Adding a function to translate output data into csv and store in local directory

release/4.3a0
darshan-17 2025-03-24 20:47:34 -07:00 committed by jenniferoum
parent d9cd90589c
commit 9aefd92998
1 changed files with 683 additions and 0 deletions

View File

@ -0,0 +1,683 @@
//
// Created by darshan on 3/17/25.
//
#ifndef RUNEQF_WITHCSV_H
#define RUNEQF_WITHCSV_H
//
// Created by darshan on 3/17/25.
//
#include "Data.h"
#include "State.h"
#include "Input.h"
#include "Direction.h"
#include "Measurements.h"
#include "utilities.h"
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Quaternion.h>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
#include <stdexcept>
#include <iostream>
#include <cmath>
#include <chrono>
/**
* Load data from CSV file into a vector of Data objects for the EqF
*
* CSV format:
* - t: Time
* - q_w, q_x, q_y, q_z: True attitude quaternion
* - b_x, b_y, b_z: True bias
* - cq_w_0, cq_x_0, cq_y_0, cq_z_0: True calibration quaternion
* - w_x, w_y, w_z: Angular velocity measurements
* - std_w_x, std_w_y, std_w_z: Angular velocity measurement standard deviations
* - std_b_x, std_b_y, std_b_z: Bias process noise standard deviations
* - y_x_0, y_y_0, y_z_0, y_x_1, y_y_1, y_z_1: Direction measurements
* - std_y_x_0, std_y_y_0, std_y_z_0, std_y_x_1, std_y_y_1, std_y_z_1: Direction measurement standard deviations
* - d_x_0, d_y_0, d_z_0, d_x_1, d_y_1, d_z_1: Reference directions
*
* @param filename Path to the CSV file
* @param startRow First row to load (default: 0)
* @param maxRows Maximum number of rows to load (default: all)
* @param downsample Downsample factor (default: 1, which means no downsampling)
* @return Vector of Data objects
*/
inline std::vector<Data> loadDataFromCSV(const std::string& filename,
int startRow = 0,
int maxRows = -1,
int downsample = 1) {
std::vector<Data> data_list;
std::ifstream file(filename);
if (!file.is_open()) {
throw std::runtime_error("Failed to open file: " + filename);
}
std::string line;
int lineNumber = 0;
int rowCount = 0;
double prevTime = 0.0;
// Skip header
std::getline(file, line);
lineNumber++;
// Skip to startRow
while (lineNumber < startRow && std::getline(file, line)) {
lineNumber++;
}
// Read data
while (std::getline(file, line) && (maxRows == -1 || rowCount < maxRows)) {
lineNumber++;
// Apply downsampling
if ((lineNumber - startRow - 1) % downsample != 0) {
continue;
}
std::istringstream ss(line);
std::string token;
std::vector<double> values;
// Parse line into values
while (std::getline(ss, token, ',')) {
try {
values.push_back(std::stod(token));
} catch (const std::exception& e) {
std::cerr << "Error parsing value at line " << lineNumber << ": " << token << std::endl;
values.push_back(0.0); // Use default value
}
}
// Check if we have enough values
if (values.size() < 39) {
std::cerr << "Warning: Line " << lineNumber << " has only " << values.size()
<< " values, expected 39. Skipping." << std::endl;
continue;
}
// Extract values
double t = values[0];
double dt = (rowCount == 0) ? 0.0 : t - prevTime;
prevTime = t;
// Create ground truth state
Quaternion quat(values[1], values[2], values[3], values[4]); // w, x, y, z
Rot3 R = Rot3(quat);
Vector3 b(values[5], values[6], values[7]);
Quaternion calQuat(values[8], values[9], values[10], values[11]); // w, x, y, z
std::vector<Rot3> S = {Rot3(calQuat)};
State xi(R, b, S);
// Create input
Vector3 w(values[12], values[13], values[14]);
// Create input covariance matrix (6x6)
// First 3x3 block for angular velocity, second 3x3 block for bias process noise
Matrix inputCov = Matrix::Zero(6, 6);
inputCov(0, 0) = values[15] * values[15]; // std_w_x^2
inputCov(1, 1) = values[16] * values[16]; // std_w_y^2
inputCov(2, 2) = values[17] * values[17]; // std_w_z^2
inputCov(3, 3) = values[18] * values[18]; // std_b_x^2
inputCov(4, 4) = values[19] * values[19]; // std_b_y^2
inputCov(5, 5) = values[20] * values[20]; // std_b_z^2
Input u(w, inputCov);
// Create measurements
std::vector<Measurement> measurements;
// First measurement (calibrated sensor, cal_idx = 0)
Vector3 y0(values[21], values[22], values[23]);
Vector3 d0(values[33], values[34], values[35]);
// Normalize vectors if needed
if (abs(y0.norm() - 1.0) > 1e-5) y0.normalize();
if (abs(d0.norm() - 1.0) > 1e-5) d0.normalize();
// Measurement covariance
Matrix3 covY0 = Matrix3::Zero();
covY0(0, 0) = values[27] * values[27]; // std_y_x_0^2
covY0(1, 1) = values[28] * values[28]; // std_y_y_0^2
covY0(2, 2) = values[29] * values[29]; // std_y_z_0^2
// Create measurement
measurements.push_back(Measurement(y0, d0, covY0, 0));
// Second measurement (calibrated sensor, cal_idx = -1)
Vector3 y1(values[24], values[25], values[26]);
Vector3 d1(values[36], values[37], values[38]);
// Normalize vectors if needed
if (abs(y1.norm() - 1.0) > 1e-5) y1.normalize();
if (abs(d1.norm() - 1.0) > 1e-5) d1.normalize();
// Measurement covariance
Matrix3 covY1 = Matrix3::Zero();
covY1(0, 0) = values[30] * values[30]; // std_y_x_1^2
covY1(1, 1) = values[31] * values[31]; // std_y_y_1^2
covY1(2, 2) = values[32] * values[32]; // std_y_z_1^2
// Create measurement
measurements.push_back(Measurement(y1, d1, covY1, -1));
// Create Data object and add to list
data_list.push_back(Data(xi, 1, u, measurements, 2, t, dt));
rowCount++;
}
std::cout << "Loaded " << data_list.size() << " data points from CSV file." << std::endl;
return data_list;
}
/**
* Process Data objects with the EqF filter
*
* @param filter EqF filter to use
* @param data_list Vector of Data objects
* @param saveResults Whether to save results to a file
* @param resultFilename Filename to save results to
*/
inline void printDataPoint(const Data& data, int index) {
std::cout << "Data[" << index << "] @ t=" << data.t << ", dt=" << data.dt << std::endl;
// Print angular velocity
std::cout << " ω = [" << data.u.w[0] << ", " << data.u.w[1] << ", " << data.u.w[2] << "]" << std::endl;
// Print measurements
for (size_t i = 0; i < data.y.size(); i++) {
const Measurement& meas = data.y[i];
// Use the unitVector() method to get a Vector3 from a Unit3 object
Vector3 y_vec = meas.y.d.unitVector();
Vector3 d_vec = meas.d.d.unitVector();
std::cout << " y" << i << " = [" << y_vec[0] << ", " << y_vec[1] << ", " << y_vec[2] << "]" << std::endl;
std::cout << " d" << i << " = [" << d_vec[0] << ", " << d_vec[1] << ", " << d_vec[2] << "]" << std::endl;
}
std::cout << std::endl;
}
// Function to print sample data points
inline void printDataSamples(const std::vector<Data>& data_list, int count = 3) {
int total = data_list.size();
std::cout << "\n=== First " << count << " Data Points ===" << std::endl;
for (int i = 0; i < std::min(count, total); i++) {
printDataPoint(data_list[i], i);
}
if (total > 2*count) {
std::cout << "\n... (" << (total - 2*count) << " points omitted) ...\n" << std::endl;
std::cout << "=== Last " << count << " Data Points ===" << std::endl;
for (int i = std::max(count, total - count); i < total; i++) {
printDataPoint(data_list[i], i);
}
}
}
// Function to validate data
inline bool validateData(const std::vector<Data>& data_list) {
if (data_list.empty()) {
std::cerr << "ERROR: No data loaded from CSV" << std::endl;
return false;
}
std::cout << "Validating " << data_list.size() << " data points..." << std::endl;
// Track statistics
int invalid_count = 0;
// Open a log file to record detailed issues
std::ofstream logFile("data_validation.log");
logFile << "Data Validation Report" << std::endl;
logFile << "--------------------" << std::endl;
for (size_t i = 0; i < data_list.size(); ++i) {
const Data& data = data_list[i];
bool point_valid = true;
// Check time and dt
if (std::isnan(data.t) || std::isnan(data.dt)) {
logFile << "Point " << i << ": Invalid time values (t=" << data.t
<< ", dt=" << data.dt << ")" << std::endl;
point_valid = false;
}
// Check ground truth state for NaN - using isnan directly on components
const auto& R_matrix = data.xi.R.matrix();
bool R_has_nan = false;
for (int r = 0; r < 3; r++) {
for (int c = 0; c < 3; c++) {
if (std::isnan(R_matrix(r, c))) {
R_has_nan = true;
break;
}
}
}
if (R_has_nan) {
logFile << "Point " << i << ": NaN in ground truth attitude matrix" << std::endl;
point_valid = false;
}
// Check bias vector for NaN
bool b_has_nan = false;
for (int j = 0; j < 3; j++) {
if (std::isnan(data.xi.b[j])) {
b_has_nan = true;
break;
}
}
if (b_has_nan) {
logFile << "Point " << i << ": NaN in ground truth bias vector" << std::endl;
point_valid = false;
}
// Check calibration matrices for NaN
for (size_t j = 0; j < data.xi.S.size(); ++j) {
const auto& S_matrix = data.xi.S[j].matrix();
bool S_has_nan = false;
for (int r = 0; r < 3; r++) {
for (int c = 0; c < 3; c++) {
if (std::isnan(S_matrix(r, c))) {
S_has_nan = true;
break;
}
}
}
if (S_has_nan) {
logFile << "Point " << i << ": NaN in ground truth calibration matrix "
<< j << std::endl;
point_valid = false;
}
}
// Check input for NaN
bool w_has_nan = false;
for (int j = 0; j < 3; j++) {
if (std::isnan(data.u.w[j])) {
w_has_nan = true;
break;
}
}
if (w_has_nan) {
logFile << "Point " << i << ": NaN in angular velocity" << std::endl;
point_valid = false;
}
// Check measurements
for (size_t j = 0; j < data.y.size(); ++j) {
const Measurement& meas = data.y[j];
// Get the Vector3 representations to check them
Vector3 y_vec = meas.y.d.unitVector();
Vector3 d_vec = meas.d.d.unitVector();
// Check measurement vector for NaN
bool y_has_nan = false;
bool d_has_nan = false;
for (int k = 0; k < 3; k++) {
if (std::isnan(y_vec[k])) {
y_has_nan = true;
break;
}
if (std::isnan(d_vec[k])) {
d_has_nan = true;
break;
}
}
if (y_has_nan) {
logFile << "Point " << i << ", Meas " << j << ": NaN in measurement vector" << std::endl;
point_valid = false;
}
if (d_has_nan) {
logFile << "Point " << i << ", Meas " << j << ": NaN in reference direction" << std::endl;
point_valid = false;
}
// Calculate norm using Vector3 norms
double y_norm = y_vec.norm();
double d_norm = d_vec.norm();
if (std::abs(y_norm - 1.0) > 1e-5) {
logFile << "Point " << i << ", Meas " << j
<< ": Measurement vector not normalized. Norm = " << y_norm << std::endl;
point_valid = false;
}
if (std::abs(d_norm - 1.0) > 1e-5) {
logFile << "Point " << i << ", Meas " << j
<< ": Reference direction not normalized. Norm = " << d_norm << std::endl;
point_valid = false;
}
}
if (!point_valid) {
invalid_count++;
// Print first few invalid points to console
if (invalid_count <= 5) {
std::cerr << "Invalid data at point " << i << " (t=" << data.t << ")" << std::endl;
}
}
}
// Close the log
logFile << std::endl << "Summary: " << invalid_count << " invalid data points out of "
<< data_list.size() << std::endl;
logFile.close();
// Print summary
std::cout << "Data validation complete. " << invalid_count << " invalid points found." << std::endl;
if (invalid_count > 0) {
std::cout << "See data_validation.log for details." << std::endl;
}
return (invalid_count == 0);
}
inline void processDataWithEqF(EqF& filter,
const std::vector<Data>& data_list,
bool saveResults = false,
const std::string& resultFilename = "eqf_results.csv") {
std::ofstream resultFile;
if (saveResults) {
resultFile.open(resultFilename);
if (!resultFile.is_open()) {
throw std::runtime_error("Failed to open result file: " + resultFilename);
}
// Write header - now adding roll, pitch, yaw columns for estimated and true values
resultFile << "t,";
// Estimated state quaternion
resultFile << "est_qw,est_qx,est_qy,est_qz,";
// Estimated bias
resultFile << "est_bx,est_by,est_bz,";
// Estimated calibration quaternion
resultFile << "est_cqw,est_cqx,est_cqy,est_cqz,";
// True state quaternion
resultFile << "true_qw,true_qx,true_qy,true_qz,";
// True bias
resultFile << "true_bx,true_by,true_bz,";
// True calibration quaternion
resultFile << "true_cqw,true_cqx,true_cqy,true_cqz,";
// Add Euler angles for estimated state
resultFile << "est_roll,est_pitch,est_yaw,";
// Add Euler angles for true state
resultFile << "true_roll,true_pitch,true_yaw,";
// Add Euler angles for estimated calibration
resultFile << "est_cal_roll,est_cal_pitch,est_cal_yaw,";
// Add Euler angles for true calibration
resultFile << "true_cal_roll,true_cal_pitch,true_cal_yaw";
resultFile << std::endl;
}
std::cout << "Processing data with EqF..." << std::endl;
// Track time for performance measurement
auto start = std::chrono::high_resolution_clock::now();
// Store error metrics
std::vector<double> att_errors;
std::vector<double> bias_errors;
std::vector<double> cal_errors;
int total_measurements = 0;
int valid_measurements = 0;
int invalid_measurements = 0;
for (size_t i = 0; i < data_list.size(); i++) {
const Data& data = data_list[i];
// Propagation
filter.propagation(data.u, data.dt);
// Update with measurements
for (const auto& y : data.y) {
total_measurements++;
// Check for NaN values in measurement vectors
bool has_nan = false;
Vector3 y_vec = y.y.d.unitVector();
Vector3 d_vec = y.d.d.unitVector();
for (int j = 0; j < 3; j++) {
if (std::isnan(y_vec[j]) || std::isnan(d_vec[j])) {
has_nan = true;
break;
}
}
if (!has_nan) {
try {
filter.update(y);
valid_measurements++;
} catch (const std::exception& e) {
std::cerr << "Error updating at t=" << data.t << ": " << e.what() << std::endl;
invalid_measurements++;
}
} else {
invalid_measurements++;
}
}
// Get state estimate
State estimate = filter.stateEstimate();
// Compute errors
Vector3 att_error = Rot3::Logmap(data.xi.R.between(estimate.R));
Vector3 bias_error = estimate.b - data.xi.b;
Vector3 cal_error = Vector3::Zero();
