Updating EM factor (to accout for uncertainty in states)
parent
1a9ab972a9
commit
991906181b
|
|
@ -332,6 +332,10 @@ virtual class BetweenFactorEM : gtsam::NonlinearFactor {
|
|||
void set_flag_bump_up_near_zero_probs(bool flag);
|
||||
bool get_flag_bump_up_near_zero_probs() const;
|
||||
|
||||
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph);
|
||||
Matrix get_model_inlier_cov();
|
||||
Matrix get_model_outlier_cov();
|
||||
|
||||
void serializable() const; // enabling serialization functionality
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -21,6 +21,7 @@
|
|||
#include <gtsam/base/Lie.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
#include <gtsam/nonlinear/Marginals.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
@ -292,6 +293,77 @@ namespace gtsam {
|
|||
return flag_bump_up_near_zero_probs_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
SharedGaussian get_model_inlier() const {
|
||||
return model_inlier_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
SharedGaussian get_model_outlier() const {
|
||||
return model_outlier_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix get_model_inlier_cov() const {
|
||||
return (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix get_model_outlier_cov() const {
|
||||
return (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph){
|
||||
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
|
||||
* (note these are given in the E step, where indicator probabilities are calculated).
|
||||
*
|
||||
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
|
||||
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
|
||||
*
|
||||
* TODO: improve efficiency (info form)
|
||||
*/
|
||||
|
||||
const T& p1 = values.at<T>(key1_);
|
||||
const T& p2 = values.at<T>(key2_);
|
||||
|
||||
Matrix H1, H2;
|
||||
T hx = p1.between(p2, H1, H2); // h(x)
|
||||
|
||||
// get joint covariance of the involved states
|
||||
std::vector<gtsam::Key> Keys;
|
||||
Keys.push_back(key1_);
|
||||
Keys.push_back(key2_);
|
||||
Marginals marginals( graph, values, Marginals::QR );
|
||||
JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys);
|
||||
Matrix cov1 = joint_marginal12(key1_, key1_);
|
||||
Matrix cov2 = joint_marginal12(key2_, key2_);
|
||||
Matrix cov12 = joint_marginal12(key1_, key2_);
|
||||
|
||||
Matrix H;
|
||||
H.resize(H1.rows(), H1.rows()+H2.rows());
|
||||
H << H1, H2; // H = [H1 H2]
|
||||
|
||||
Matrix joint_cov;
|
||||
joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
|
||||
joint_cov << cov1, cov12,
|
||||
cov12.transpose(), cov2;
|
||||
|
||||
Matrix cov_state = H*joint_cov*H.transpose();
|
||||
|
||||
// model_inlier_->print("before:");
|
||||
|
||||
// update inlier and outlier noise models
|
||||
Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
||||
model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state);
|
||||
|
||||
Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
||||
model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state);
|
||||
|
||||
// model_inlier_->print("after:");
|
||||
// std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** return the measured */
|
||||
const VALUE& measured() const {
|
||||
|
|
|
|||
|
|
@ -14,11 +14,13 @@
|
|||
#include <gtsam/base/numericalDerivative.h>
|
||||
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
|
||||
// Disabled this test because it is currently failing - remove the lines "#if 0" and "#endif" below
|
||||
// to reenable the test.
|
||||
#if 0
|
||||
|
|
@ -251,6 +253,49 @@ TEST( BetweenFactorEM, CaseStudy)
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
///* ************************************************************************** */
|
||||
TEST (BetweenFactorEM, updateNoiseModel ) {
|
||||
gtsam::Key key1(1);
|
||||
gtsam::Key key2(2);
|
||||
|
||||
gtsam::Pose2 p1(10.0, 15.0, 0.1);
|
||||
gtsam::Pose2 p2(15.0, 15.0, 0.3);
|
||||
gtsam::Pose2 noise(0.5, 0.4, 0.01);
|
||||
gtsam::Pose2 rel_pose_ideal = p1.between(p2);
|
||||
gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
|
||||
|
||||
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 1.5, 2.5, 4.05)));
|
||||
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 50.0, 50.0, 10.0)));
|
||||
|
||||
gtsam::Values values;
|
||||
values.insert(key1, p1);
|
||||
values.insert(key2, p2);
|
||||
|
||||
double prior_outlier = 0.0;
|
||||
double prior_inlier = 1.0;
|
||||
|
||||
BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
|
||||
prior_inlier, prior_outlier);
|
||||
|
||||
SharedGaussian model = SharedGaussian(noiseModel::Isotropic::Sigma(3, 1e2));
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(gtsam::PriorFactor<Pose2>(key1, p1, model));
|
||||
graph.push_back(gtsam::PriorFactor<Pose2>(key2, p2, model));
|
||||
|
||||
f.updateNoiseModels(values, graph);
|
||||
|
||||
SharedGaussian model_inlier_new = f.get_model_inlier();
|
||||
SharedGaussian model_outlier_new = f.get_model_outlier();
|
||||
|
||||
model_inlier->print("model_inlier:");
|
||||
model_outlier->print("model_outlier:");
|
||||
model_inlier_new->print("model_inlier_new:");
|
||||
model_outlier_new->print("model_outlier_new:");
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
Loading…
Reference in New Issue