||||
odprintf_("];\n", stream);
|
||||
|
||||
stream << s << "[";
|
||||
for(size_t i=0; i<n; i++) {
|
||||
stream << setprecision(9) << v(i) << (i<n-1 ? "; " : "");
|
||||
}
|
||||
stream << "];" << endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -41,11 +41,6 @@ typedef Eigen::Matrix<double, 6, 1> Vector6;
|
|||
typedef Eigen::VectorBlock<Vector> SubVector;
|
||||
typedef Eigen::VectorBlock<const Vector> ConstSubVector;
|
||||
|
||||
/**
|
||||
* An auxiliary function to printf for Win32 compatibility, added by Kai
|
||||
*/
|
||||
GTSAM_EXPORT void odprintf(const char *format, ...);
|
||||
|
||||
/**
|
||||
* Create vector initialized to a constant value
|
||||
* @param n is the size of the vector
|
||||
|
|
|
@ -1127,6 +1127,12 @@ TEST( matrix, svd2 )
|
|||
|
||||
svd(sampleA, U, s, V);
|
||||
|
||||
// take care of sign ambiguity
|
||||
if (U(0, 1) > 0) {
|
||||
U = -U;
|
||||
V = -V;
|
||||
}
|
||||
|
||||
EXPECT(assert_equal(expectedU,U));
|
||||
EXPECT(assert_equal(expected_s,s,1e-9));
|
||||
EXPECT(assert_equal(expectedV,V));
|
||||
|
@ -1143,6 +1149,13 @@ TEST( matrix, svd3 )
|
|||
Matrix expectedV = (Matrix(3, 2) << 0.,1.,0.,0.,-1.,0.);
|
||||
|
||||
svd(sampleAt, U, s, V);
|
||||
|
||||
// take care of sign ambiguity
|
||||
if (U(0, 0) > 0) {
|
||||
U = -U;
|
||||
V = -V;
|
||||
}
|
||||
|
||||
Matrix S = diag(s);
|
||||
Matrix t = U * S;
|
||||
Matrix Vt = trans(V);
|
||||
|
@ -1176,6 +1189,17 @@ TEST( matrix, svd4 )
|
|||
0.6723, 0.7403);
|
||||
|
||||
svd(A, U, s, V);
|
||||
|
||||
// take care of sign ambiguity
|
||||
if (U(0, 0) < 0) {
|
||||
U.col(0) = -U.col(0);
|
||||
V.col(0) = -V.col(0);
|
||||
}
|
||||
if (U(0, 1) < 0) {
|
||||
U.col(1) = -U.col(1);
|
||||
V.col(1) = -V.col(1);
|
||||
}
|
||||
|
||||
Matrix reconstructed = U * diag(s) * trans(V);
|
||||
|
||||
EXPECT(assert_equal(A, reconstructed, 1e-4));
|
||||
|
|
|
@ -299,6 +299,8 @@ namespace gtsam {
|
|||
|
||||
// Define some common g++ functions and macros we use that MSVC does not have
|
||||
|
||||
#if (_MSC_VER < 1800)
|
||||
|
||||
#include <boost/math/special_functions/fpclassify.hpp>
|
||||
namespace std {
|
||||
template<typename T> inline int isfinite(T a) {
|
||||
|
@ -309,6 +311,8 @@ namespace std {
|
|||
return (int)boost::math::isinf(a); }
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
#ifndef M_PI
|
||||
#define M_PI (boost::math::constants::pi<double>())
|
||||
|
|
|
@ -53,6 +53,8 @@ public:
|
|||
*/
|
||||
Cal3Bundler(double f, double k1, double k2, double u0 = 0, double v0 = 0);
|
||||
|
||||
virtual ~Cal3Bundler() {}
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
|
|
@ -23,24 +23,9 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
Cal3DS2::Cal3DS2(const Vector &v):
|
||||
fx_(v[0]), fy_(v[1]), s_(v[2]), u0_(v[3]), v0_(v[4]), k1_(v[5]), k2_(v[6]), p1_(v[7]), p2_(v[8]){}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2::K() const {
|
||||
return (Matrix(3, 3) << fx_, s_, u0_, 0.0, fy_, v0_, 0.0, 0.0, 1.0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Cal3DS2::vector() const {
|
||||
return (Vector(9) << fx_, fy_, s_, u0_, v0_, k1_, k2_, p1_, p2_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Cal3DS2::print(const std::string& s_) const {
|
||||
gtsam::print(K(), s_ + ".K");
|
||||
gtsam::print(Vector(k()), s_ + ".k");
|
||||
Base::print(s_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -52,135 +37,6 @@ bool Cal3DS2::equals(const Cal3DS2& K, double tol) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Eigen::Matrix<double, 2, 9> D2dcalibration(double x, double y, double xx,
|
||||
double yy, double xy, double rr, double r4, double pnx, double pny,
|
||||
const Eigen::Matrix<double, 2, 2>& DK) {
|
||||
Eigen::Matrix<double, 2, 5> DR1;
|
||||
DR1 << pnx, 0.0, pny, 1.0, 0.0, 0.0, pny, 0.0, 0.0, 1.0;
|
||||
Eigen::Matrix<double, 2, 4> DR2;
|
||||
DR2 << x * rr, x * r4, 2 * xy, rr + 2 * xx, //
|
||||
y * rr, y * r4, rr + 2 * yy, 2 * xy;
|
||||
Eigen::Matrix<double, 2, 9> D;
|
||||
D << DR1, DK * DR2;
|
||||
return D;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Eigen::Matrix<double, 2, 2> D2dintrinsic(double x, double y, double rr,
|
||||
double g, double k1, double k2, double p1, double p2,
|
||||
const Eigen::Matrix<double, 2, 2>& DK) {
|
||||
const double drdx = 2. * x;
|
||||
const double drdy = 2. * y;
|
||||
const double dgdx = k1 * drdx + k2 * 2. * rr * drdx;
|
||||
const double dgdy = k1 * drdy + k2 * 2. * rr * drdy;
|
||||
|
||||
// Dx = 2*p1*xy + p2*(rr+2*xx);
|
||||
// Dy = 2*p2*xy + p1*(rr+2*yy);
|
||||
const double dDxdx = 2. * p1 * y + p2 * (drdx + 4. * x);
|
||||
const double dDxdy = 2. * p1 * x + p2 * drdy;
|
||||
const double dDydx = 2. * p2 * y + p1 * drdx;
|
||||
const double dDydy = 2. * p2 * x + p1 * (drdy + 4. * y);
|
||||
|
||||
Eigen::Matrix<double, 2, 2> DR;
|
||||
DR << g + x * dgdx + dDxdx, x * dgdy + dDxdy, //
|
||||
y * dgdx + dDydx, g + y * dgdy + dDydy;
|
||||
|
||||
return DK * DR;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2::uncalibrate(const Point2& p, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2) const {
|
||||
|
||||
// rr = x^2 + y^2;
|
||||
// g = (1 + k(1)*rr + k(2)*rr^2);
|
||||
// dp = [2*k(3)*x*y + k(4)*(rr + 2*x^2); 2*k(4)*x*y + k(3)*(rr + 2*y^2)];
|
||||
// pi(:,i) = g * pn(:,i) + dp;
|
||||
const double x = p.x(), y = p.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = 1. + k1_ * rr + k2_ * r4; // scaling factor
|
||||
|
||||
// tangential component
|
||||
const double dx = 2. * p1_ * xy + p2_ * (rr + 2. * xx);
|
||||
const double dy = 2. * p2_ * xy + p1_ * (rr + 2. * yy);
|
||||
|
||||
// Radial and tangential distortion applied
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
if (H1 || H2) DK << fx_, s_, 0.0, fy_;
|
||||
|
||||
// Derivative for calibration
|
||||
if (H1)
|
||||
*H1 = D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
|
||||
// Derivative for points
|
||||
if (H2)
|
||||
*H2 = D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
|
||||
// Regular uncalibrate after distortion
|
||||
return Point2(fx_ * pnx + s_ * pny + u0_, fy_ * pny + v0_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2::calibrate(const Point2& pi, const double tol) const {
|
||||
// Use the following fixed point iteration to invert the radial distortion.
