Substantial updates

release/4.3a0
Frank Dellaert 2010-03-04 06:34:45 +00:00
parent b9045528ee
commit 98b98d14d7
4 changed files with 1925 additions and 53 deletions

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -55,10 +55,249 @@ Frank Dellaert
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand include
filename "macros.lyx"
\begin_inset Note Comment
status open
\begin_layout Plain Layout
Derivatives
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}}
{\frac{\partial#1}{\partial#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\at}[2]{#1\biggr\rvert_{#2}}
{#1\biggr\rvert_{#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} }
{\at{\deriv{#1}{#2}}{#3}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Comment
status open
\begin_layout Plain Layout
Lie Groups
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\xhat}{\hat{x}}
{\hat{x}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\yhat}{\hat{y}}
{\hat{y}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\Ad}[1]{Ad_{#1}}
{Ad_{#1}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\define}{\stackrel{\Delta}{=}}
{\stackrel{\Delta}{=}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\gg}{\mathfrak{g}}
{\mathfrak{g}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\Rn}{\mathbb{R}^{n}}
{\mathbb{R}^{n}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Comment
status open
\begin_layout Plain Layout
SO(2)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}}
{\mathfrak{\mathbb{R}^{2}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\SOtwo}{SO(2)}
{SO(2)}
\end_inset
\begin_inset FormulaMacro
\newcommand{\sotwo}{\mathfrak{so(2)}}
{\mathfrak{so(2)}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\that}{\hat{\theta}}
{\hat{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\skew}[1]{[#1]_{+}}
{[#1]_{+}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Comment
status open
\begin_layout Plain Layout
SE(2)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\SEtwo}{SE(2)}
{SE(2)}
\end_inset
\begin_inset FormulaMacro
\newcommand{\setwo}{\mathfrak{se(2)}}
{\mathfrak{se(2)}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Comment
status open
\begin_layout Plain Layout
SO(3)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\Rthree}{\mathfrak{\mathbb{R}^{3}}}
{\mathfrak{\mathbb{R}^{3}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\SOthree}{SO(3)}
{SO(3)}
\end_inset
\begin_inset FormulaMacro
\newcommand{\sothree}{\mathfrak{so(3)}}
{\mathfrak{so(3)}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\what}{\hat{\omega}}
{\hat{\omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\Skew}[1]{[#1]_{\times}}
{[#1]_{\times}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Comment
status open
\begin_layout Plain Layout
SE(3)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}}
{\mathfrak{\mathbb{R}^{6}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\SEthree}{SE(3)}
{SE(3)}
\end_inset
\begin_inset FormulaMacro
\newcommand{\sethree}{\mathfrak{se(3)}}
{\mathfrak{se(3)}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\xihat}{\hat{\xi}}
{\hat{\xi}}
\end_inset
@ -289,6 +528,72 @@ Hence, now we undo
frame.
\end_layout
\begin_layout Subsection*
Numerical Derivatives
\end_layout
\begin_layout Standard
Let's examine
\begin_inset Formula \[
f\left(g\right)e^{\yhat}=f\left(ge^{\xhat}\right)\]
\end_inset
and multiply with
\begin_inset Formula $f(g)^{-1}$
\end_inset
on both sides then take the log (which in our case returns
\begin_inset Formula $y$
\end_inset
, not
\begin_inset Formula $\yhat$
\end_inset
):
\begin_inset Formula \[
y(x)=\log\left[f\left(g\right)^{-1}f\left(ge^{\xhat}\right)\right]\]
\end_inset
Let us look at
\begin_inset Formula $x=0$
\end_inset
, and perturb in direction
\begin_inset Formula $i$
\end_inset
,
\begin_inset Formula $e_{i}=[0,0,d,0,0]$
\end_inset
.
Then take derivative,
\begin_inset Formula \[
\deriv{y(d)}d\define\lim_{d->0}\frac{y(d)-y(0)}{d}=\lim_{d->0}\frac{1}{d}\log\left[f\left(g\right)^{-1}f\left(ge^{\hat{e_{i}}}\right)\right]\]
\end_inset
which is the basis for a numerical derivative scheme.
\end_layout
\begin_layout Standard
Let us also look at a chain rule.
If we know the behavior at the origin
\begin_inset Formula $I$
\end_inset
, we can extrapolate
\begin_inset Formula \[
f(ge^{\xhat})=f(ge^{\xhat}g^{-1}g)=f(e^{\Ad g\xhat}g)\]
\end_inset
\end_layout
\begin_layout Section
Derivatives of Actions
\begin_inset CommandInset label
@ -594,15 +899,7 @@ Derivatives of Mappings
\end_layout
\begin_layout Standard
The adjoint map for
\begin_inset Formula $\sotwo$
\end_inset
is trivially equal to the identity, as is the case for
\emph on
all
\emph default
commutative groups, and we have the derivative of
We have the derivative of
\series bold
inverse
\series default
@ -1065,10 +1362,10 @@ Hence, as with
inverse
\series default
,
\begin_inset Formula \begin{eqnarray*}
\frac{\partial T^{-1}}{\partial\xi} & = & -\left[\begin{array}{cc}
\begin_inset Formula \[
\frac{\partial T^{-1}}{\partial\xi}=\Ad T=-\left[\begin{array}{cc}
R & 0\\
\Skew tR & R\end{array}\right]\end{eqnarray*}
\Skew tR & R\end{array}\right]\]
\end_inset
@ -1077,16 +1374,18 @@ R & 0\\
compose
\series default
in its first argument,
\begin_inset Formula \begin{eqnarray*}
\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}} & = & \left[\begin{array}{cc}
\begin_inset Formula \[
\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}}=\Ad{T_{2}^{-1}}=\left[\begin{array}{cc}
R_{2}^{T} & 0\\
\Skew{-R_{2}^{T}t}R_{2}^{T} & R_{2}^{T}\end{array}\right]\end{eqnarray*}
\Skew{-R_{2}^{T}t_{2}}R_{2}^{T} & R_{2}^{T}\end{array}\right]=\left[\begin{array}{cc}
R_{2}^{T} & 0\\
R_{2}^{T}\Skew{-t_{2}} & R_{2}^{T}\end{array}\right]\]
\end_inset
compose in its second argument,
\begin_inset Formula \begin{eqnarray*}
\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}} & = & I_{6}\end{eqnarray*}
\begin_inset Formula \[
\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{6}\]
\end_inset
@ -1095,16 +1394,16 @@ compose in its second argument,
between
\series default
in its first argument,
\begin_inset Formula \begin{eqnarray*}
\frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}} & = & -\left[\begin{array}{cc}
\begin_inset Formula \[
\frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}}=\Ad{T_{21}}=-\left[\begin{array}{cc}
R & 0\\
\Skew tR & R\end{array}\right]\end{eqnarray*}
\Skew tR & R\end{array}\right]\]
\end_inset
with
\begin_inset Formula \[
\left[\begin{array}{cc}
T_{12}=\left[\begin{array}{cc}
R & t\\
0 & 1\end{array}\right]=T_{1}^{^{-1}}T_{2}=between(T_{2},T_{1})\]

Binary file not shown.