Python example with reasonable measurements, in body frame. Still a TODO left.

release/4.3a0
Frank Dellaert 2018-10-14 14:53:20 -04:00
parent 0219b39341
commit 97a5d5a64a
1 changed files with 207 additions and 0 deletions

View File

@ -0,0 +1,207 @@
"""
iSAM2 example with ImuFactor.
Author: Robert Truax (C++), Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
import gtsam
import gtsam.utils.plot as gtsam_plot
def X(key):
"""Create symbol for pose key."""
return gtsam.symbol(ord('x'), key)
def V(key):
"""Create symbol for velocity key."""
return gtsam.symbol(ord('v'), key)
def vector3(x, y, z):
"""Create 3d double numpy array."""
return np.array([x, y, z], dtype=np.float)
def create_poses(angular_velocity=np.pi,
delta_t=0.01, radius=30.0):
# Create the set of ground-truth poses
poses = []
theta = 0.0
up = gtsam.Point3(0, 0, 1)
target = gtsam.Point3(0, 0, 0)
for i in range(80):
position = gtsam.Point3(radius * math.cos(theta),
radius * math.sin(theta), 0.0)
camera = gtsam.SimpleCamera.Lookat(
position, target, up, gtsam.Cal3_S2())
poses.append(camera.pose())
theta += delta_t * angular_velocity
return poses
def ISAM2_plot(values):
"""Plot poses."""
# Declare an id for the figure
fignum = 0
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plt.cla()
i = 0
min_bounds = 0, 0, 0
max_bounds = 0, 0, 0
while values.exists(X(i)):
pose_i = values.atPose3(X(i))
gtsam_plot.plot_pose3(fignum, pose_i, 10)
position = pose_i.translation().vector()
min_bounds = [min(v1, v2) for (v1, v2) in zip(position, min_bounds)]
max_bounds = [max(v1, v2) for (v1, v2) in zip(position, max_bounds)]
# max_bounds = min(pose_i.x(), max_bounds[0]), 0, 0
i += 1
# draw
axes.set_xlim3d(min_bounds[0]-1, max_bounds[0]+1)
axes.set_ylim3d(min_bounds[1]-1, max_bounds[1]+1)
axes.set_zlim3d(min_bounds[2]-1, max_bounds[2]+1)
plt.pause(1)
I = np.eye(3)
accCov = I * 0.1
gyroCov = I * 0.1
intCov = I * 0.1
secOrder = False
# IMU preintegration parameters
# Default Params for a Z-up navigation frame, such as ENU: gravity points along negative Z-axis
g = 9.81
PARAMS = gtsam.PreintegrationParams.MakeSharedU()
PARAMS.setAccelerometerCovariance(accCov)
PARAMS.setGyroscopeCovariance(gyroCov)
PARAMS.setIntegrationCovariance(intCov)
PARAMS.setUse2ndOrderCoriolis(secOrder)
PARAMS.setOmegaCoriolis(vector3(0, 0, 0))
def IMU_example():
# Create the set of ground-truth landmarks and poses
angular_velocity = math.radians(180) # rad/sec
delta_t = 1.0/18 # makes for 10 degrees per step
radius = 30
poses = create_poses(angular_velocity, delta_t, radius)
# Create a factor graph
newgraph = gtsam.NonlinearFactorGraph()
totalgraph = gtsam.NonlinearFactorGraph()
# Create (incremental) ISAM2 solver
isam = gtsam.ISAM2()
# Create the initial estimate to the solution
# Intentionally initialize the variables off from the ground truth
initialEstimate = gtsam.Values()
totalEstimate = gtsam.Values()
# Add a prior on pose x0. This indirectly specifies where the origin is.
# 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
noise = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
newgraph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], noise))
totalgraph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], noise))
# Add imu priors
biasKey = gtsam.symbol(ord('b'), 0)
biasnoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
biasprior = gtsam.PriorFactorConstantBias(biasKey, gtsam.imuBias_ConstantBias(),
biasnoise)
newgraph.push_back(biasprior)
totalgraph.push_back(biasprior)
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
totalEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
velnoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
# Calculate with correct initial velocity
velocity = vector3(0, angular_velocity * radius, 0)
velprior = gtsam.PriorFactorVector(V(0), velocity, velnoise)
newgraph.push_back(velprior)
totalgraph.push_back(velprior)
initialEstimate.insert(V(0), velocity)
totalEstimate.insert(V(0), velocity)
accum = gtsam.PreintegratedImuMeasurements(PARAMS)
# Simulate poses and imu measurements, adding them to the factor graph
for i, pose_i in enumerate(poses):
delta = gtsam.Pose3(gtsam.Rot3.Rodrigues(0, 0, 0),
gtsam.Point3(0.05, -0.10, 0.20))
if i == 0: # First time add two poses
initialEstimate.insert(X(0), poses[0].compose(delta))
initialEstimate.insert(X(1), poses[1].compose(delta))
totalEstimate.insert(X(0), poses[0].compose(delta))
totalEstimate.insert(X(1), poses[1].compose(delta))
elif i >= 2: # Add more poses as necessary
initialEstimate.insert(X(i), pose_i.compose(delta))
totalEstimate.insert(X(i), pose_i.compose(delta))
if i > 0:
# Add Bias variables periodically
if i % 5 == 0:
biasKey += 1
b1 = biasKey - 1
b2 = biasKey
cov = gtsam.noiseModel_Isotropic.Variance(6, 0.1)
f = gtsam.BetweenFactorConstantBias(
b1, b2, gtsam.imuBias_ConstantBias(), cov)
newgraph.add(f)
totalgraph.add(f)
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
totalEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
# Predict acceleration and gyro measurements in (actual) body frame
# TODO: calculate correct acceleration due to circular trajectory
nRb = pose_i.rotation().matrix()
bRn = np.transpose(nRb)
measuredAcc = - np.dot(bRn, vector3(0, 0, -g))
measuredOmega = np.dot(bRn, vector3(0, 0, angular_velocity))
accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t)
# Add Imu Factor
imufac = gtsam.ImuFactor(
X(i - 1), V(i - 1), X(i), V(i), biasKey, accum)
newgraph.add(imufac)
totalgraph.add(imufac)
# insert new velocity
initialEstimate.insert(V(i), velocity)
totalEstimate.insert(V(i), velocity)
accum.resetIntegration()
# Batch solution
isam_full = gtsam.ISAM2()
isam_full.update(totalgraph, totalEstimate)
result = isam_full.calculateEstimate()
# Incremental solution
isam.update(newgraph, initialEstimate)
result = isam.calculateEstimate()
newgraph = gtsam.NonlinearFactorGraph()
initialEstimate.clear()
# ISAM2_plot(result)
if __name__ == '__main__':
IMU_example()