|
||||
// pn_{t+1} = (inv(K)*pi - dp(pn_{t})) / g(pn_{t})
|
||||
|
||||
const Point2 invKPi ((1 / fx_) * (pi.x() - u0_ - (s_ / fy_) * (pi.y() - v0_)),
|
||||
(1 / fy_) * (pi.y() - v0_));
|
||||
|
||||
// initialize by ignoring the distortion at all, might be problematic for pixels around boundary
|
||||
Point2 pn = invKPi;
|
||||
|
||||
// iterate until the uncalibrate is close to the actual pixel coordinate
|
||||
const int maxIterations = 10;
|
||||
int iteration;
|
||||
for (iteration = 0; iteration < maxIterations; ++iteration) {
|
||||
if (uncalibrate(pn).distance(pi) <= tol) break;
|
||||
const double x = pn.x(), y = pn.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double g = (1 + k1_ * rr + k2_ * rr * rr);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
pn = (invKPi - Point2(dx, dy)) / g;
|
||||
}
|
||||
|
||||
if ( iteration >= maxIterations )
|
||||
throw std::runtime_error("Cal3DS2::calibrate fails to converge. need a better initialization");
|
||||
|
||||
return pn;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2::D2d_intrinsic(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2::D2d_calibration(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y, xy = x * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Cal3DS2 Cal3DS2::retract(const Vector& d) const {
|
||||
return Cal3DS2(vector() + d);
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
/**
|
||||
* @file Cal3DS2.h
|
||||
* @brief Calibration of a camera with radial distortion
|
||||
* @brief Calibration of a camera with radial distortion, calculations in base class Cal3DS2_Base
|
||||
* @date Feb 28, 2010
|
||||
* @author ydjian
|
||||
*/
|
||||
|
@ -19,7 +19,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Cal3DS2_Base.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -37,34 +37,29 @@ namespace gtsam {
|
|||
* k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
|
||||
* pi = K*pn
|
||||
*/
|
||||
class GTSAM_EXPORT Cal3DS2 : public DerivedValue<Cal3DS2> {
|
||||
class GTSAM_EXPORT Cal3DS2 : public Cal3DS2_Base, public DerivedValue<Cal3DS2> {
|
||||
|
||||
protected:
|
||||
|
||||
double fx_, fy_, s_, u0_, v0_ ; // focal length, skew and principal point
|
||||
double k1_, k2_ ; // radial 2nd-order and 4th-order
|
||||
double p1_, p2_ ; // tangential distortion
|
||||
typedef Cal3DS2_Base Base;
|
||||
|
||||
public:
|
||||
Matrix K() const ;
|
||||
Eigen::Vector4d k() const { return Eigen::Vector4d(k1_, k2_, p1_, p2_); }
|
||||
Vector vector() const ;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/// Default Constructor with only unit focal length
|
||||
Cal3DS2() : fx_(1), fy_(1), s_(0), u0_(0), v0_(0), k1_(0), k2_(0), p1_(0), p2_(0) {}
|
||||
Cal3DS2() : Base() {}
|
||||
|
||||
Cal3DS2(double fx, double fy, double s, double u0, double v0,
|
||||
double k1, double k2, double p1 = 0.0, double p2 = 0.0) :
|
||||
fx_(fx), fy_(fy), s_(s), u0_(u0), v0_(v0), k1_(k1), k2_(k2), p1_(p1), p2_(p2) {}
|
||||
Base(fx, fy, s, u0, v0, k1, k2, p1, p2) {}
|
||||
|
||||
virtual ~Cal3DS2() {}
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Constructors
|
||||
/// @{
|
||||
|
||||
Cal3DS2(const Vector &v) ;
|
||||
Cal3DS2(const Vector &v) : Base(v) {}
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
|
@ -76,57 +71,6 @@ public:
|
|||
/// assert equality up to a tolerance
|
||||
bool equals(const Cal3DS2& K, double tol = 10e-9) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/// focal length x
|
||||
inline double fx() const { return fx_;}
|
||||
|
||||
/// focal length x
|
||||
inline double fy() const { return fy_;}
|
||||
|
||||
/// skew
|
||||
inline double skew() const { return s_;}
|
||||
|
||||
/// image center in x
|
||||
inline double px() const { return u0_;}
|
||||
|
||||
/// image center in y
|
||||
inline double py() const { return v0_;}
|
||||
|
||||
/// First distortion coefficient
|
||||
inline double k1() const { return k1_;}
|
||||
|
||||
/// Second distortion coefficient
|
||||
inline double k2() const { return k2_;}
|
||||
|
||||
/// First tangential distortion coefficient
|
||||
inline double p1() const { return p1_;}
|
||||
|
||||
/// Second tangential distortion coefficient
|
||||
inline double p2() const { return p2_;}
|
||||
|
||||
/**
|
||||
* convert intrinsic coordinates xy to (distorted) image coordinates uv
|
||||
* @param p point in intrinsic coordinates
|
||||
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
|
||||
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
|
||||
* @return point in (distorted) image coordinates
|
||||
*/
|
||||
Point2 uncalibrate(const Point2& p,
|
||||
boost::optional<Matrix&> Dcal = boost::none,
|
||||
boost::optional<Matrix&> Dp = boost::none) const ;
|
||||
|
||||
/// Convert (distorted) image coordinates uv to intrinsic coordinates xy
|
||||
Point2 calibrate(const Point2& p, const double tol=1e-5) const;
|
||||
|
||||
/// Derivative of uncalibrate wrpt intrinsic coordinates
|
||||
Matrix D2d_intrinsic(const Point2& p) const ;
|
||||
|
||||
/// Derivative of uncalibrate wrpt the calibration parameters
|
||||
Matrix D2d_calibration(const Point2& p) const ;
|
||||
|
||||
/// @}
|
||||
/// @name Manifold
|
||||
/// @{
|
||||
|
@ -156,18 +100,10 @@ private:
|
|||
{
|
||||
ar & boost::serialization::make_nvp("Cal3DS2",
|
||||
boost::serialization::base_object<Value>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(fx_);
|
||||
ar & BOOST_SERIALIZATION_NVP(fy_);
|
||||
ar & BOOST_SERIALIZATION_NVP(s_);
|
||||
ar & BOOST_SERIALIZATION_NVP(u0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(v0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k2_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p2_);
|
||||
ar & boost::serialization::make_nvp("Cal3DS2",
|
||||
boost::serialization::base_object<Cal3DS2_Base>(*this));
|
||||
}
|
||||
|
||||
|
||||
/// @}
|
||||
|
||||
};
|
||||
|
|
|
@ -0,0 +1,187 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Cal3DS2_Base.cpp
|
||||
* @date Feb 28, 2010
|
||||
* @author ydjian
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/geometry/Cal3DS2_Base.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
Cal3DS2_Base::Cal3DS2_Base(const Vector &v):
|
||||
fx_(v[0]), fy_(v[1]), s_(v[2]), u0_(v[3]), v0_(v[4]), k1_(v[5]), k2_(v[6]), p1_(v[7]), p2_(v[8]){}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2_Base::K() const {
|
||||
return (Matrix(3, 3) << fx_, s_, u0_, 0.0, fy_, v0_, 0.0, 0.0, 1.0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Cal3DS2_Base::vector() const {
|
||||
return (Vector(9) << fx_, fy_, s_, u0_, v0_, k1_, k2_, p1_, p2_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Cal3DS2_Base::print(const std::string& s_) const {
|
||||
gtsam::print(K(), s_ + ".K");
|
||||
gtsam::print(Vector(k()), s_ + ".k");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool Cal3DS2_Base::equals(const Cal3DS2_Base& K, double tol) const {
|
||||
if (fabs(fx_ - K.fx_) > tol || fabs(fy_ - K.fy_) > tol || fabs(s_ - K.s_) > tol ||
|
||||
fabs(u0_ - K.u0_) > tol || fabs(v0_ - K.v0_) > tol || fabs(k1_ - K.k1_) > tol ||
|
||||
fabs(k2_ - K.k2_) > tol || fabs(p1_ - K.p1_) > tol || fabs(p2_ - K.p2_) > tol)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Eigen::Matrix<double, 2, 9> D2dcalibration(double x, double y, double xx,
|
||||
double yy, double xy, double rr, double r4, double pnx, double pny,
|
||||
const Eigen::Matrix<double, 2, 2>& DK) {
|
||||
Eigen::Matrix<double, 2, 5> DR1;
|
||||
DR1 << pnx, 0.0, pny, 1.0, 0.0, 0.0, pny, 0.0, 0.0, 1.0;
|
||||
Eigen::Matrix<double, 2, 4> DR2;
|
||||
DR2 << x * rr, x * r4, 2 * xy, rr + 2 * xx, //
|
||||
y * rr, y * r4, rr + 2 * yy, 2 * xy;
|
||||
Eigen::Matrix<double, 2, 9> D;
|
||||
D << DR1, DK * DR2;
|
||||
return D;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Eigen::Matrix<double, 2, 2> D2dintrinsic(double x, double y, double rr,
|
||||
double g, double k1, double k2, double p1, double p2,
|
||||
const Eigen::Matrix<double, 2, 2>& DK) {
|
||||
const double drdx = 2. * x;
|
||||
const double drdy = 2. * y;
|
||||
const double dgdx = k1 * drdx + k2 * 2. * rr * drdx;
|
||||
const double dgdy = k1 * drdy + k2 * 2. * rr * drdy;
|
||||
|
||||
// Dx = 2*p1*xy + p2*(rr+2*xx);
|
||||
// Dy = 2*p2*xy + p1*(rr+2*yy);
|
||||
const double dDxdx = 2. * p1 * y + p2 * (drdx + 4. * x);
|
||||
const double dDxdy = 2. * p1 * x + p2 * drdy;
|
||||
const double dDydx = 2. * p2 * y + p1 * drdx;
|
||||
const double dDydy = 2. * p2 * x + p1 * (drdy + 4. * y);
|
||||
|
||||
Eigen::Matrix<double, 2, 2> DR;
|
||||
DR << g + x * dgdx + dDxdx, x * dgdy + dDxdy, //
|
||||
y * dgdx + dDydx, g + y * dgdy + dDydy;
|
||||
|
||||
return DK * DR;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2_Base::uncalibrate(const Point2& p, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2) const {
|
||||
|
||||
// rr = x^2 + y^2;
|
||||
// g = (1 + k(1)*rr + k(2)*rr^2);
|
||||
// dp = [2*k(3)*x*y + k(4)*(rr + 2*x^2); 2*k(4)*x*y + k(3)*(rr + 2*y^2)];
|
||||
// pi(:,i) = g * pn(:,i) + dp;
|
||||
const double x = p.x(), y = p.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = 1. + k1_ * rr + k2_ * r4; // scaling factor
|
||||
|
||||
// tangential component
|
||||
const double dx = 2. * p1_ * xy + p2_ * (rr + 2. * xx);
|
||||
const double dy = 2. * p2_ * xy + p1_ * (rr + 2. * yy);
|
||||
|
||||
// Radial and tangential distortion applied
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
if (H1 || H2) DK << fx_, s_, 0.0, fy_;
|
||||
|
||||
// Derivative for calibration
|
||||
if (H1)
|
||||
*H1 = D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
|
||||
// Derivative for points
|
||||
if (H2)
|
||||
*H2 = D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
|
||||
// Regular uncalibrate after distortion
|
||||
return Point2(fx_ * pnx + s_ * pny + u0_, fy_ * pny + v0_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2_Base::calibrate(const Point2& pi, const double tol) const {
|
||||
// Use the following fixed point iteration to invert the radial distortion.
|
||||
// pn_{t+1} = (inv(K)*pi - dp(pn_{t})) / g(pn_{t})
|
||||
|
||||
const Point2 invKPi ((1 / fx_) * (pi.x() - u0_ - (s_ / fy_) * (pi.y() - v0_)),
|
||||
(1 / fy_) * (pi.y() - v0_));
|
||||
|
||||
// initialize by ignoring the distortion at all, might be problematic for pixels around boundary
|
||||
Point2 pn = invKPi;
|
||||
|
||||
// iterate until the uncalibrate is close to the actual pixel coordinate
|
||||
const int maxIterations = 10;
|
||||
int iteration;
|
||||
for (iteration = 0; iteration < maxIterations; ++iteration) {
|
||||
if (uncalibrate(pn).distance(pi) <= tol) break;
|
||||
const double x = pn.x(), y = pn.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double g = (1 + k1_ * rr + k2_ * rr * rr);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
pn = (invKPi - Point2(dx, dy)) / g;
|
||||
}
|
||||
|
||||
if ( iteration >= maxIterations )
|
||||
throw std::runtime_error("Cal3DS2::calibrate fails to converge. need a better initialization");
|
||||
|
||||
return pn;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2_Base::D2d_intrinsic(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2_Base::D2d_calibration(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y, xy = x * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
}
|
||||
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
@ -0,0 +1,158 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Cal3DS2.h
|
||||
* @brief Calibration of a camera with radial distortion
|
||||
* @date Feb 28, 2010
|
||||
* @author ydjian
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief Calibration of a camera with radial distortion
|
||||
* @addtogroup geometry
|
||||
* \nosubgrouping
|
||||
*
|
||||
* Uses same distortionmodel as OpenCV, with
|
||||
* http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
|
||||
* but using only k1,k2,p1, and p2 coefficients.
|
||||
* K = [ fx s u0 ; 0 fy v0 ; 0 0 1 ]
|
||||
* rr = Pn.x^2 + Pn.y^2
|
||||
* \hat{pn} = (1 + k1*rr + k2*rr^2 ) pn + [ 2*k3 pn.x pn.y + k4 (rr + 2 Pn.x^2) ;
|
||||
* k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
|
||||
* pi = K*pn
|
||||
*/
|
||||
class GTSAM_EXPORT Cal3DS2_Base {
|
||||
|
||||
protected:
|
||||
|
||||
double fx_, fy_, s_, u0_, v0_ ; // focal length, skew and principal point
|
||||
double k1_, k2_ ; // radial 2nd-order and 4th-order
|
||||
double p1_, p2_ ; // tangential distortion
|
||||
|
||||
public:
|
||||
Matrix K() const ;
|
||||
Eigen::Vector4d k() const { return Eigen::Vector4d(k1_, k2_, p1_, p2_); }
|
||||
Vector vector() const ;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/// Default Constructor with only unit focal length
|
||||
Cal3DS2_Base() : fx_(1), fy_(1), s_(0), u0_(0), v0_(0), k1_(0), k2_(0), p1_(0), p2_(0) {}
|
||||
|
||||
Cal3DS2_Base(double fx, double fy, double s, double u0, double v0,
|
||||
double k1, double k2, double p1 = 0.0, double p2 = 0.0) :
|
||||
fx_(fx), fy_(fy), s_(s), u0_(u0), v0_(v0), k1_(k1), k2_(k2), p1_(p1), p2_(p2) {}
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Constructors
|
||||
/// @{
|
||||
|
||||
Cal3DS2_Base(const Vector &v) ;
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/// print with optional string
|
||||
void print(const std::string& s = "") const ;
|
||||
|
||||
/// assert equality up to a tolerance
|
||||
bool equals(const Cal3DS2_Base& K, double tol = 10e-9) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/// focal length x
|
||||
inline double fx() const { return fx_;}
|
||||
|
||||
/// focal length x
|
||||
inline double fy() const { return fy_;}
|
||||
|
||||
/// skew
|
||||
inline double skew() const { return s_;}
|
||||
|
||||
/// image center in x
|
||||
inline double px() const { return u0_;}
|
||||
|
||||
/// image center in y
|
||||
inline double py() const { return v0_;}
|
||||
|
||||
/// First distortion coefficient
|
||||
inline double k1() const { return k1_;}
|
||||
|
||||
/// Second distortion coefficient
|
||||
inline double k2() const { return k2_;}
|
||||
|
||||
/// First tangential distortion coefficient
|
||||
inline double p1() const { return p1_;}
|
||||
|
||||
/// Second tangential distortion coefficient
|
||||
inline double p2() const { return p2_;}
|
||||
|
||||
/**
|
||||
* convert intrinsic coordinates xy to (distorted) image coordinates uv
|
||||
* @param p point in intrinsic coordinates
|
||||
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
|
||||
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
|
||||
* @return point in (distorted) image coordinates
|
||||
*/
|
||||
Point2 uncalibrate(const Point2& p,
|
||||
boost::optional<Matrix&> Dcal = boost::none,
|
||||
boost::optional<Matrix&> Dp = boost::none) const ;
|
||||
|
||||
/// Convert (distorted) image coordinates uv to intrinsic coordinates xy
|
||||
Point2 calibrate(const Point2& p, const double tol=1e-5) const;
|
||||
|
||||
/// Derivative of uncalibrate wrpt intrinsic coordinates
|
||||
Matrix D2d_intrinsic(const Point2& p) const ;
|
||||
|
||||
/// Derivative of uncalibrate wrpt the calibration parameters
|
||||
Matrix D2d_calibration(const Point2& p) const ;
|
||||
|
||||
|
||||
private:
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
/// @{
|
||||
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class Archive>
|
||||
void serialize(Archive & ar, const unsigned int version)
|
||||
{
|
||||
ar & BOOST_SERIALIZATION_NVP(fx_);
|
||||
ar & BOOST_SERIALIZATION_NVP(fy_);
|
||||
ar & BOOST_SERIALIZATION_NVP(s_);
|
||||
ar & BOOST_SERIALIZATION_NVP(u0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(v0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k2_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p2_);
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
|
@ -22,8 +22,8 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Cal3DS2.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Cal3DS2_Base.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -40,10 +40,10 @@ namespace gtsam {
|
|||
* k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
|
||||
* pi = K*pn
|
||||
*/
|
||||
class GTSAM_EXPORT Cal3Unified : public Cal3DS2 {
|
||||
class GTSAM_EXPORT Cal3Unified : public Cal3DS2_Base, public DerivedValue<Cal3Unified> {
|
||||
|
||||
typedef Cal3Unified This;
|
||||
typedef Cal3DS2 Base;
|
||||
typedef Cal3DS2_Base Base;
|
||||
|
||||
private:
|
||||
|
||||
|
@ -90,7 +90,7 @@ public:
|
|||
/**
|
||||
* convert intrinsic coordinates xy to image coordinates uv
|
||||
* @param p point in intrinsic coordinates
|
||||
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
|
||||
* @param Dcal optional 2*10 Jacobian wrpt Cal3Unified parameters
|
||||
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
|
||||
* @return point in image coordinates
|
||||
*/
|
||||
|
@ -135,7 +135,9 @@ private:
|
|||
void serialize(Archive & ar, const unsigned int version)
|
||||
{
|
||||
ar & boost::serialization::make_nvp("Cal3Unified",
|
||||
boost::serialization::base_object<Cal3DS2>(*this));
|
||||
boost::serialization::base_object<Value>(*this));
|
||||
ar & boost::serialization::make_nvp("Cal3Unified",
|
||||
boost::serialization::base_object<Cal3DS2_Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(xi_);
|
||||
}
|
||||
|
||||
|
|
|
@ -165,6 +165,16 @@ public:
|
|||
*/
|
||||
Vector3 calibrate(const Vector3& p) const;
|
||||
|
||||
/// "Between", subtracts calibrations. between(p,q) == compose(inverse(p),q)
|
||||
inline Cal3_S2 between(const Cal3_S2& q,
|
||||
boost::optional<Matrix&> H1=boost::none,
|
||||
boost::optional<Matrix&> H2=boost::none) const {
|
||||
if(H1) *H1 = -eye(5);
|
||||
if(H2) *H2 = eye(5);
|
||||
return Cal3_S2(q.fx_-fx_, q.fy_-fy_, q.s_-s_, q.u0_-u0_, q.v0_-v0_);
|
||||
}
|
||||
|
||||
|
||||
/// @}
|
||||
/// @name Manifold
|
||||
/// @{
|
||||
|
|
|
@ -240,7 +240,7 @@ Rot3 Rot3::retract(const Vector& omega, Rot3::CoordinatesMode mode) const {
|
|||
return retractCayley(omega);
|
||||
} else if(mode == Rot3::SLOW_CAYLEY) {
|
||||
Matrix Omega = skewSymmetric(omega);
|
||||
return (*this)*Cayley<3>(-Omega/2);
|
||||
return (*this)*CayleyFixed<3>(-Omega/2);
|
||||
} else {
|
||||
assert(false);
|
||||
exit(1);
|
||||
|
@ -269,7 +269,7 @@ Vector3 Rot3::localCoordinates(const Rot3& T, Rot3::CoordinatesMode mode) const
|
|||
// Create a fixed-size matrix
|
||||
Eigen::Matrix3d A(between(T).matrix());
|
||||
// using templated version of Cayley
|
||||
Eigen::Matrix3d Omega = Cayley<3>(A);
|
||||
Eigen::Matrix3d Omega = CayleyFixed<3>(A);
|
||||
return -2*Vector3(Omega(2,1),Omega(0,2),Omega(1,0));
|
||||
} else {
|
||||
assert(false);
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
#include <gtsam/geometry/Rot3.h>
|
||||
#include <cmath>
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
@ -120,14 +121,31 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Log map at identity - return the canonical coordinates of this rotation
|
||||
Vector3 Rot3::Logmap(const Rot3& R) {
|
||||
Eigen::AngleAxisd angleAxis(R.quaternion_);
|
||||
if(angleAxis.angle() > M_PI) // Important: use the smallest possible
|
||||
angleAxis.angle() -= 2.0*M_PI; // angle, e.g. no more than PI, to keep
|
||||
if(angleAxis.angle() < -M_PI) // error continuous.
|
||||
angleAxis.angle() += 2.0*M_PI;
|
||||
return angleAxis.axis() * angleAxis.angle();
|
||||
using std::acos;
|
||||
using std::sqrt;
|
||||
static const double twoPi = 2.0 * M_PI,
|
||||
// define these compile time constants to avoid std::abs:
|
||||
NearlyOne = 1.0 - 1e-10, NearlyNegativeOne = -1.0 + 1e-10;
|
||||
|
||||
const Quaternion& q = R.quaternion_;
|
||||
const double qw = q.w();
|
||||
if (qw > NearlyOne) {
|
||||
// Taylor expansion of (angle / s) at 1
|
||||
return (2 - 2 * (qw - 1) / 3) * q.vec();
|
||||
} else if (qw < NearlyNegativeOne) {
|
||||
// Angle is zero, return zero vector
|
||||
return Vector3::Zero();
|
||||
} else {
|
||||
// Normal, away from zero case
|
||||
double angle = 2 * acos(qw), s = sqrt(1 - qw * qw);
|
||||
// Important: convert to [-pi,pi] to keep error continuous
|
||||
if (angle > M_PI)
|
||||
angle -= twoPi;
|
||||
else if (angle < -M_PI)
|
||||
angle += twoPi;
|
||||
return (angle / s) * q.vec();
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -21,7 +21,16 @@
|
|||
#include <gtsam/geometry/Unit3.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
|
||||
#ifdef __clang__
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wunused-variable"
|
||||
#endif
|
||||
#include <boost/random/uniform_on_sphere.hpp>
|
||||
#ifdef __clang__
|
||||
# pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
#include <boost/random/variate_generator.hpp>
|
||||
#include <iostream>
|
||||
|
||||
|
@ -58,11 +67,11 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
const Matrix& Unit3::basis() const {
|
||||
const Unit3::Matrix32& Unit3::basis() const {
|
||||
|
||||
// Return cached version if exists
|
||||
if (B_.rows() == 3)
|
||||
return B_;
|
||||
if (B_)
|
||||
return *B_;
|
||||
|
||||
// Get the axis of rotation with the minimum projected length of the point
|
||||
Point3 axis;
|
||||
|
@ -83,9 +92,9 @@ const Matrix& Unit3::basis() const {
|
|||
b2 = b2 / b2.norm();
|
||||
|
||||
// Create the basis matrix
|
||||
B_ = Matrix(3, 2);
|
||||
B_ << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
|
||||
return B_;
|
||||
B_.reset(Unit3::Matrix32());
|
||||
(*B_) << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
|
||||
return *B_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -101,6 +110,7 @@ Matrix Unit3::skew() const {
|
|||
|
||||
/* ************************************************************************* */
|
||||
Vector Unit3::error(const Unit3& q, boost::optional<Matrix&> H) const {
|
||||
// 2D error is equal to B'*q, as B is 3x2 matrix and q is 3x1
|
||||
Matrix Bt = basis().transpose();
|
||||
Vector xi = Bt * q.p_.vector();
|
||||
if (H)
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/optional.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -31,8 +32,10 @@ class GTSAM_EXPORT Unit3: public DerivedValue<Unit3> {
|
|||
|
||||
private:
|
||||
|
||||
typedef Eigen::Matrix<double,3,2> Matrix32;
|
||||
|
||||
Point3 p_; ///< The location of the point on the unit sphere
|
||||
mutable Matrix B_; ///< Cached basis
|
||||
mutable boost::optional<Matrix32> B_; ///< Cached basis
|
||||
|
||||
public:
|
||||
|
||||
|
@ -84,7 +87,7 @@ public:
|
|||
* It is a 3*2 matrix [b1 b2] composed of two orthogonal directions
|
||||
* tangent to the sphere at the current direction.
|
||||
*/
|
||||
const Matrix& basis() const;
|
||||
const Matrix32& basis() const;
|
||||
|
||||
/// Return skew-symmetric associated with 3D point on unit sphere
|
||||
Matrix skew() const;
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue