Fixed unit tests
parent
fbfbe1b9e2
commit
9991ae04f3
|
@ -53,8 +53,12 @@ Similarity3::Similarity3(const Rot3& R, const Point3& t, double s) {
|
|||
s_ = s;
|
||||
}
|
||||
|
||||
Similarity3::operator Pose3() const {
|
||||
return Pose3(R_, s_*t_);
|
||||
}
|
||||
|
||||
Similarity3 Similarity3::identity() {
|
||||
std::cout << "Identity!" << std::endl;
|
||||
//std::cout << "Identity!" << std::endl;
|
||||
return Similarity3(); }
|
||||
|
||||
Vector7 Similarity3::Logmap(const Similarity3& s, OptionalJacobian<7, 7> Hm) {
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
|
||||
#include <gtsam/geometry/Rot3.h>
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/base/Manifold.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -51,6 +52,9 @@ public:
|
|||
/// Construct from Eigen types
|
||||
Similarity3(const Matrix3& R, const Vector3& t, double s);
|
||||
|
||||
/// Convert to a rigid body pose
|
||||
operator Pose3() const;
|
||||
|
||||
/// Return the translation
|
||||
const Vector3 t() const;
|
||||
|
||||
|
|
|
@ -182,23 +182,26 @@ TEST(Similarity3, Optimization) {
|
|||
}
|
||||
|
||||
TEST(Similarity3, Optimization2) {
|
||||
Similarity3 prior = Similarity3();//Rot3::ypr(0, 0, 0), Point3(1, 2, 3), 4);
|
||||
Similarity3 m1 = Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(1.0, 0, 0), 1.0);
|
||||
Similarity3 m2 = Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(0.9, 0, 0), 1.0);
|
||||
Similarity3 m3 = Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(0.8, 0, 0), 1.0);
|
||||
Similarity3 m4 = Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(0.7, 0, 0), 1.42);
|
||||
Similarity3 prior = Similarity3();
|
||||
Similarity3 m1 = Similarity3(Rot3::ypr(M_PI/4.0, 0, 0), Point3(2.0, 0, 0), 1.0);
|
||||
Similarity3 m2 = Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(sqrt(8)*0.9, 0, 0), 1.0);
|
||||
Similarity3 m3 = Similarity3(Rot3::ypr(3*M_PI/4.0, 0, 0), Point3(sqrt(32)*0.8, 0, 0), 1.0);
|
||||
Similarity3 m4 = Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(6*0.7, 0, 0), 1.0);
|
||||
Similarity3 loop = Similarity3(1.42);
|
||||
|
||||
//prior.print("Goal Transform");
|
||||
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(7, 1);
|
||||
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(7, 0.01);
|
||||
SharedDiagonal betweenNoise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1).finished());
|
||||
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 10).finished());
|
||||
SharedDiagonal betweenNoise2 = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.01).finished());
|
||||
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0).finished());
|
||||
PriorFactor<Similarity3> factor(X(1), prior, model);
|
||||
BetweenFactor<Similarity3> b1(X(1), X(2), m1, betweenNoise);
|
||||
BetweenFactor<Similarity3> b2(X(2), X(3), m2, betweenNoise);
|
||||
BetweenFactor<Similarity3> b3(X(3), X(4), m3, betweenNoise);
|
||||
BetweenFactor<Similarity3> b4(X(4), X(1), m4, betweenNoise2);
|
||||
BetweenFactor<Similarity3> b4(X(4), X(5), m4, betweenNoise);
|
||||
BetweenFactor<Similarity3> lc(X(5), X(1), loop, betweenNoise2);
|
||||
|
||||
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
|
@ -207,21 +210,37 @@ TEST(Similarity3, Optimization2) {
|
|||
graph.push_back(b2);
|
||||
graph.push_back(b3);
|
||||
graph.push_back(b4);
|
||||
graph.push_back(lc);
|
||||
|
||||
graph.print("Full Graph");
|
||||
//graph.print("Full Graph\n");
|
||||
|
||||
Values initial;
|
||||
initial.insert<Similarity3>(X(1), Similarity3());
|
||||
initial.insert<Similarity3>(X(2), Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(1, 0, 0), 1.1));
|
||||
initial.insert<Similarity3>(X(3), Similarity3(Rot3::ypr(2.0*M_PI/2.0, 0, 0), Point3(0.9, 1.1, 0), 1.2));
|
||||
initial.insert<Similarity3>(X(4), Similarity3(Rot3::ypr(3.0*M_PI/2.0, 0, 0), Point3(0, 1, 0), 1.3));
|
||||
initial.insert<Similarity3>(X(5), Similarity3(Rot3::ypr(4.0*M_PI/2.0, 0, 0), Point3(0, 0, 0), 1.0));
|
||||
|
||||
initial.print("Initial Estimate");
|
||||
//initial.print("Initial Estimate\n");
|
||||
|
||||
Values result;
|
||||
result = LevenbergMarquardtOptimizer(graph, initial).optimize();
|
||||
result.print("Optimized Estimate");
|
||||
//EXPECT(assert_equal(prior, result.at<Similarity3>(key), 1e-4));
|
||||
//result.print("Optimized Estimate\n");
|
||||
Pose3 p1, p2, p3, p4, p5;
|
||||
p1 = Pose3(result.at<Similarity3>(X(1)));
|
||||
p2 = Pose3(result.at<Similarity3>(X(2)));
|
||||
p3 = Pose3(result.at<Similarity3>(X(3)));
|
||||
p4 = Pose3(result.at<Similarity3>(X(4)));
|
||||
p5 = Pose3(result.at<Similarity3>(X(5)));
|
||||
|
||||
//p1.print("Pose1");
|
||||
//p2.print("Pose2");
|
||||
//p3.print("Pose3");
|
||||
//p4.print("Pose4");
|
||||
//p5.print("Pose5");
|
||||
|
||||
Similarity3 expected(0.7);
|
||||
EXPECT(assert_equal(expected, result.at<Similarity3>(X(5)), 0.4));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
|
Loading…
Reference in New Issue