if (!data.xi.S.empty() && !estimate.S.empty()) {
cal_error = Rot3::Logmap(data.xi.S[0].between(estimate.S[0]));
}
// Store errors
att_errors.push_back(att_error.norm());
bias_errors.push_back(bias_error.norm());
cal_errors.push_back(cal_error.norm());
// Save results
if (saveResults) {
// Extract quaternions
Quaternion est_q = estimate.R.toQuaternion();
Quaternion true_q = data.xi.R.toQuaternion();
// Extract Euler angles (roll, pitch, yaw) from estimated rotation
Vector3 est_rpy = estimate.R.rpy();
// Convert to degrees for easier comparison
Vector3 est_rpy_deg = est_rpy * 180.0 / M_PI;
// Extract Euler angles from true rotation
Vector3 true_rpy = data.xi.R.rpy();
// Convert to degrees
Vector3 true_rpy_deg = true_rpy * 180.0 / M_PI;
// Get calibration quaternions and Euler angles
Quaternion est_cal_q, true_cal_q;
Vector3 est_cal_rpy_deg = Vector3::Zero();
Vector3 true_cal_rpy_deg = Vector3::Zero();
if (!estimate.S.empty() && !data.xi.S.empty()) {
est_cal_q = estimate.S[0].toQuaternion();
true_cal_q = data.xi.S[0].toQuaternion();
// Get Euler angles for calibrations
Vector3 est_cal_rpy = estimate.S[0].rpy();
est_cal_rpy_deg = est_cal_rpy * 180.0 / M_PI;
Vector3 true_cal_rpy = data.xi.S[0].rpy();
true_cal_rpy_deg = true_cal_rpy * 180.0 / M_PI;
} else {
est_cal_q = Quaternion(1, 0, 0, 0); // Identity quaternion
true_cal_q = Quaternion(1, 0, 0, 0);
}
// Write to file
resultFile << data.t << ",";
// Estimated quaternion
resultFile << est_q.w() << "," << est_q.x() << "," << est_q.y() << "," << est_q.z() << ",";
// Estimated bias
resultFile << estimate.b[0] << "," << estimate.b[1] << "," << estimate.b[2] << ",";
// Estimated calibration quaternion
resultFile << est_cal_q.w() << "," << est_cal_q.x() << "," << est_cal_q.y() << "," << est_cal_q.z() << ",";
// True quaternion
resultFile << true_q.w() << "," << true_q.x() << "," << true_q.y() << "," << true_q.z() << ",";
// True bias
resultFile << data.xi.b[0] << "," << data.xi.b[1] << "," << data.xi.b[2] << ",";
// True calibration quaternion
resultFile << true_cal_q.w() << "," << true_cal_q.x() << "," << true_cal_q.y() << "," << true_cal_q.z() << ",";
// Add Euler angles (in degrees) for estimated state
resultFile << est_rpy_deg[0] << "," << est_rpy_deg[1] << "," << est_rpy_deg[2] << ",";
// Add Euler angles (in degrees) for true state
resultFile << true_rpy_deg[0] << "," << true_rpy_deg[1] << "," << true_rpy_deg[2] << ",";
// Add Euler angles (in degrees) for estimated calibration
resultFile << est_cal_rpy_deg[0] << "," << est_cal_rpy_deg[1] << "," << est_cal_rpy_deg[2] << ",";
// Add Euler angles (in degrees) for true calibration
resultFile << true_cal_rpy_deg[0] << "," << true_cal_rpy_deg[1] << "," << true_cal_rpy_deg[2];
resultFile << std::endl;
}
// Print progress
if (i % 1000 == 0 || i == data_list.size() - 1) {
std::cout << "Processed " << i+1 << "/" << data_list.size()
<< " (" << (100.0 * (i+1) / data_list.size()) << "%) ";
std::cout << "Attitude error: " << (att_error.norm() * 180.0/M_PI) << " deg, ";
std::cout << "Bias error: " << bias_error.norm() << ", ";
std::cout << "Calibration error: " << (cal_error.norm() * 180.0/M_PI) << " deg" << std::endl;
}
}
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = end - start;
// Calculate average errors
double avg_att_error = 0.0;
double avg_bias_error = 0.0;
double avg_cal_error = 0.0;
if (!att_errors.empty()) {
avg_att_error = std::accumulate(att_errors.begin(), att_errors.end(), 0.0) / att_errors.size();
avg_bias_error = std::accumulate(bias_errors.begin(), bias_errors.end(), 0.0) / bias_errors.size();
avg_cal_error = std::accumulate(cal_errors.begin(), cal_errors.end(), 0.0) / cal_errors.size();
}
std::cout << std::endl;
std::cout << "EqF Processing completed in " << elapsed.count() << " seconds" << std::endl;
std::cout << "Average attitude error: " << (avg_att_error * 180.0/M_PI) << " deg" << std::endl;
std::cout << "Average bias error: " << avg_bias_error << std::endl;
std::cout << "Average calibration error: " << (avg_cal_error * 180.0/M_PI) << " deg" << std::endl;
std::cout << "Total measurements: " << total_measurements << std::endl;
std::cout << "Valid measurements processed: " << valid_measurements << std::endl;
std::cout << "Invalid measurements skipped: " << invalid_measurements << std::endl;
if (saveResults) {
resultFile.close();
std::cout << "Results saved to " << resultFilename << std::endl;
}
}
inline void runEqFWithCSVData(const std::string& filename) {
try {
// Load data from CSV file with optional parameters
int startRow = 0;
int maxRows = -1;
int downsample = 1;
std::vector<Data> data = loadDataFromCSV(filename, startRow, maxRows, downsample);
if (data.empty()) {
std::cerr << "No data loaded from CSV file." << std::endl;
return;
}
// Print sample data points to inspect the loaded data
std::cout << "Data loaded, displaying samples..." << std::endl;
printDataSamples(data);
// Validate the data to check for issues
std::cout << "Validating data integrity..." << std::endl;
bool dataValid = validateData(data);
if (!dataValid) {
std::cout << "Warning: Data validation found issues." << std::endl;
std::string proceed;
std::cout << "Do you want to proceed anyway? (y/n): ";
std::cin >> proceed;
if (proceed != "y" && proceed != "Y") {
std::cout << "Operation cancelled by user." << std::endl;
return;
}
}
// Initialize EqF filter
int n_cal = 1; // Number of calibration states (from the data)
int n_sensors = 2; // Number of sensors (from the data)
// Initial covariance
Matrix initialSigma = Matrix::Identity(6 + 3*n_cal, 6 + 3*n_cal);
initialSigma.diagonal().head<3>() = Vector3::Constant(0.1); // Reduced attitude uncertainty
initialSigma.diagonal().segment<3>(3) = Vector3::Constant(0.01); // Reduced bias uncertainty
initialSigma.diagonal().tail<3>() = Vector3::Constant(0.1); // Reduced calibration uncertainty
// Create filter
EqF filter(initialSigma, n_cal, n_sensors);
// Initialize filter state from the first ground truth if possible
if (!data.empty()) {
// You'll need to add a method to your EqF class to set the initial state
// Something like:
// filter.setInitialState(data[0].xi);
// If you don't have such a method, you can print the first ground truth
// to see if it makes sense
std::cout << "First ground truth state:" << std::endl;
std::cout << "Attitude: " << data[0].xi.R.matrix() << std::endl;
std::cout << "Bias: " << data[0].xi.b.transpose() << std::endl;
std::cout << "Calibration: " << data[0].xi.S[0].matrix() << std::endl;
}
// Process data with the filter and save results
processDataWithEqF(filter, data, true, "eqf_results.csv");
} catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
}
}
/**
* Example usage function to demonstrate how to use the data loader with the EqF
*/
#endif //RUNEQF_WITHCSV_H