update GaussianMixture::likelihood to compute the logNormalizers
parent
79c7c6a8b6
commit
9a6d2cf323
|
|
@ -202,8 +202,25 @@ std::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
|
|||
const auto likelihood_m = conditional->likelihood(given);
|
||||
return likelihood_m;
|
||||
});
|
||||
|
||||
// First compute all the sqrt(|2 pi Sigma|) terms
|
||||
auto computeLogNormalizers = [](const GaussianFactor::shared_ptr &gf) {
|
||||
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
|
||||
// If we have, say, a Hessian factor, then no need to do anything
|
||||
if (!jf) return 0.0;
|
||||
|
||||
auto model = jf->get_model();
|
||||
// If there is no noise model, there is nothing to do.
|
||||
if (!model) {
|
||||
return 0.0;
|
||||
}
|
||||
return ComputeLogNormalizer(model);
|
||||
};
|
||||
|
||||
AlgebraicDecisionTree<Key> log_normalizers =
|
||||
DecisionTree<Key, double>(likelihoods, computeLogNormalizers);
|
||||
return std::make_shared<GaussianMixtureFactor>(
|
||||
continuousParentKeys, discreteParentKeys, likelihoods, true);
|
||||
continuousParentKeys, discreteParentKeys, likelihoods, log_normalizers);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
Loading…
Reference in New Issue