update GaussianMixture::likelihood to compute the logNormalizers
parent
79c7c6a8b6
commit
9a6d2cf323
|
|
@ -202,8 +202,25 @@ std::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
|
||||||
const auto likelihood_m = conditional->likelihood(given);
|
const auto likelihood_m = conditional->likelihood(given);
|
||||||
return likelihood_m;
|
return likelihood_m;
|
||||||
});
|
});
|
||||||
|
|
||||||
|
// First compute all the sqrt(|2 pi Sigma|) terms
|
||||||
|
auto computeLogNormalizers = [](const GaussianFactor::shared_ptr &gf) {
|
||||||
|
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
|
||||||
|
// If we have, say, a Hessian factor, then no need to do anything
|
||||||
|
if (!jf) return 0.0;
|
||||||
|
|
||||||
|
auto model = jf->get_model();
|
||||||
|
// If there is no noise model, there is nothing to do.
|
||||||
|
if (!model) {
|
||||||
|
return 0.0;
|
||||||
|
}
|
||||||
|
return ComputeLogNormalizer(model);
|
||||||
|
};
|
||||||
|
|
||||||
|
AlgebraicDecisionTree<Key> log_normalizers =
|
||||||
|
DecisionTree<Key, double>(likelihoods, computeLogNormalizers);
|
||||||
return std::make_shared<GaussianMixtureFactor>(
|
return std::make_shared<GaussianMixtureFactor>(
|
||||||
continuousParentKeys, discreteParentKeys, likelihoods, true);
|
continuousParentKeys, discreteParentKeys, likelihoods, log_normalizers);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue