Updating EM factor (to accout for uncertainty in states)
parent
1a9ab972a9
commit
991906181b
|
|
@ -332,6 +332,10 @@ virtual class BetweenFactorEM : gtsam::NonlinearFactor {
|
||||||
void set_flag_bump_up_near_zero_probs(bool flag);
|
void set_flag_bump_up_near_zero_probs(bool flag);
|
||||||
bool get_flag_bump_up_near_zero_probs() const;
|
bool get_flag_bump_up_near_zero_probs() const;
|
||||||
|
|
||||||
|
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph);
|
||||||
|
Matrix get_model_inlier_cov();
|
||||||
|
Matrix get_model_outlier_cov();
|
||||||
|
|
||||||
void serializable() const; // enabling serialization functionality
|
void serializable() const; // enabling serialization functionality
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -21,6 +21,7 @@
|
||||||
#include <gtsam/base/Lie.h>
|
#include <gtsam/base/Lie.h>
|
||||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||||
#include <gtsam/linear/GaussianFactor.h>
|
#include <gtsam/linear/GaussianFactor.h>
|
||||||
|
#include <gtsam/nonlinear/Marginals.h>
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
|
@ -292,6 +293,77 @@ namespace gtsam {
|
||||||
return flag_bump_up_near_zero_probs_;
|
return flag_bump_up_near_zero_probs_;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
SharedGaussian get_model_inlier() const {
|
||||||
|
return model_inlier_;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
SharedGaussian get_model_outlier() const {
|
||||||
|
return model_outlier_;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Matrix get_model_inlier_cov() const {
|
||||||
|
return (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Matrix get_model_outlier_cov() const {
|
||||||
|
return (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph){
|
||||||
|
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
|
||||||
|
* (note these are given in the E step, where indicator probabilities are calculated).
|
||||||
|
*
|
||||||
|
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
|
||||||
|
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
|
||||||
|
*
|
||||||
|
* TODO: improve efficiency (info form)
|
||||||
|
*/
|
||||||
|
|
||||||
|
const T& p1 = values.at<T>(key1_);
|
||||||
|
const T& p2 = values.at<T>(key2_);
|
||||||
|
|
||||||
|
Matrix H1, H2;
|
||||||
|
T hx = p1.between(p2, H1, H2); // h(x)
|
||||||
|
|
||||||
|
// get joint covariance of the involved states
|
||||||
|
std::vector<gtsam::Key> Keys;
|
||||||
|
Keys.push_back(key1_);
|
||||||
|
Keys.push_back(key2_);
|
||||||
|
Marginals marginals( graph, values, Marginals::QR );
|
||||||
|
JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys);
|
||||||
|
Matrix cov1 = joint_marginal12(key1_, key1_);
|
||||||
|
Matrix cov2 = joint_marginal12(key2_, key2_);
|
||||||
|
Matrix cov12 = joint_marginal12(key1_, key2_);
|
||||||
|
|
||||||
|
Matrix H;
|
||||||
|
H.resize(H1.rows(), H1.rows()+H2.rows());
|
||||||
|
H << H1, H2; // H = [H1 H2]
|
||||||
|
|
||||||
|
Matrix joint_cov;
|
||||||
|
joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
|
||||||
|
joint_cov << cov1, cov12,
|
||||||
|
cov12.transpose(), cov2;
|
||||||
|
|
||||||
|
Matrix cov_state = H*joint_cov*H.transpose();
|
||||||
|
|
||||||
|
// model_inlier_->print("before:");
|
||||||
|
|
||||||
|
// update inlier and outlier noise models
|
||||||
|
Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
||||||
|
model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state);
|
||||||
|
|
||||||
|
Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
||||||
|
model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state);
|
||||||
|
|
||||||
|
// model_inlier_->print("after:");
|
||||||
|
// std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
/** return the measured */
|
/** return the measured */
|
||||||
const VALUE& measured() const {
|
const VALUE& measured() const {
|
||||||
|
|
|
||||||
|
|
@ -14,11 +14,13 @@
|
||||||
#include <gtsam/base/numericalDerivative.h>
|
#include <gtsam/base/numericalDerivative.h>
|
||||||
|
|
||||||
#include <gtsam/slam/BetweenFactor.h>
|
#include <gtsam/slam/BetweenFactor.h>
|
||||||
|
#include <gtsam/slam/PriorFactor.h>
|
||||||
|
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
|
|
||||||
// Disabled this test because it is currently failing - remove the lines "#if 0" and "#endif" below
|
// Disabled this test because it is currently failing - remove the lines "#if 0" and "#endif" below
|
||||||
// to reenable the test.
|
// to reenable the test.
|
||||||
#if 0
|
#if 0
|
||||||
|
|
@ -251,6 +253,49 @@ TEST( BetweenFactorEM, CaseStudy)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
///* ************************************************************************** */
|
||||||
|
TEST (BetweenFactorEM, updateNoiseModel ) {
|
||||||
|
gtsam::Key key1(1);
|
||||||
|
gtsam::Key key2(2);
|
||||||
|
|
||||||
|
gtsam::Pose2 p1(10.0, 15.0, 0.1);
|
||||||
|
gtsam::Pose2 p2(15.0, 15.0, 0.3);
|
||||||
|
gtsam::Pose2 noise(0.5, 0.4, 0.01);
|
||||||
|
gtsam::Pose2 rel_pose_ideal = p1.between(p2);
|
||||||
|
gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
|
||||||
|
|
||||||
|
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 1.5, 2.5, 4.05)));
|
||||||
|
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 50.0, 50.0, 10.0)));
|
||||||
|
|
||||||
|
gtsam::Values values;
|
||||||
|
values.insert(key1, p1);
|
||||||
|
values.insert(key2, p2);
|
||||||
|
|
||||||
|
double prior_outlier = 0.0;
|
||||||
|
double prior_inlier = 1.0;
|
||||||
|
|
||||||
|
BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
|
||||||
|
prior_inlier, prior_outlier);
|
||||||
|
|
||||||
|
SharedGaussian model = SharedGaussian(noiseModel::Isotropic::Sigma(3, 1e2));
|
||||||
|
|
||||||
|
NonlinearFactorGraph graph;
|
||||||
|
graph.push_back(gtsam::PriorFactor<Pose2>(key1, p1, model));
|
||||||
|
graph.push_back(gtsam::PriorFactor<Pose2>(key2, p2, model));
|
||||||
|
|
||||||
|
f.updateNoiseModels(values, graph);
|
||||||
|
|
||||||
|
SharedGaussian model_inlier_new = f.get_model_inlier();
|
||||||
|
SharedGaussian model_outlier_new = f.get_model_outlier();
|
||||||
|
|
||||||
|
model_inlier->print("model_inlier:");
|
||||||
|
model_outlier->print("model_outlier:");
|
||||||
|
model_inlier_new->print("model_inlier_new:");
|
||||||
|
model_outlier_new->print("model_outlier_new:");
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue