tls done except unit tests
parent
47775a7a4f
commit
9903fb91d0
|
@ -65,6 +65,7 @@ public:
|
|||
size_t maxIterations = 100; /* maximum number of iterations*/
|
||||
double barcSq = 1.0; /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
|
||||
double muStep = 1.4; /* multiplicative factor to reduce/increase the mu in gnc */
|
||||
double relativeMuTol = 1e-5; ///< The maximum relative mu decrease to stop iterating
|
||||
VerbosityGNC verbosityGNC = SILENT; /* verbosity level */
|
||||
std::vector<size_t> knownInliers = std::vector<size_t>(); /* slots in the factor graph corresponding to measurements that we know are inliers */
|
||||
|
||||
|
@ -89,6 +90,10 @@ public:
|
|||
void setMuStep(const double step) {
|
||||
muStep = step;
|
||||
}
|
||||
/// Set the maximum relative difference in mu values to stop iterating
|
||||
void setRelativeMuTol(double value) {
|
||||
relativeMuTol = value;
|
||||
}
|
||||
/// Set the verbosity level
|
||||
void setVerbosityGNC(const VerbosityGNC verbosity) {
|
||||
verbosityGNC = verbosity;
|
||||
|
@ -196,6 +201,7 @@ public:
|
|||
GaussNewtonOptimizer baseOptimizer(nfg_, state_);
|
||||
Values result = baseOptimizer.optimize();
|
||||
double mu = initializeMu();
|
||||
double mu_prev = mu;
|
||||
|
||||
// handle the degenerate case for TLS cost that corresponds to small
|
||||
// maximum residual error at initialization
|
||||
|
@ -225,7 +231,7 @@ public:
|
|||
result = baseOptimizer_iter.optimize();
|
||||
|
||||
// stopping condition
|
||||
if (checkMuConvergence(mu)) {
|
||||
if (checkMuConvergence(mu, mu_prev)) {
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY) {
|
||||
std::cout << "final iterations: " << iter << std::endl;
|
||||
|
@ -235,6 +241,7 @@ public:
|
|||
break;
|
||||
}
|
||||
// otherwise update mu
|
||||
mu_prev = mu;
|
||||
mu = updateMu(mu);
|
||||
}
|
||||
return result;
|
||||
|
@ -279,11 +286,12 @@ public:
|
|||
}
|
||||
|
||||
/// check if we have reached the value of mu for which the surrogate loss matches the original loss
|
||||
bool checkMuConvergence(const double mu) const {
|
||||
bool checkMuConvergence(const double mu, const double mu_prev) const {
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
|
||||
// TODO: Add TLS
|
||||
case GncParameters::TLS:
|
||||
return std::fabs(mu - mu_prev) < params_.relativeMuTol;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
|
||||
|
@ -341,7 +349,22 @@ public:
|
|||
}
|
||||
}
|
||||
return weights;
|
||||
// TODO: Add TLS
|
||||
case GncParameters::TLS: // use eq (14) in GNC paper
|
||||
double upperbound = (mu + 1) / mu * params_.barcSq;
|
||||
double lowerbound = mu / (mu +1 ) * params_.barcSq;
|
||||
for (size_t k : unknownWeights) {
|
||||
if (nfg_[k]) {
|
||||
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
|
||||
if (u2_k >= upperbound ) {
|
||||
weights[k] = 0;
|
||||
} else if (u2_k <= lowerbound) {
|
||||
weights[k] = 1;
|
||||
} else {
|
||||
weights[k] = std::sqrt(params_.barcSq * mu * (mu + 1) / u2_k ) - mu;
|
||||
}
|
||||
}
|
||||
}
|
||||
return weights;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::calculateWeights: called with unknown loss type.");
|
||||
|
|
|
@ -162,7 +162,9 @@ TEST(GncOptimizer, checkMuConvergence) {
|
|||
gncParams);
|
||||
|
||||
double mu = 1.0;
|
||||
CHECK(gnc.checkMuConvergence(mu));
|
||||
CHECK(gnc.checkMuConvergence(mu, 0));
|
||||
|
||||
// TODO: test relative mu convergence
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue