Merged develop into feature/improvementsIncrementalFilter

release/4.3a0
Antoni Rosiñol Vidal 2019-03-25 13:26:20 -04:00
commit 970664b928
81 changed files with 2477 additions and 1701 deletions

View File

@ -1,6 +1,6 @@
project(GTSAM CXX C)
cmake_minimum_required(VERSION 2.8.4)
cmake_minimum_required(VERSION 3.0)
# new feature to Cmake Version > 2.8.12
# Mac ONLY. Define Relative Path on Mac OS
@ -61,8 +61,8 @@ option(GTSAM_POSE3_EXPMAP "Enable/Disable using Pose3::EXPMAP as the defau
option(GTSAM_ROT3_EXPMAP "Ignore if GTSAM_USE_QUATERNIONS is OFF (Rot3::EXPMAP by default). Otherwise, enable Rot3::EXPMAP, or if disabled, use Rot3::CAYLEY." OFF)
option(GTSAM_ENABLE_CONSISTENCY_CHECKS "Enable/Disable expensive consistency checks" OFF)
option(GTSAM_WITH_TBB "Use Intel Threaded Building Blocks (TBB) if available" ON)
option(GTSAM_WITH_EIGEN_MKL "Eigen will use Intel MKL if available" ON)
option(GTSAM_WITH_EIGEN_MKL_OPENMP "Eigen, when using Intel MKL, will also use OpenMP for multithreading if available" ON)
option(GTSAM_WITH_EIGEN_MKL "Eigen will use Intel MKL if available" OFF)
option(GTSAM_WITH_EIGEN_MKL_OPENMP "Eigen, when using Intel MKL, will also use OpenMP for multithreading if available" OFF)
option(GTSAM_THROW_CHEIRALITY_EXCEPTION "Throw exception when a triangulated point is behind a camera" ON)
option(GTSAM_BUILD_PYTHON "Enable/Disable building & installation of Python module" OFF)
option(GTSAM_ALLOW_DEPRECATED_SINCE_V4 "Allow use of methods/functions deprecated in GTSAM 4" ON)
@ -78,6 +78,7 @@ endif()
option(GTSAM_INSTALL_MATLAB_TOOLBOX "Enable/Disable installation of matlab toolbox" OFF)
option(GTSAM_INSTALL_CYTHON_TOOLBOX "Enable/Disable installation of Cython toolbox" OFF)
option(GTSAM_BUILD_WRAP "Enable/Disable building of matlab/cython wrap utility (necessary for matlab/cython interface)" ON)
set(GTSAM_PYTHON_VERSION "Default" CACHE STRING "The version of python to build the cython wrapper or python module for (or Default)")
# Check / set dependent variables for MATLAB wrapper
if((GTSAM_INSTALL_MATLAB_TOOLBOX OR GTSAM_INSTALL_CYTHON_TOOLBOX) AND NOT GTSAM_BUILD_WRAP)
@ -121,16 +122,19 @@ if(MSVC)
# If we use Boost shared libs, disable auto linking.
# Some libraries, at least Boost Program Options, rely on this to export DLL symbols.
if(NOT Boost_USE_STATIC_LIBS)
add_definitions(-DBOOST_ALL_NO_LIB)
add_definitions(-DBOOST_ALL_DYN_LINK)
list(APPEND GTSAM_COMPILE_DEFINITIONS_PUBLIC BOOST_ALL_NO_LIB BOOST_ALL_DYN_LINK)
endif()
# Virtual memory range for PCH exceeded on VS2015
if(MSVC_VERSION LESS 1910) # older than VS2017
add_definitions(-Zm295)
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE -Zm295)
endif()
endif()
find_package(Boost 1.43 COMPONENTS serialization system filesystem thread program_options date_time timer chrono regex)
# Store these in variables so they are automatically replicated in GTSAMConfig.cmake and such.
set(BOOST_FIND_MINIMUM_VERSION 1.43)
set(BOOST_FIND_MINIMUM_COMPONENTS serialization system filesystem thread program_options date_time timer chrono regex)
find_package(Boost ${BOOST_FIND_MINIMUM_VERSION} COMPONENTS ${BOOST_FIND_MINIMUM_COMPONENTS})
# Required components
if(NOT Boost_SERIALIZATION_LIBRARY OR NOT Boost_SYSTEM_LIBRARY OR NOT Boost_FILESYSTEM_LIBRARY OR
@ -141,14 +145,19 @@ endif()
option(GTSAM_DISABLE_NEW_TIMERS "Disables using Boost.chrono for timing" OFF)
# Allow for not using the timer libraries on boost < 1.48 (GTSAM timing code falls back to old timer library)
set(GTSAM_BOOST_LIBRARIES
${Boost_SERIALIZATION_LIBRARY} ${Boost_SYSTEM_LIBRARY} ${Boost_FILESYSTEM_LIBRARY}
${Boost_THREAD_LIBRARY} ${Boost_DATE_TIME_LIBRARY} ${Boost_REGEX_LIBRARY})
Boost::serialization
Boost::system
Boost::filesystem
Boost::thread
Boost::date_time
Boost::regex
)
if (GTSAM_DISABLE_NEW_TIMERS)
message("WARNING: GTSAM timing instrumentation manually disabled")
add_definitions(-DGTSAM_DISABLE_NEW_TIMERS)
list(APPEND GTSAM_COMPILE_DEFINITIONS_PUBLIC DGTSAM_DISABLE_NEW_TIMERS)
else()
if(Boost_TIMER_LIBRARY)
list(APPEND GTSAM_BOOST_LIBRARIES ${Boost_TIMER_LIBRARY} ${Boost_CHRONO_LIBRARY})
list(APPEND GTSAM_BOOST_LIBRARIES Boost::timer Boost::chrono)
else()
list(APPEND GTSAM_BOOST_LIBRARIES rt) # When using the header-only boost timer library, need -lrt
message("WARNING: GTSAM timing instrumentation will use the older, less accurate, Boost timer library because boost older than 1.48 was found.")
@ -158,7 +167,7 @@ endif()
if(NOT (${Boost_VERSION} LESS 105600))
message("Ignoring Boost restriction on optional lvalue assignment from rvalues")
add_definitions(-DBOOST_OPTIONAL_ALLOW_BINDING_TO_RVALUES -DBOOST_OPTIONAL_CONFIG_ALLOW_BINDING_TO_RVALUES)
list(APPEND GTSAM_COMPILE_DEFINITIONS_PUBLIC BOOST_OPTIONAL_ALLOW_BINDING_TO_RVALUES BOOST_OPTIONAL_CONFIG_ALLOW_BINDING_TO_RVALUES)
endif()
###############################################################################
@ -208,7 +217,6 @@ find_package(MKL)
if(MKL_FOUND AND GTSAM_WITH_EIGEN_MKL)
set(GTSAM_USE_EIGEN_MKL 1) # This will go into config.h
set(EIGEN_USE_MKL_ALL 1) # This will go into config.h - it makes Eigen use MKL
include_directories(${MKL_INCLUDE_DIR})
list(APPEND GTSAM_ADDITIONAL_LIBRARIES ${MKL_LIBRARIES})
# --no-as-needed is required with gcc according to the MKL link advisor
@ -243,10 +251,9 @@ option(GTSAM_USE_SYSTEM_EIGEN "Find and use system-installed Eigen. If 'off', us
# Switch for using system Eigen or GTSAM-bundled Eigen
if(GTSAM_USE_SYSTEM_EIGEN)
find_package(Eigen3 REQUIRED)
include_directories(AFTER "${EIGEN3_INCLUDE_DIR}")
# Use generic Eigen include paths e.g. <Eigen/Core>
set(GTSAM_EIGEN_INCLUDE_PREFIX "${EIGEN3_INCLUDE_DIR}")
set(GTSAM_EIGEN_INCLUDE_FOR_INSTALL "${EIGEN3_INCLUDE_DIR}")
# check if MKL is also enabled - can have one or the other, but not both!
# Note: Eigen >= v3.2.5 includes our patches
@ -260,28 +267,29 @@ if(GTSAM_USE_SYSTEM_EIGEN)
message(FATAL_ERROR "MKL does not work with Eigen 3.3.4 because of a bug in Eigen. See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=1527. Disable GTSAM_USE_SYSTEM_EIGEN to use GTSAM's copy of Eigen, disable GTSAM_WITH_EIGEN_MKL, or upgrade/patch your installation of Eigen.")
endif()
# The actual include directory (for BUILD cmake target interface):
set(GTSAM_EIGEN_INCLUDE_FOR_BUILD "${EIGEN3_INCLUDE_DIR}")
else()
# Use bundled Eigen include path.
# Clear any variables set by FindEigen3
if(EIGEN3_INCLUDE_DIR)
set(EIGEN3_INCLUDE_DIR NOTFOUND CACHE STRING "" FORCE)
endif()
# Add the bundled version of eigen to the include path so that it can still be included
# with #include <Eigen/Core>
include_directories(BEFORE "gtsam/3rdparty/Eigen/")
# set full path to be used by external projects
# this will be added to GTSAM_INCLUDE_DIR by gtsam_extra.cmake.in
set(GTSAM_EIGEN_INCLUDE_PREFIX "${CMAKE_INSTALL_PREFIX}/include/gtsam/3rdparty/Eigen/")
set(GTSAM_EIGEN_INCLUDE_FOR_INSTALL "include/gtsam/3rdparty/Eigen/")
# The actual include directory (for BUILD cmake target interface):
set(GTSAM_EIGEN_INCLUDE_FOR_BUILD "${CMAKE_SOURCE_DIR}/gtsam/3rdparty/Eigen/")
endif()
if (MSVC)
if (BUILD_SHARED_LIBS)
# mute eigen static assert to avoid errors in shared lib
add_definitions(-DEIGEN_NO_STATIC_ASSERT)
list(APPEND GTSAM_COMPILE_DEFINITIONS_PUBLIC DEIGEN_NO_STATIC_ASSERT)
endif()
add_definitions(/wd4244) # Disable loss of precision which is thrown all over our Eigen
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE "/wd4244") # Disable loss of precision which is thrown all over our Eigen
endif()
###############################################################################
@ -322,52 +330,29 @@ elseif("${GTSAM_DEFAULT_ALLOCATOR}" STREQUAL "tcmalloc")
list(APPEND GTSAM_ADDITIONAL_LIBRARIES "tcmalloc")
endif()
# Include boost - use 'BEFORE' so that a specific boost specified to CMake
# takes precedence over a system-installed one.
include_directories(BEFORE SYSTEM ${Boost_INCLUDE_DIR})
if(GTSAM_SUPPORT_NESTED_DISSECTION)
set(METIS_INCLUDE_DIRECTORIES
gtsam/3rdparty/metis/include
gtsam/3rdparty/metis/libmetis
gtsam/3rdparty/metis/GKlib)
else()
set(METIS_INCLUDE_DIRECTORIES)
endif()
# Add includes for source directories 'BEFORE' boost and any system include
# paths so that the compiler uses GTSAM headers in our source directory instead
# of any previously installed GTSAM headers.
include_directories(BEFORE
gtsam/3rdparty/SuiteSparse_config
gtsam/3rdparty/CCOLAMD/Include
${METIS_INCLUDE_DIRECTORIES}
${PROJECT_SOURCE_DIR}
${PROJECT_BINARY_DIR} # So we can include generated config header files
CppUnitLite)
if(MSVC)
add_definitions(-D_CRT_SECURE_NO_WARNINGS -D_SCL_SECURE_NO_WARNINGS)
add_definitions(/wd4251 /wd4275 /wd4251 /wd4661 /wd4344 /wd4503) # Disable non-DLL-exported base class and other warnings
add_definitions(/bigobj) # Allow large object files for template-based code
list(APPEND GTSAM_COMPILE_DEFINITIONS_PRIVATE _CRT_SECURE_NO_WARNINGS _SCL_SECURE_NO_WARNINGS)
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE /wd4251 /wd4275 /wd4251 /wd4661 /wd4344 /wd4503) # Disable non-DLL-exported base class and other warnings
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE /bigobj) # Allow large object files for template-based code
endif()
# GCC 4.8+ complains about local typedefs which we use for shared_ptr etc.
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.8)
add_definitions(-Wno-unused-local-typedefs)
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE -Wno-unused-local-typedefs)
endif()
endif()
# As of XCode 7, clang also complains about this
if(CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
if (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.0)
add_definitions(-Wno-unused-local-typedefs)
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE -Wno-unused-local-typedefs)
endif()
endif()
if(GTSAM_ENABLE_CONSISTENCY_CHECKS)
add_definitions(-DGTSAM_EXTRA_CONSISTENCY_CHECKS)
# This should be made PUBLIC if GTSAM_EXTRA_CONSISTENCY_CHECKS is someday used in a public .h
list(APPEND GTSAM_COMPILE_DEFINITIONS_PRIVATE GTSAM_EXTRA_CONSISTENCY_CHECKS)
endif()
###############################################################################
@ -570,6 +555,7 @@ endif()
message(STATUS "Cython toolbox flags ")
print_config_flag(${GTSAM_INSTALL_CYTHON_TOOLBOX} "Install Cython toolbox ")
message(STATUS " Python version : ${GTSAM_PYTHON_VERSION}")
print_config_flag(${GTSAM_BUILD_WRAP} "Build Wrap ")
message(STATUS "===============================================================")
@ -578,10 +564,10 @@ if(GTSAM_WITH_TBB AND NOT TBB_FOUND)
message(WARNING "TBB was not found - this is ok, but note that GTSAM parallelization will be disabled. Set GTSAM_WITH_TBB to 'Off' to avoid this warning.")
endif()
if(GTSAM_WITH_EIGEN_MKL AND NOT MKL_FOUND)
message(WARNING "MKL was not found - this is ok, but note that MKL yields better performance. Set GTSAM_WITH_EIGEN_MKL to 'Off' to disable this warning.")
message(WARNING "MKL was not found - this is ok, but note that MKL will be disabled. Set GTSAM_WITH_EIGEN_MKL to 'Off' to disable this warning. See INSTALL.md for notes on performance.")
endif()
if(GTSAM_WITH_EIGEN_MKL_OPENMP AND NOT OPENMP_FOUND AND MKL_FOUND)
message(WARNING "Your compiler does not support OpenMP - this is ok, but performance may be improved with OpenMP. Set GTSAM_WITH_EIGEN_MKL_OPENMP to 'Off' to avoid this warning.")
message(WARNING "Your compiler does not support OpenMP. Set GTSAM_WITH_EIGEN_MKL_OPENMP to 'Off' to avoid this warning. See INSTALL.md for notes on performance.")
endif()
if(GTSAM_BUILD_PYTHON AND GTSAM_PYTHON_WARNINGS)
message(WARNING "${GTSAM_PYTHON_WARNINGS}")

View File

@ -6,6 +6,7 @@ file(GLOB cppunitlite_src "*.cpp")
add_library(CppUnitLite STATIC ${cppunitlite_src} ${cppunitlite_headers})
list(APPEND GTSAM_EXPORTED_TARGETS CppUnitLite)
set(GTSAM_EXPORTED_TARGETS "${GTSAM_EXPORTED_TARGETS}" PARENT_SCOPE)
target_link_libraries(CppUnitLite PUBLIC Boost::boost) # boost/lexical_cast.h
gtsam_assign_source_folders("${cppunitlite_headers};${cppunitlite_src}") # MSVC project structure

View File

@ -97,12 +97,24 @@ Note that in the Lie group case, the usual valid expressions for Retract and Loc
For Lie groups, the `exponential map` above is the most obvious mapping: it
associates straight lines in the tangent space with geodesics on the manifold
(and it's inverse, the log map). However, there are two cases in which we deviate from this:
(and it's inverse, the log map). However, there are several cases in which we deviate from this:
However, the exponential map is unnecessarily expensive for use in optimization. Hence, in GTSAM there is the option to provide a cheaper chart by means of the `ChartAtOrigin` struct in a class. This is done for *SE(2)*, *SO(3)* and *SE(3)* (see `Pose2`, `Rot3`, `Pose3`)
Most Lie groups we care about are *Matrix groups*, continuous sub-groups of *GL(n)*, the group of *n x n* invertible matrices. In this case, a lot of the derivatives calculations needed can be standardized, and this is done by the `LieGroup` superclass. You only need to provide an `AdjointMap` method.
A CRTP helper class `LieGroup` is available that can take a class and create some of the Lie group methods automatically. The class needs:
* operator* : implements group operator
* inverse: implements group inverse
* AdjointMap: maps tangent vectors according to group element
* Expmap/Logmap: exponential map and its inverse
* ChartAtOrigin: struct where you define Retract/Local at origin
To use, simply derive, but also say `using LieGroup<Class,N>::inverse` so you get an inverse with a derivative.
Finally, to create the traits automatically you can use `internal::LieGroupTraits<Class>`
Vector Space
------------

146
INSTALL
View File

@ -1,146 +0,0 @@
Quickstart
In the root library folder execute:
$] mkdir build
$] cd build
$] cmake ..
$] make check (optional, runs unit tests)
$] make install
Important Installation Notes
----------------------------
1)
GTSAM requires the following libraries to be installed on your system:
- BOOST version 1.43 or greater (install through Linux repositories or MacPorts)
- Cmake version 2.6 or higher
- Support for XCode 4.3 command line tools on Mac requires CMake 2.8.8 or higher
Optional dependent libraries:
- If TBB is installed and detectable by CMake GTSAM will use it automatically.
Ensure that CMake prints "Use Intel TBB : Yes". To disable the use of TBB,
disable the CMake flag GTSAM_WITH_TBB (enabled by default). On Ubuntu, TBB
may be installed from the Ubuntu repositories, and for other platforms it
may be downloaded from https://www.threadingbuildingblocks.org/
Tested compilers:
- GCC 4.2-4.7
- OSX Clang 2.9-5.0
- OSX GCC 4.2
- MSVC 2010, 2012
Tested systems:
- Ubuntu 11.04 - 13.10
- MacOS 10.6 - 10.9
- Windows 7, 8, 8.1
Known issues:
- MSVC 2013 is not yet supported because it cannot build the serialization module
of Boost 1.55 (or earlier).
2)
GTSAM makes extensive use of debug assertions, and we highly recommend you work
in Debug mode while developing (enabled by default). Likewise, it is imperative
that you switch to release mode when running finished code and for timing. GTSAM
will run up to 10x faster in Release mode! See the end of this document for
additional debugging tips.
3)
GTSAM has Doxygen documentation. To generate, run 'make doc' from your
build directory.
4)
The instructions below install the library to the default system install path and
build all components. From a terminal, starting in the root library folder,
execute commands as follows for an out-of-source build:
$] mkdir build
$] cd build
$] cmake ..
$] make check (optional, runs unit tests)
$] make install
This will build the library and unit tests, run all of the unit tests,
and then install the library itself.
- CMake Configuration Options and Details
GTSAM has a number of options that can be configured, which is best done with
one of the following:
ccmake the curses GUI for cmake
cmake-gui a real GUI for cmake
Important Options:
CMAKE_BUILD_TYPE: We support several build configurations for GTSAM (case insensitive)
Debug (default) All error checking options on, no optimization. Use for development.
Release Optimizations turned on, no debug symbols.
Timing Adds ENABLE_TIMING flag to provide statistics on operation
Profiling Standard configuration for use during profiling
RelWithDebInfo Same as Release, but with the -g flag for debug symbols
CMAKE_INSTALL_PREFIX: The install folder. The default is typically /usr/local/
To configure to install to your home directory, you could execute:
$] cmake -DCMAKE_INSTALL_PREFIX:PATH=$HOME ..
GTSAM_TOOLBOX_INSTALL_PATH: The Matlab toolbox will be installed in a subdirectory
of this folder, called 'gtsam'.
$] cmake -DGTSAM_TOOLBOX_INSTALL_PATH:PATH=$HOME/toolbox ..
GTSAM_BUILD_CONVENIENCE_LIBRARIES: This is a build option to allow for tests in
subfolders to be linked against convenience libraries rather than the full libgtsam.
Set with the command line as follows:
$] cmake -DGTSAM_BUILD_CONVENIENCE_LIBRARIES:OPTION=ON ..
ON (Default) This builds convenience libraries and links tests against them. This
option is suggested for gtsam developers, as it is possible to build
and run tests without first building the rest of the library, and
speeds up compilation for a single test. The downside of this option
is that it will build the entire library again to build the full
libgtsam library, so build/install will be slower.
OFF This will build all of libgtsam before any of the tests, and then
link all of the tests at once. This option is best for users of GTSAM,
as it avoids rebuilding the entirety of gtsam an extra time.
GTSAM_BUILD_UNSTABLE: Enable build and install for libgtsam_unstable library.
Set with the command line as follows:
$] cmake -DGTSAM_BUILD_UNSTABLE:OPTION=ON ..
ON When enabled, libgtsam_unstable will be built and installed with the
same options as libgtsam. In addition, if tests are enabled, the
unit tests will be built as well. The Matlab toolbox will also
be generated if the matlab toolbox is enabled, installing into a
folder called "gtsam_unstable".
OFF (Default) If disabled, no gtsam_unstable code will be included in build or install.
Check
"make check" will build and run all of the tests. Note that the tests will only be
built when using the "check" targets, to prevent "make install" from building the tests
unnecessarily. You can also run "make timing" to build all of the timing scripts.
To run check on a particular module only, run "make check.[subfolder]", so to run
just the geometry tests, run "make check.geometry". Individual tests can be run by
appending ".run" to the name of the test, for example, to run testMatrix, run
"make testMatrix.run".
MEX_COMMAND: Path to the mex compiler. Defaults to assume the path is included in your
shell's PATH environment variable. mex is installed with matlab at
$MATLABROOT/bin/mex
$MATLABROOT can be found by executing the command 'matlabroot' in MATLAB
Debugging tips:
Another useful debugging symbol is _GLIBCXX_DEBUG, which enables debug checks
and safe containers in the standard C++ library and makes problems much easier
to find.
NOTE: The native Snow Leopard g++ compiler/library contains a bug that makes
it impossible to use _GLIBCXX_DEBUG. MacPorts g++ compilers do work with it though.
NOTE: If _GLIBCXX_DEBUG is used to compile gtsam, anything that links against
gtsam will need to be compiled with _GLIBCXX_DEBUG as well, due to the use of
header-only Eigen.

168
INSTALL.md Normal file
View File

@ -0,0 +1,168 @@
# Quickstart
In the root library folder execute:
```sh
$ mkdir build
$ cd build
$ cmake ..
$ make check # (optional, runs unit tests)
$ make install
```
## Important Installation Notes
1. GTSAM requires the following libraries to be installed on your system:
- BOOST version 1.43 or greater (install through Linux repositories or MacPorts)
- Cmake version 3.0 or higher
- Support for XCode 4.3 command line tools on Mac requires CMake 2.8.8 or higher
Optional dependent libraries:
- If TBB is installed and detectable by CMake GTSAM will use it automatically.
Ensure that CMake prints "Use Intel TBB : Yes". To disable the use of TBB,
disable the CMake flag GTSAM_WITH_TBB (enabled by default). On Ubuntu, TBB
may be installed from the Ubuntu repositories, and for other platforms it
may be downloaded from https://www.threadingbuildingblocks.org/
- GTSAM may be configured to use MKL by toggling `GTSAM_WITH_EIGEN_MKL` and
`GTSAM_WITH_EIGEN_MKL_OPENMP` to `ON`; however, best performance is usually
achieved with MKL disabled. We therefore advise you to benchmark your problem
before using MKL.
Tested compilers:
- GCC 4.2-7.3
- OS X Clang 2.9-10.0
- OS X GCC 4.2
- MSVC 2010, 2012, 2017
Tested systems:
- Ubuntu 16.04 - 18.04
- MacOS 10.6 - 10.14
- Windows 7, 8, 8.1, 10
Known issues:
- MSVC 2013 is not yet supported because it cannot build the serialization module
of Boost 1.55 (or earlier).
2. GTSAM makes extensive use of debug assertions, and we highly recommend you work
in Debug mode while developing (enabled by default). Likewise, it is imperative
that you switch to release mode when running finished code and for timing. GTSAM
will run up to 10x faster in Release mode! See the end of this document for
additional debugging tips.
3. GTSAM has Doxygen documentation. To generate, run 'make doc' from your
build directory.
4. The instructions below install the library to the default system install path and
build all components. From a terminal, starting in the root library folder,
execute commands as follows for an out-of-source build:
```sh
$ mkdir build
$ cd build
$ cmake ..
$ make check (optional, runs unit tests)
$ make install
```
This will build the library and unit tests, run all of the unit tests,
and then install the library itself.
## CMake Configuration Options and Details
GTSAM has a number of options that can be configured, which is best done with
one of the following:
- ccmake the curses GUI for cmake
- cmake-gui a real GUI for cmake
### Important Options:
#### CMAKE_BUILD_TYPE
We support several build configurations for GTSAM (case insensitive)
```cmake -DCMAKE_BUILD_TYPE=[Option] ..```
- Debug (default) All error checking options on, no optimization. Use for development.
- Release Optimizations turned on, no debug symbols.
- Timing Adds ENABLE_TIMING flag to provide statistics on operation
- Profiling Standard configuration for use during profiling
- RelWithDebInfo Same as Release, but with the -g flag for debug symbols
#### CMAKE_INSTALL_PREFIX
The install folder. The default is typically `/usr/local/`.
To configure to install to your home directory, you could execute:
```cmake -DCMAKE_INSTALL_PREFIX:PATH=$HOME ..```
#### GTSAM_TOOLBOX_INSTALL_PATH
The Matlab toolbox will be installed in a subdirectory
of this folder, called 'gtsam'.
```cmake -DGTSAM_TOOLBOX_INSTALL_PATH:PATH=$HOME/toolbox ..```
#### GTSAM_BUILD_CONVENIENCE_LIBRARIES
This is a build option to allow for tests in subfolders to be linked against convenience libraries rather than the full libgtsam.
Set with the command line as follows:
```cmake -DGTSAM_BUILD_CONVENIENCE_LIBRARIES:OPTION=ON ..```
- ON (Default): This builds convenience libraries and links tests against them. This option is suggested for gtsam developers, as it is possible to build and run tests without first building the rest of the library, and speeds up compilation for a single test. The downside of this option is that it will build the entire library again to build the full libgtsam library, so build/install will be slower.
- OFF: This will build all of libgtsam before any of the tests, and then link all of the tests at once. This option is best for users of GTSAM, as it avoids rebuilding the entirety of gtsam an extra time.
#### GTSAM_BUILD_UNSTABLE
Enable build and install for libgtsam_unstable library.
Set with the command line as follows:
```cmake -DGTSAM_BUILD_UNSTABLE:OPTION=ON ..```
ON: When enabled, libgtsam_unstable will be built and installed with the same options as libgtsam. In addition, if tests are enabled, the unit tests will be built as well. The Matlab toolbox will also be generated if the matlab toolbox is enabled, installing into a folder called `gtsam_unstable`.
OFF (Default) If disabled, no `gtsam_unstable` code will be included in build or install.
## Check
`make check` will build and run all of the tests. Note that the tests will only be
built when using the "check" targets, to prevent `make install` from building the tests
unnecessarily. You can also run `make timing` to build all of the timing scripts.
To run check on a particular module only, run `make check.[subfolder]`, so to run
just the geometry tests, run `make check.geometry`. Individual tests can be run by
appending `.run` to the name of the test, for example, to run testMatrix, run
`make testMatrix.run`.
MEX_COMMAND: Path to the mex compiler. Defaults to assume the path is included in your shell's PATH environment variable. mex is installed with matlab at `$MATLABROOT/bin/mex`
$MATLABROOT can be found by executing the command `matlabroot` in MATLAB
## Performance
Here are some tips to get the best possible performance out of GTSAM.
1. Build in `Release` mode. GTSAM will run up to 10x faster compared to `Debug` mode.
2. Enable TBB. On modern processors with multiple cores, this can easily speed up
optimization by 30-50%. Please note that this may not be true for very small
problems where the overhead of dispatching work to multiple threads outweighs
the benefit. We recommend that you benchmark your problem with/without TBB.
3. Add `-march=native` to `GTSAM_CMAKE_CXX_FLAGS`. A performance gain of
25-30% can be expected on modern processors. Note that this affects the portability
of your executable. It may not run when copied to another system with older/different
processor architecture.
Also note that all dependent projects *must* be compiled with the same flag, or
seg-faults and other undefined behavior may result.
4. Possibly enable MKL. Please note that our benchmarks have shown that this helps only
in very limited cases, and actually hurts performance in the usual case. We therefore
recommend that you do *not* enable MKL, unless you have benchmarked it on
your problem and have verified that it improves performance.
## Debugging tips
Another useful debugging symbol is _GLIBCXX_DEBUG, which enables debug checks and safe containers in the standard C++ library and makes problems much easier to find.
NOTE: The native Snow Leopard g++ compiler/library contains a bug that makes it impossible to use _GLIBCXX_DEBUG. MacPorts g++ compilers do work with it though.
NOTE: If _GLIBCXX_DEBUG is used to compile gtsam, anything that links against gtsam will need to be compiled with _GLIBCXX_DEBUG as well, due to the use of header-only Eigen.

View File

@ -30,7 +30,7 @@ $ make install
Prerequisites:
- [Boost](http://www.boost.org/users/download/) >= 1.43 (Ubuntu: `sudo apt-get install libboost-all-dev`)
- [CMake](http://www.cmake.org/cmake/resources/software.html) >= 2.6 (Ubuntu: `sudo apt-get install cmake`)
- [CMake](http://www.cmake.org/cmake/resources/software.html) >= 3.0 (Ubuntu: `sudo apt-get install cmake`)
- A modern compiler, i.e., at least gcc 4.7.3 on Linux.
Optional prerequisites - used automatically if findable by CMake:
@ -54,7 +54,7 @@ GTSAM includes a state of the art IMU handling scheme based on
Our implementation improves on this using integration on the manifold, as detailed in
- Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert, "Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors", Int. Conf. on Robotics and Automation (ICRA), 2014.
- Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert, "Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors", Int. Conf. on Robotics and Automation (ICRA), 2014.
- Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza, "IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation", Robotics: Science and Systems (RSS), 2015.
If you are using the factor in academic work, please cite the publications above.
@ -67,14 +67,14 @@ Additional Information
There is a [`GTSAM users Google group`](https://groups.google.com/forum/#!forum/gtsam-users) for general discussion.
Read about important [`GTSAM-Concepts`](GTSAM-Concepts.md) here. A primer on GTSAM Expressions,
which support (superfast) automatic differentiation,
Read about important [`GTSAM-Concepts`](GTSAM-Concepts.md) here. A primer on GTSAM Expressions,
which support (superfast) automatic differentiation,
can be found on the [GTSAM wiki on BitBucket](https://bitbucket.org/gtborg/gtsam/wiki/Home).
See the [`INSTALL`](INSTALL) file for more detailed installation instructions.
See the [`INSTALL`](INSTALL.md) file for more detailed installation instructions.
GTSAM is open source under the BSD license, see the [`LICENSE`](LICENSE) and [`LICENSE.BSD`](LICENSE.BSD) files.
Please see the [`examples/`](examples) directory and the [`USAGE`](USAGE.md) file for examples on how to use GTSAM.
GTSAM was developed in the lab of [Frank Dellaert](http://www.cc.gatech.edu/~dellaert) at the [Georgia Institute of Technology](http://www.gatech.edu), with the help of many contributors over the years, see [THANKS](THANKS).
GTSAM was developed in the lab of [Frank Dellaert](http://www.cc.gatech.edu/~dellaert) at the [Georgia Institute of Technology](http://www.gatech.edu), with the help of many contributors over the years, see [THANKS](THANKS).

2
THANKS
View File

@ -1,5 +1,6 @@
GTSAM was made possible by the efforts of many collaborators at Georgia Tech, listed below with their current afffiliation, if they left Tech:
* Jeremy Aguilon, Facebook
* Sungtae An
* Doru Balcan, Bank of America
* Chris Beall
@ -26,6 +27,7 @@ GTSAM was made possible by the efforts of many collaborators at Georgia Tech, li
* Natesh Srinivasan
* Alex Trevor
* Stephen Williams, BossaNova
* Matthew Broadway
at ETH, Zurich

View File

@ -1,7 +1,7 @@
# - Config file for @CMAKE_PROJECT_NAME@
# It defines the following variables
# @PACKAGE_NAME@_INCLUDE_DIR - include directories for @CMAKE_PROJECT_NAME@
# Compute paths
get_filename_component(OUR_CMAKE_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH)
if(EXISTS "${OUR_CMAKE_DIR}/CMakeCache.txt")
@ -11,7 +11,11 @@ else()
# Find installed library
set(@PACKAGE_NAME@_INCLUDE_DIR "${OUR_CMAKE_DIR}/@CONF_REL_INCLUDE_DIR@" CACHE PATH "@PACKAGE_NAME@ include directory")
endif()
# Find dependencies, required by cmake exported targets:
include(CMakeFindDependencyMacro)
find_dependency(Boost @BOOST_FIND_MINIMUM_VERSION@ COMPONENTS @BOOST_FIND_MINIMUM_COMPONENTS@)
# Load exports
include(${OUR_CMAKE_DIR}/@PACKAGE_NAME@-exports.cmake)

View File

@ -29,10 +29,15 @@
# Use the Cython executable that lives next to the Python executable
# if it is a local installation.
find_package( PythonInterp )
if(GTSAM_PYTHON_VERSION STREQUAL "Default")
find_package(PythonInterp)
else()
find_package(PythonInterp ${GTSAM_PYTHON_VERSION} EXACT)
endif()
if ( PYTHONINTERP_FOUND )
execute_process( COMMAND "${PYTHON_EXECUTABLE}" "-c"
"import Cython; print Cython.__path__"
"import Cython; print(Cython.__path__[0])"
RESULT_VARIABLE RESULT
OUTPUT_VARIABLE CYTHON_PATH
OUTPUT_STRIP_TRAILING_WHITESPACE
@ -51,7 +56,7 @@ endif ()
# RESULT=0 means ok
if ( NOT RESULT )
execute_process( COMMAND "${PYTHON_EXECUTABLE}" "-c"
"import Cython; print Cython.__version__"
"import Cython; print(Cython.__version__)"
RESULT_VARIABLE RESULT
OUTPUT_VARIABLE CYTHON_VAR_OUTPUT
ERROR_VARIABLE CYTHON_VAR_OUTPUT

View File

@ -206,6 +206,15 @@ ELSEIF(MKL_ROOT_DIR) # UNIX and macOS
)
ENDIF()
IF(NOT MKL_LAPACK_LIBRARY)
FIND_LIBRARY(MKL_LAPACK_LIBRARY
mkl_intel_lp64
PATHS
${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}
${MKL_ROOT_DIR}/lib/
)
ENDIF()
# iomp5
IF("${MKL_ARCH_DIR}" STREQUAL "32")
IF(UNIX AND NOT APPLE)

View File

@ -40,9 +40,17 @@
# Finding NumPy involves calling the Python interpreter
if(NumPy_FIND_REQUIRED)
if(GTSAM_PYTHON_VERSION STREQUAL "Default")
find_package(PythonInterp REQUIRED)
else()
find_package(PythonInterp ${GTSAM_PYTHON_VERSION} EXACT REQUIRED)
endif()
else()
if(GTSAM_PYTHON_VERSION STREQUAL "Default")
find_package(PythonInterp)
else()
find_package(PythonInterp ${GTSAM_PYTHON_VERSION} EXACT)
endif()
endif()
if(NOT PYTHONINTERP_FOUND)

View File

@ -3,8 +3,23 @@
# in the current environment are different from the cached!
unset(PYTHON_EXECUTABLE CACHE)
unset(CYTHON_EXECUTABLE CACHE)
unset(PYTHON_INCLUDE_DIR CACHE)
unset(PYTHON_MAJOR_VERSION CACHE)
if(GTSAM_PYTHON_VERSION STREQUAL "Default")
find_package(PythonInterp REQUIRED)
find_package(PythonLibs REQUIRED)
else()
find_package(PythonInterp ${GTSAM_PYTHON_VERSION} EXACT REQUIRED)
find_package(PythonLibs ${GTSAM_PYTHON_VERSION} EXACT REQUIRED)
endif()
find_package(Cython 0.25.2 REQUIRED)
execute_process(COMMAND "${PYTHON_EXECUTABLE}" "-c"
"from __future__ import print_function;import sys;print(sys.version[0], end='')"
OUTPUT_VARIABLE PYTHON_MAJOR_VERSION
)
# User-friendly Cython wrapping and installing function.
# Builds a Cython module from the provided interface_header.
# For example, for the interface header gtsam.h,
@ -29,12 +44,12 @@ endfunction()
function(set_up_required_cython_packages)
# Set up building of cython module
find_package(PythonLibs 2.7 REQUIRED)
include_directories(${PYTHON_INCLUDE_DIRS})
find_package(NumPy REQUIRED)
include_directories(${NUMPY_INCLUDE_DIRS})
endfunction()
# Convert pyx to cpp by executing cython
# This is the first step to compile cython from the command line
# as described at: http://cython.readthedocs.io/en/latest/src/reference/compilation.html
@ -52,7 +67,7 @@ function(pyx_to_cpp target pyx_file generated_cpp include_dirs)
add_custom_command(
OUTPUT ${generated_cpp}
COMMAND
${CYTHON_EXECUTABLE} -X boundscheck=False -v --fast-fail --cplus ${includes_for_cython} ${pyx_file} -o ${generated_cpp}
${CYTHON_EXECUTABLE} -X boundscheck=False -v --fast-fail --cplus -${PYTHON_MAJOR_VERSION} ${includes_for_cython} ${pyx_file} -o ${generated_cpp}
VERBATIM)
add_custom_target(${target} ALL DEPENDS ${generated_cpp})
endfunction()

View File

@ -7,7 +7,7 @@
###################################################################################
# To create your own project, replace "example" with the actual name of your project
cmake_minimum_required(VERSION 2.6)
cmake_minimum_required(VERSION 3.0)
project(example CXX C)
# Include GTSAM CMake tools
@ -22,7 +22,10 @@ include_directories(BEFORE "${PROJECT_SOURCE_DIR}")
###################################################################################
# Find GTSAM components
find_package(GTSAM REQUIRED) # Uses installed package
include_directories(${GTSAM_INCLUDE_DIR})
# Note: Since Jan-2019, GTSAMConfig.cmake defines exported CMake targets
# that automatically do include the include_directories() without the need
# to call include_directories(), just target_link_libraries(NAME gtsam)
#include_directories(${GTSAM_INCLUDE_DIR})
###################################################################################
# Build static library from common sources

View File

@ -19,22 +19,25 @@ if (GTSAM_INSTALL_CYTHON_TOOLBOX)
# wrap gtsam_unstable
if(GTSAM_BUILD_UNSTABLE)
add_custom_target(gtsam_unstable_header DEPENDS "../gtsam_unstable/gtsam_unstable.h")
set(GTSAM_UNSTABLE_IMPORT "from gtsam_unstable import *")
wrap_and_install_library_cython("../gtsam_unstable/gtsam_unstable.h" # interface_header
"from gtsam.gtsam cimport *" # extra imports
"${GTSAM_CYTHON_INSTALL_PATH}/gtsam" # install path
"${GTSAM_CYTHON_INSTALL_PATH}/gtsam_unstable" # install path
gtsam_unstable # library to link with
"gtsam_unstable;gtsam_unstable_header;cythonize_gtsam" # dependencies to be built before wrapping
)
# for some reasons cython gtsam_unstable can't find gtsam/gtsam.pxd without doing this
file(WRITE ${PROJECT_BINARY_DIR}/cython/gtsam_unstable/__init__.py "")
endif()
file(READ "${PROJECT_SOURCE_DIR}/cython/requirements.txt" CYTHON_INSTALL_REQUIREMENTS)
file(READ "${PROJECT_SOURCE_DIR}/README.md" README_CONTENTS)
# Install the custom-generated __init__.py
# This is to make the build/cython/gtsam folder a python package, so gtsam can be found while wrapping gtsam_unstable
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam/__init__.py.in ${PROJECT_BINARY_DIR}/cython/gtsam/__init__.py)
install_cython_files("${PROJECT_BINARY_DIR}/cython/gtsam/__init__.py" "${GTSAM_CYTHON_INSTALL_PATH}/gtsam")
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam/__init__.py ${PROJECT_BINARY_DIR}/cython/gtsam/__init__.py COPYONLY)
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam_unstable/__init__.py ${PROJECT_BINARY_DIR}/cython/gtsam_unstable/__init__.py COPYONLY)
configure_file(${PROJECT_SOURCE_DIR}/cython/setup.py.in ${PROJECT_BINARY_DIR}/cython/setup.py)
install_cython_files("${PROJECT_BINARY_DIR}/cython/setup.py" "${GTSAM_CYTHON_INSTALL_PATH}")
# install scripts and tests
install_cython_scripts("${PROJECT_SOURCE_DIR}/cython/gtsam" "${GTSAM_CYTHON_INSTALL_PATH}" "*.py")
install_cython_scripts("${PROJECT_SOURCE_DIR}/cython/gtsam_unstable" "${GTSAM_CYTHON_INSTALL_PATH}" "*.py")
endif ()

View File

@ -2,23 +2,30 @@ This is the Cython/Python wrapper around the GTSAM C++ library.
INSTALL
=======
- if you want to build the gtsam python library for a specific python version (eg 2.7), use the `-DGTSAM_PYTHON_VERSION=2.7` option when running `cmake` otherwise the default interpreter will be used.
- If the interpreter is inside an environment (such as an anaconda environment or virtualenv environment) then the environment should be active while building gtsam.
- This wrapper needs Cython(>=0.25.2), backports_abc>=0.5, and numpy. These can be installed as follows:
```bash
pip install -r <gtsam_folder>/cython/requirements.txt
```
- For compatiblity with gtsam's Eigen version, it contains its own cloned version of [Eigency](https://github.com/wouterboomsma/eigency.git),
- For compatibility with gtsam's Eigen version, it contains its own cloned version of [Eigency](https://github.com/wouterboomsma/eigency.git),
named **gtsam_eigency**, to interface between C++'s Eigen and Python's numpy.
- Build and install gtsam using cmake with GTSAM_INSTALL_CYTHON_TOOLBOX enabled.
The wrapped module will be installed to GTSAM_CYTHON_INSTALL_PATH, which is
by default: <your CMAKE_INSTALL_PREFIX>/cython
- Build and install gtsam using cmake with `GTSAM_INSTALL_CYTHON_TOOLBOX` enabled.
The wrapped module will be installed to `GTSAM_CYTHON_INSTALL_PATH`, which is
by default: `<your CMAKE_INSTALL_PREFIX>/cython`
- Modify your PYTHONPATH to include the GTSAM_CYTHON_INSTALL_PATH:
- To use the library without installing system-wide: modify your `PYTHONPATH` to include the `GTSAM_CYTHON_INSTALL_PATH`:
```bash
export PYTHONPATH=$PYTHONPATH:<GTSAM_CYTHON_INSTALL_PATH>
```
- To install system-wide: run `make install` then navigate to `GTSAM_CYTHON_INSTALL_PATH` and run `python setup.py install`
- (the same command can be used to install into a virtual environment if it is active)
- note: if you don't want gtsam to install to a system directory such as `/usr/local`, pass `-DCMAKE_INSTALL_PREFIX="./install"` to cmake to install gtsam to a subdirectory of the build directory.
- if you run `setup.py` from the build directory rather than the installation directory, the script will warn you with the message: `setup.py is being run from an unexpected location`.
Before `make install` is run, not all the components of the package have been copied across, so running `setup.py` from the build directory would result in an incomplete package.
UNIT TESTS
==========

26
cython/gtsam/__init__.py Normal file
View File

@ -0,0 +1,26 @@
from .gtsam import *
try:
import gtsam_unstable
def _deprecated_wrapper(item, name):
def wrapper(*args, **kwargs):
from warnings import warn
message = ('importing the unstable item "{}" directly from gtsam is deprecated. '.format(name) +
'Please import it from gtsam_unstable.')
warn(message)
return item(*args, **kwargs)
return wrapper
for name in dir(gtsam_unstable):
if not name.startswith('__'):
item = getattr(gtsam_unstable, name)
if callable(item):
item = _deprecated_wrapper(item, name)
globals()[name] = item
except ImportError:
pass

View File

@ -1,2 +0,0 @@
from gtsam import *
${GTSAM_UNSTABLE_IMPORT}

View File

@ -17,6 +17,9 @@ import numpy as np
import gtsam
import matplotlib.pyplot as plt
import gtsam.utils.plot as gtsam_plot
# Create noise models
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
@ -50,3 +53,17 @@ params = gtsam.LevenbergMarquardtParams()
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
print("\nFinal Result:\n{}".format(result))
# 5. Calculate and print marginal covariances for all variables
marginals = gtsam.Marginals(graph, result)
for i in range(1, 4):
print("X{} covariance:\n{}\n".format(i, marginals.marginalCovariance(i)))
fig = plt.figure(0)
for i in range(1, 4):
gtsam_plot.plot_pose2(0, result.atPose2(i), 0.5, marginals.marginalCovariance(i))
plt.axis('equal')
plt.show()

View File

@ -24,6 +24,7 @@ from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
import gtsam
import gtsam.utils.plot as gtsam_plot
from gtsam import Pose2
from gtsam.utils.test_case import GtsamTestCase
def vector3(x, y, z):
@ -202,7 +203,7 @@ Q1 = np.radians(vector3(-30, -45, -90))
Q2 = np.radians(vector3(-90, 90, 0))
class TestPose2SLAMExample(unittest.TestCase):
class TestPose2SLAMExample(GtsamTestCase):
"""Unit tests for functions used below."""
def setUp(self):

View File

@ -19,6 +19,9 @@ import numpy as np
import gtsam
import matplotlib.pyplot as plt
import gtsam.utils.plot as gtsam_plot
def vector3(x, y, z):
"""Create 3d double numpy array."""
@ -85,3 +88,10 @@ print("Final Result:\n{}".format(result))
marginals = gtsam.Marginals(graph, result)
for i in range(1, 6):
print("X{} covariance:\n{}\n".format(i, marginals.marginalCovariance(i)))
fig = plt.figure(0)
for i in range(1, 6):
gtsam_plot.plot_pose2(0, result.atPose2(i), 0.5, marginals.marginalCovariance(i))
plt.axis('equal')
plt.show()

View File

@ -0,0 +1,89 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
A 2D Pose SLAM example that reads input from g2o, converts it to a factor graph
and does the optimization. Output is written on a file, in g2o format
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import argparse
import math
import numpy as np
import matplotlib.pyplot as plt
import gtsam
from gtsam.utils import plot
def vector3(x, y, z):
"""Create 3d double numpy array."""
return np.array([x, y, z], dtype=np.float)
parser = argparse.ArgumentParser(
description="A 2D Pose SLAM example that reads input from g2o, "
"converts it to a factor graph and does the optimization. "
"Output is written on a file, in g2o format")
parser.add_argument('-i', '--input', help='input file g2o format')
parser.add_argument('-o', '--output',
help="the path to the output file with optimized graph")
parser.add_argument('-m', '--maxiter', type=int,
help="maximum number of iterations for optimizer")
parser.add_argument('-k', '--kernel', choices=['none', 'huber', 'tukey'],
default="none", help="Type of kernel used")
parser.add_argument("-p", "--plot", action="store_true",
help="Flag to plot results")
args = parser.parse_args()
g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt") if args.input is None\
else args.input
maxIterations = 100 if args.maxiter is None else args.maxiter
is3D = False
graph, initial = gtsam.readG2o(g2oFile, is3D)
assert args.kernel == "none", "Supplied kernel type is not yet implemented"
# Add prior on the pose having index (key) = 0
graphWithPrior = graph
priorModel = gtsam.noiseModel_Diagonal.Variances(vector3(1e-6, 1e-6, 1e-8))
graphWithPrior.add(gtsam.PriorFactorPose2(0, gtsam.Pose2(), priorModel))
params = gtsam.GaussNewtonParams()
params.setVerbosity("Termination")
params.setMaxIterations(maxIterations)
# parameters.setRelativeErrorTol(1e-5)
# Create the optimizer ...
optimizer = gtsam.GaussNewtonOptimizer(graphWithPrior, initial, params)
# ... and optimize
result = optimizer.optimize()
print("Optimization complete")
print("initial error = ", graph.error(initial))
print("final error = ", graph.error(result))
if args.output is None:
print("\nFactor Graph:\n{}".format(graph))
print("\nInitial Estimate:\n{}".format(initial))
print("Final Result:\n{}".format(result))
else:
outputFile = args.output
print("Writing results to file: ", outputFile)
graphNoKernel, _ = gtsam.readG2o(g2oFile, is3D)
gtsam.writeG2o(graphNoKernel, result, outputFile)
print ("Done!")
if args.plot:
resultPoses = gtsam.extractPose2(result)
for i in range(resultPoses.shape[0]):
plot.plot_pose2(1, gtsam.Pose2(resultPoses[i, :]))
plt.show()

View File

@ -0,0 +1,72 @@
"""
* @file Pose3SLAMExample_initializePose3.cpp
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the
* Pose3 using InitializePose3
* @date Jan 17, 2019
* @author Vikrant Shah based on CPP example by Luca Carlone
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import argparse
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam.utils import plot
def vector6(x, y, z, a, b, c):
"""Create 6d double numpy array."""
return np.array([x, y, z, a, b, c], dtype=np.float)
parser = argparse.ArgumentParser(
description="A 3D Pose SLAM example that reads input from g2o, and "
"initializes Pose3")
parser.add_argument('-i', '--input', help='input file g2o format')
parser.add_argument('-o', '--output',
help="the path to the output file with optimized graph")
parser.add_argument("-p", "--plot", action="store_true",
help="Flag to plot results")
args = parser.parse_args()
g2oFile = gtsam.findExampleDataFile("pose3example.txt") if args.input is None \
else args.input
is3D = True
graph, initial = gtsam.readG2o(g2oFile, is3D)
# Add Prior on the first key
priorModel = gtsam.noiseModel_Diagonal.Variances(vector6(1e-6, 1e-6, 1e-6,
1e-4, 1e-4, 1e-4))
print("Adding prior to g2o file ")
graphWithPrior = graph
firstKey = initial.keys().at(0)
graphWithPrior.add(gtsam.PriorFactorPose3(firstKey, gtsam.Pose3(), priorModel))
params = gtsam.GaussNewtonParams()
params.setVerbosity("Termination") # this will show info about stopping conds
optimizer = gtsam.GaussNewtonOptimizer(graphWithPrior, initial, params)
result = optimizer.optimize()
print("Optimization complete")
print("initial error = ", graphWithPrior.error(initial))
print("final error = ", graphWithPrior.error(result))
if args.output is None:
print("Final Result:\n{}".format(result))
else:
outputFile = args.output
print("Writing results to file: ", outputFile)
graphNoKernel, _ = gtsam.readG2o(g2oFile, is3D)
gtsam.writeG2o(graphNoKernel, result, outputFile)
print ("Done!")
if args.plot:
resultPoses = gtsam.allPose3s(result)
for i in range(resultPoses.size()):
plot.plot_pose3(1, resultPoses.atPose3(i))
plt.show()

View File

@ -0,0 +1,35 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Initialize PoseSLAM with Chordal init
Author: Luca Carlone, Frank Dellaert (python port)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import numpy as np
import gtsam
# Read graph from file
g2oFile = gtsam.findExampleDataFile("pose3example.txt")
is3D = True
graph, initial = gtsam.readG2o(g2oFile, is3D)
# Add prior on the first key. TODO: assumes first key ios z
priorModel = gtsam.noiseModel_Diagonal.Variances(
np.array([1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4]))
firstKey = initial.keys().at(0)
graph.add(gtsam.PriorFactorPose3(0, gtsam.Pose3(), priorModel))
# Initializing Pose3 - chordal relaxation"
initialization = gtsam.InitializePose3.initialize(graph)
print(initialization)

View File

@ -1,4 +1,57 @@
These examples are almost identical to the old handwritten python wrapper
examples. However, there are just some slight name changes, for example
noiseModel.Diagonal becomes noiseModel_Diagonal etc...
Also, annoyingly, instead of gtsam.Symbol('b',0) we now need to say gtsam.symbol(ord('b'), 0))
`noiseModel.Diagonal` becomes `noiseModel_Diagonal` etc...
Also, annoyingly, instead of `gtsam.Symbol('b', 0)` we now need to say `gtsam.symbol(ord('b'), 0))`
# Porting Progress
| C++ Example Name | Ported |
|-------------------------------------------------------|--------|
| CameraResectioning | |
| CreateSFMExampleData | |
| DiscreteBayesNet_FG | none of the required discrete functionality is exposed through cython |
| easyPoint2KalmanFilter | ExtendedKalmanFilter not exposed through cython |
| elaboratePoint2KalmanFilter | GaussianSequentialSolver not exposed through cython |
| ImuFactorExample2 | X |
| ImuFactorsExample | |
| ISAM2Example_SmartFactor | |
| ISAM2_SmartFactorStereo_IMU | |
| LocalizationExample | impossible? |
| METISOrderingExample | |
| OdometryExample | X |
| PlanarSLAMExample | X |
| Pose2SLAMExample | X |
| Pose2SLAMExampleExpressions | |
| Pose2SLAMExample_g2o | X |
| Pose2SLAMExample_graph | |
| Pose2SLAMExample_graphviz | |
| Pose2SLAMExample_lago | lago not exposed through cython |
| Pose2SLAMStressTest | |
| Pose2SLAMwSPCG | |
| Pose3SLAMExample_changeKeys | |
| Pose3SLAMExampleExpressions_BearingRangeWithTransform | |
| Pose3SLAMExample_g2o | X |
| Pose3SLAMExample_initializePose3Chordal | |
| Pose3SLAMExample_initializePose3Gradient | |
| RangeISAMExample_plaza2 | |
| SelfCalibrationExample | |
| SFMExample_bal_COLAMD_METIS | |
| SFMExample_bal | |
| SFMExample | X |
| SFMExampleExpressions_bal | |
| SFMExampleExpressions | |
| SFMExample_SmartFactor | |
| SFMExample_SmartFactorPCG | |
| SimpleRotation | X |
| SolverComparer | |
| StereoVOExample | |
| StereoVOExample_large | |
| TimeTBB | |
| UGM_chain | discrete functionality not exposed |
| UGM_small | discrete functionality not exposed |
| VisualISAM2Example | X |
| VisualISAMExample | X |
Extra Examples (with no C++ equivalent)
- PlanarManipulatorExample
- SFMData

View File

@ -0,0 +1,118 @@
"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
A structure-from-motion problem on a simulated dataset
"""
from __future__ import print_function
import gtsam
import numpy as np
from gtsam.examples import SFMdata
from gtsam.gtsam import (Cal3_S2, DoglegOptimizer,
GenericProjectionFactorCal3_S2, NonlinearFactorGraph,
Point3, Pose3, PriorFactorPoint3, PriorFactorPose3,
Rot3, SimpleCamera, Values)
def symbol(name: str, index: int) -> int:
""" helper for creating a symbol without explicitly casting 'name' from str to int """
return gtsam.symbol(ord(name), index)
def main():
"""
Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
Each variable in the system (poses and landmarks) must be identified with a unique key.
We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
Here we will use Symbols
In GTSAM, measurement functions are represented as 'factors'. Several common factors
have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
Here we will use Projection factors to model the camera's landmark observations.
Also, we will initialize the robot at some location using a Prior factor.
When the factors are created, we will add them to a Factor Graph. As the factors we are using
are nonlinear factors, we will need a Nonlinear Factor Graph.
Finally, once all of the factors have been added to our factor graph, we will want to
solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
trust-region method known as Powell's Degleg
The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
nonlinear functions around an initial linearization point, then solve the linear system
to update the linearization point. This happens repeatedly until the solver converges
to a consistent set of variable values. This requires us to specify an initial guess
for each variable, held in a Values container.
"""
# Define the camera calibration parameters
K = Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
# Define the camera observation noise model
measurement_noise = gtsam.noiseModel_Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
# Create a factor graph
graph = NonlinearFactorGraph()
# Add a prior on pose x1. This indirectly specifies where the origin is.
# 0.3 rad std on roll,pitch,yaw and 0.1m on x,y,z
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
factor = PriorFactorPose3(symbol('x', 0), poses[0], pose_noise)
graph.push_back(factor)
# Simulated measurements from each camera pose, adding them to the factor graph
for i, pose in enumerate(poses):
camera = SimpleCamera(pose, K)
for j, point in enumerate(points):
measurement = camera.project(point)
factor = GenericProjectionFactorCal3_S2(
measurement, measurement_noise, symbol('x', i), symbol('l', j), K)
graph.push_back(factor)
# Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
# Here we add a prior on the position of the first landmark. This fixes the scale by indicating the distance
# between the first camera and the first landmark. All other landmark positions are interpreted using this scale.
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
factor = PriorFactorPoint3(symbol('l', 0), points[0], point_noise)
graph.push_back(factor)
graph.print_('Factor Graph:\n')
# Create the data structure to hold the initial estimate to the solution
# Intentionally initialize the variables off from the ground truth
initial_estimate = Values()
for i, pose in enumerate(poses):
r = Rot3.Rodrigues(-0.1, 0.2, 0.25)
t = Point3(0.05, -0.10, 0.20)
transformed_pose = pose.compose(Pose3(r, t))
initial_estimate.insert(symbol('x', i), transformed_pose)
for j, point in enumerate(points):
transformed_point = Point3(point.vector() + np.array([-0.25, 0.20, 0.15]))
initial_estimate.insert(symbol('l', j), transformed_point)
initial_estimate.print_('Initial Estimates:\n')
# Optimize the graph and print results
params = gtsam.DoglegParams()
params.setVerbosity('TERMINATION')
optimizer = DoglegOptimizer(graph, initial_estimate, params)
print('Optimizing:')
result = optimizer.optimize()
result.print_('Final results:\n')
print('initial error = {}'.format(graph.error(initial_estimate)))
print('final error = {}'.format(graph.error(result)))
if __name__ == '__main__':
main()

View File

@ -0,0 +1,84 @@
"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
This example will perform a relatively trivial optimization on
a single variable with a single factor.
"""
import numpy as np
import gtsam
def main():
"""
Step 1: Create a factor to express a unary constraint
The "prior" in this case is the measurement from a sensor,
with a model of the noise on the measurement.
The "Key" created here is a label used to associate parts of the
state (stored in "RotValues") with particular factors. They require
an index to allow for lookup, and should be unique.
In general, creating a factor requires:
- A key or set of keys labeling the variables that are acted upon
- A measurement value
- A measurement model with the correct dimensionality for the factor
"""
prior = gtsam.Rot2.fromAngle(np.deg2rad(30))
prior.print_('goal angle')
model = gtsam.noiseModel_Isotropic.Sigma(dim=1, sigma=np.deg2rad(1))
key = gtsam.symbol(ord('x'), 1)
factor = gtsam.PriorFactorRot2(key, prior, model)
"""
Step 2: Create a graph container and add the factor to it
Before optimizing, all factors need to be added to a Graph container,
which provides the necessary top-level functionality for defining a
system of constraints.
In this case, there is only one factor, but in a practical scenario,
many more factors would be added.
"""
graph = gtsam.NonlinearFactorGraph()
graph.push_back(factor)
graph.print_('full graph')
"""
Step 3: Create an initial estimate
An initial estimate of the solution for the system is necessary to
start optimization. This system state is the "Values" instance,
which is similar in structure to a dictionary, in that it maps
keys (the label created in step 1) to specific values.
The initial estimate provided to optimization will be used as
a linearization point for optimization, so it is important that
all of the variables in the graph have a corresponding value in
this structure.
"""
initial = gtsam.Values()
initial.insert(key, gtsam.Rot2.fromAngle(np.deg2rad(20)))
initial.print_('initial estimate')
"""
Step 4: Optimize
After formulating the problem with a graph of constraints
and an initial estimate, executing optimization is as simple
as calling a general optimization function with the graph and
initial estimate. This will yield a new RotValues structure
with the final state of the optimization.
"""
result = gtsam.LevenbergMarquardtOptimizer(graph, initial).optimize()
result.print_('final result')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,106 @@
"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
A visualSLAM example for the structure-from-motion problem on a simulated dataset
This version uses iSAM to solve the problem incrementally
"""
from __future__ import print_function
import numpy as np
import gtsam
from gtsam.examples import SFMdata
from gtsam.gtsam import (Cal3_S2, GenericProjectionFactorCal3_S2,
NonlinearFactorGraph, NonlinearISAM, Point3, Pose3,
PriorFactorPoint3, PriorFactorPose3, Rot3,
SimpleCamera, Values)
def symbol(name: str, index: int) -> int:
""" helper for creating a symbol without explicitly casting 'name' from str to int """
return gtsam.symbol(ord(name), index)
def main():
"""
A structure-from-motion example with landmarks
- The landmarks form a 10 meter cube
- The robot rotates around the landmarks, always facing towards the cube
"""
# Define the camera calibration parameters
K = Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
# Define the camera observation noise model
camera_noise = gtsam.noiseModel_Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
# Create a NonlinearISAM object which will relinearize and reorder the variables
# every "reorderInterval" updates
isam = NonlinearISAM(reorderInterval=3)
# Create a Factor Graph and Values to hold the new data
graph = NonlinearFactorGraph()
initial_estimate = Values()
# Loop over the different poses, adding the observations to iSAM incrementally
for i, pose in enumerate(poses):
camera = SimpleCamera(pose, K)
# Add factors for each landmark observation
for j, point in enumerate(points):
measurement = camera.project(point)
factor = GenericProjectionFactorCal3_S2(measurement, camera_noise, symbol('x', i), symbol('l', j), K)
graph.push_back(factor)
# Intentionally initialize the variables off from the ground truth
noise = Pose3(r=Rot3.Rodrigues(-0.1, 0.2, 0.25), t=Point3(0.05, -0.10, 0.20))
initial_xi = pose.compose(noise)
# Add an initial guess for the current pose
initial_estimate.insert(symbol('x', i), initial_xi)
# If this is the first iteration, add a prior on the first pose to set the coordinate frame
# and a prior on the first landmark to set the scale
# Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
# adding it to iSAM.
if i == 0:
# Add a prior on pose x0, with 0.3 rad std on roll,pitch,yaw and 0.1m x,y,z
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
factor = PriorFactorPose3(symbol('x', 0), poses[0], pose_noise)
graph.push_back(factor)
# Add a prior on landmark l0
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
factor = PriorFactorPoint3(symbol('l', 0), points[0], point_noise)
graph.push_back(factor)
# Add initial guesses to all observed landmarks
noise = np.array([-0.25, 0.20, 0.15])
for j, point in enumerate(points):
# Intentionally initialize the variables off from the ground truth
initial_lj = points[j].vector() + noise
initial_estimate.insert(symbol('l', j), Point3(initial_lj))
else:
# Update iSAM with the new factors
isam.update(graph, initial_estimate)
current_estimate = isam.estimate()
print('*' * 50)
print('Frame {}:'.format(i))
current_estimate.print_('Current estimate: ')
# Clear the factor graph and values for the next iteration
graph.resize(0)
initial_estimate.clear()
if __name__ == '__main__':
main()

View File

@ -1,112 +0,0 @@
"""
This file is not a real python unittest. It contains small experiments
to test the wrapper with gtsam_test, a short version of gtsam.h.
Its name convention is different from other tests so it won't be discovered.
"""
import gtsam
import numpy as np
r = gtsam.Rot3()
print(r)
print(r.pitch())
r2 = gtsam.Rot3()
r3 = r.compose(r2)
print("r3 pitch:", r3.pitch())
v = np.array([1, 1, 1])
print("v = ", v)
r4 = r3.retract(v)
print("r4 pitch:", r4.pitch())
r4.print_(b'r4: ')
r3.print_(b"r3: ")
v = r3.localCoordinates(r4)
print("localCoordinates:", v)
Rmat = np.array([
[0.990074, -0.0942928, 0.104218],
[0.104218, 0.990074, -0.0942928],
[-0.0942928, 0.104218, 0.990074]
])
r5 = gtsam.Rot3(Rmat)
r5.print_(b"r5: ")
l = gtsam.Rot3.Logmap(r5)
print("l = ", l)
noise = gtsam.noiseModel_Gaussian.Covariance(Rmat)
noise.print_(b"noise:")
D = np.array([1.,2.,3.])
diag = gtsam.noiseModel_Diagonal.Variances(D)
print("diag:", diag)
diag.print_(b"diag:")
print("diag R:", diag.R())
p = gtsam.Point3()
p.print_("p:")
factor = gtsam.BetweenFactorPoint3(1,2,p, noise)
factor.print_(b"factor:")
vv = gtsam.VectorValues()
vv.print_(b"vv:")
vv.insert(1, np.array([1.,2.,3.]))
vv.insert(2, np.array([3.,4.]))
vv.insert(3, np.array([5.,6.,7.,8.]))
vv.print_(b"vv:")
vv2 = gtsam.VectorValues(vv)
vv2.insert(4, np.array([4.,2.,1]))
vv2.print_(b"vv2:")
vv.print_(b"vv:")
vv.insert(4, np.array([1.,2.,4.]))
vv.print_(b"vv:")
vv3 = vv.add(vv2)
vv3.print_(b"vv3:")
values = gtsam.Values()
values.insert(1, gtsam.Point3())
values.insert(2, gtsam.Rot3())
values.print_(b"values:")
factor = gtsam.PriorFactorVector(1, np.array([1.,2.,3.]), diag)
print "Prior factor vector: ", factor
keys = gtsam.KeyVector()
keys.push_back(1)
keys.push_back(2)
print 'size: ', keys.size()
print keys.at(0)
print keys.at(1)
noise = gtsam.noiseModel_Isotropic.Precision(2, 3.0)
noise.print_('noise:')
print 'noise print:', noise
f = gtsam.JacobianFactor(7, np.ones([2,2]), model=noise, b=np.ones(2))
print 'JacobianFactor(7):\n', f
print "A = ", f.getA()
print "b = ", f.getb()
f = gtsam.JacobianFactor(np.ones(2))
f.print_('jacoboian b_in:')
print "JacobianFactor initalized with b_in:", f
diag = gtsam.noiseModel_Diagonal.Sigmas(np.array([1.,2.,3.]))
fv = gtsam.PriorFactorVector(1, np.array([4.,5.,6.]), diag)
print "priorfactorvector: ", fv
print "base noise: ", fv.get_noiseModel()
print "casted to gaussian2: ", gtsam.dynamic_cast_noiseModel_Diagonal_noiseModel_Base(fv.get_noiseModel())
X = gtsam.symbol(65, 19)
print X
print gtsam.symbolChr(X)
print gtsam.symbolIndex(X)

View File

@ -1,772 +0,0 @@
namespace gtsam {
#include <gtsam/inference/Key.h>
typedef size_t Key;
#include <gtsam/base/FastVector.h>
template<T> class FastVector {
FastVector();
FastVector(const This& f);
void push_back(const T& e);
//T& operator[](int);
T at(int i);
size_t size() const;
};
typedef gtsam::FastVector<gtsam::Key> KeyVector;
//*************************************************************************
// geometry
//*************************************************************************
#include <gtsam/geometry/Point2.h>
class Point2 {
// Standard Constructors
Point2();
Point2(double x, double y);
Point2(Vector v);
//Point2(const gtsam::Point2& l);
// Testable
void print(string s) const;
bool equals(const gtsam::Point2& pose, double tol) const;
// Group
static gtsam::Point2 identity();
// Standard Interface
double x() const;
double y() const;
Vector vector() const;
double distance(const gtsam::Point2& p2) const;
double norm() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Point3.h>
class Point3 {
// Standard Constructors
Point3();
Point3(double x, double y, double z);
Point3(Vector v);
//Point3(const gtsam::Point3& l);
// Testable
void print(string s) const;
bool equals(const gtsam::Point3& p, double tol) const;
// Group
static gtsam::Point3 identity();
// Standard Interface
Vector vector() const;
double x() const;
double y() const;
double z() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Rot2.h>
class Rot2 {
// Standard Constructors and Named Constructors
Rot2();
Rot2(double theta);
//Rot2(const gtsam::Rot2& l);
static gtsam::Rot2 fromAngle(double theta);
static gtsam::Rot2 fromDegrees(double theta);
static gtsam::Rot2 fromCosSin(double c, double s);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot2& rot, double tol) const;
// Group
static gtsam::Rot2 identity();
gtsam::Rot2 inverse();
gtsam::Rot2 compose(const gtsam::Rot2& p2) const;
gtsam::Rot2 between(const gtsam::Rot2& p2) const;
// Manifold
gtsam::Rot2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot2& p) const;
// Lie Group
static gtsam::Rot2 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot2& p);
// Group Action on Point2
gtsam::Point2 rotate(const gtsam::Point2& point) const;
gtsam::Point2 unrotate(const gtsam::Point2& point) const;
// Standard Interface
static gtsam::Rot2 relativeBearing(const gtsam::Point2& d); // Ignoring derivative
static gtsam::Rot2 atan2(double y, double x);
double theta() const;
double degrees() const;
double c() const;
double s() const;
Matrix matrix() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Rot3.h>
class Rot3 {
// Standard Constructors and Named Constructors
Rot3();
Rot3(Matrix R);
//Rot3(const gtsam::Rot3& l);
static gtsam::Rot3 Rx(double t);
static gtsam::Rot3 Ry(double t);
static gtsam::Rot3 Rz(double t);
static gtsam::Rot3 RzRyRx(double x, double y, double z);
static gtsam::Rot3 RzRyRx(Vector xyz);
static gtsam::Rot3 Yaw(double t); // positive yaw is to right (as in aircraft heading)
static gtsam::Rot3 Pitch(double t); // positive pitch is up (increasing aircraft altitude)
static gtsam::Rot3 Roll(double t); // positive roll is to right (increasing yaw in aircraft)
static gtsam::Rot3 Ypr(double y, double p, double r);
static gtsam::Rot3 Quaternion(double w, double x, double y, double z);
static gtsam::Rot3 Rodrigues(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot3& rot, double tol) const;
// Group
static gtsam::Rot3 identity();
gtsam::Rot3 inverse() const;
gtsam::Rot3 compose(const gtsam::Rot3& p2) const;
gtsam::Rot3 between(const gtsam::Rot3& p2) const;
// Manifold
//gtsam::Rot3 retractCayley(Vector v) const; // FIXME, does not exist in both Matrix and Quaternion options
gtsam::Rot3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot3& p) const;
// Group Action on Point3
gtsam::Point3 rotate(const gtsam::Point3& p) const;
gtsam::Point3 unrotate(const gtsam::Point3& p) const;
// Standard Interface
static gtsam::Rot3 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot3& p);
Matrix matrix() const;
Matrix transpose() const;
gtsam::Point3 column(size_t index) const;
Vector xyz() const;
Vector ypr() const;
Vector rpy() const;
double roll() const;
double pitch() const;
double yaw() const;
// Vector toQuaternion() const; // FIXME: Can't cast to Vector properly
Vector quaternion() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Pose2.h>
class Pose2 {
// Standard Constructor
Pose2();
//Pose2(const gtsam::Pose2& pose);
Pose2(double x, double y, double theta);
Pose2(double theta, const gtsam::Point2& t);
Pose2(const gtsam::Rot2& r, const gtsam::Point2& t);
Pose2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose2& pose, double tol) const;
// Group
static gtsam::Pose2 identity();
gtsam::Pose2 inverse() const;
gtsam::Pose2 compose(const gtsam::Pose2& p2) const;
gtsam::Pose2 between(const gtsam::Pose2& p2) const;
// Manifold
gtsam::Pose2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Pose2& p) const;
// Lie Group
static gtsam::Pose2 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose2& p);
Matrix AdjointMap() const;
Vector Adjoint(const Vector& xi) const;
static Matrix wedge(double vx, double vy, double w);
// Group Actions on Point2
gtsam::Point2 transform_from(const gtsam::Point2& p) const;
gtsam::Point2 transform_to(const gtsam::Point2& p) const;
// Standard Interface
double x() const;
double y() const;
double theta() const;
gtsam::Rot2 bearing(const gtsam::Point2& point) const;
double range(const gtsam::Point2& point) const;
gtsam::Point2 translation() const;
gtsam::Rot2 rotation() const;
Matrix matrix() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Pose3.h>
class Pose3 {
// Standard Constructors
Pose3();
//Pose3(const gtsam::Pose3& pose);
Pose3(const gtsam::Rot3& r, const gtsam::Point3& t);
Pose3(const gtsam::Pose2& pose2); // FIXME: shadows Pose3(Pose3 pose)
Pose3(Matrix t);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose3& pose, double tol) const;
// Group
static gtsam::Pose3 identity();
gtsam::Pose3 inverse() const;
gtsam::Pose3 compose(const gtsam::Pose3& p2) const;
gtsam::Pose3 between(const gtsam::Pose3& p2) const;
// Manifold
gtsam::Pose3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Pose3& T2) const;
// Lie Group
static gtsam::Pose3 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose3& p);
Matrix AdjointMap() const;
Vector Adjoint(Vector xi) const;
static Matrix wedge(double wx, double wy, double wz, double vx, double vy, double vz);
// Group Action on Point3
gtsam::Point3 transform_from(const gtsam::Point3& p) const;
gtsam::Point3 transform_to(const gtsam::Point3& p) const;
// Standard Interface
gtsam::Rot3 rotation() const;
gtsam::Point3 translation() const;
double x() const;
double y() const;
double z() const;
Matrix matrix() const;
gtsam::Pose3 transform_to(const gtsam::Pose3& pose) const; // FIXME: shadows other transform_to()
double range(const gtsam::Point3& point);
double range(const gtsam::Pose3& pose);
// enabling serialization functionality
void serialize() const;
};
//*************************************************************************
// noise
//*************************************************************************
namespace noiseModel {
#include <gtsam/linear/NoiseModel.h>
virtual class Base {
};
virtual class Gaussian : gtsam::noiseModel::Base {
static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R);
static gtsam::noiseModel::Gaussian* Covariance(Matrix R);
Matrix R() const;
bool equals(gtsam::noiseModel::Base& expected, double tol);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
virtual class Diagonal : gtsam::noiseModel::Gaussian {
static gtsam::noiseModel::Diagonal* Sigmas(Vector sigmas);
static gtsam::noiseModel::Diagonal* Variances(Vector variances);
static gtsam::noiseModel::Diagonal* Precisions(Vector precisions);
Matrix R() const;
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
virtual class Constrained : gtsam::noiseModel::Diagonal {
static gtsam::noiseModel::Constrained* MixedSigmas(const Vector& mu, const Vector& sigmas);
static gtsam::noiseModel::Constrained* MixedSigmas(double m, const Vector& sigmas);
static gtsam::noiseModel::Constrained* MixedVariances(const Vector& mu, const Vector& variances);
static gtsam::noiseModel::Constrained* MixedVariances(const Vector& variances);
static gtsam::noiseModel::Constrained* MixedPrecisions(const Vector& mu, const Vector& precisions);
static gtsam::noiseModel::Constrained* MixedPrecisions(const Vector& precisions);
static gtsam::noiseModel::Constrained* All(size_t dim);
static gtsam::noiseModel::Constrained* All(size_t dim, double mu);
gtsam::noiseModel::Constrained* unit() const;
// enabling serialization functionality
void serializable() const;
};
virtual class Isotropic : gtsam::noiseModel::Diagonal {
static gtsam::noiseModel::Isotropic* Sigma(size_t dim, double sigma);
static gtsam::noiseModel::Isotropic* Variance(size_t dim, double varianace);
static gtsam::noiseModel::Isotropic* Precision(size_t dim, double precision);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
virtual class Unit : gtsam::noiseModel::Isotropic {
static gtsam::noiseModel::Unit* Create(size_t dim);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
namespace mEstimator {
virtual class Base {
};
virtual class Null: gtsam::noiseModel::mEstimator::Base {
Null();
//Null(const gtsam::noiseModel::mEstimator::Null& other);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Null* Create();
// enabling serialization functionality
void serializable() const;
};
virtual class Fair: gtsam::noiseModel::mEstimator::Base {
Fair(double c);
//Fair(const gtsam::noiseModel::mEstimator::Fair& other);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Fair* Create(double c);
// enabling serialization functionality
void serializable() const;
};
virtual class Huber: gtsam::noiseModel::mEstimator::Base {
Huber(double k);
//Huber(const gtsam::noiseModel::mEstimator::Huber& other);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Huber* Create(double k);
// enabling serialization functionality
void serializable() const;
};
virtual class Tukey: gtsam::noiseModel::mEstimator::Base {
Tukey(double k);
//Tukey(const gtsam::noiseModel::mEstimator::Tukey& other);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Tukey* Create(double k);
// enabling serialization functionality
void serializable() const;
};
}///\namespace mEstimator
virtual class Robust : gtsam::noiseModel::Base {
Robust(const gtsam::noiseModel::mEstimator::Base* robust, const gtsam::noiseModel::Base* noise);
//Robust(const gtsam::noiseModel::Robust& other);
static gtsam::noiseModel::Robust* Create(const gtsam::noiseModel::mEstimator::Base* robust, const gtsam::noiseModel::Base* noise);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
}///\namespace noiseModel
#include <gtsam/linear/Sampler.h>
class Sampler {
//Constructors
Sampler(gtsam::noiseModel::Diagonal* model, int seed);
Sampler(Vector sigmas, int seed);
Sampler(int seed);
//Sampler(const gtsam::Sampler& other);
//Standard Interface
size_t dim() const;
Vector sigmas() const;
gtsam::noiseModel::Diagonal* model() const;
Vector sample();
Vector sampleNewModel(gtsam::noiseModel::Diagonal* model);
};
#include <gtsam/linear/VectorValues.h>
class VectorValues {
//Constructors
VectorValues();
VectorValues(const gtsam::VectorValues& other);
//Named Constructors
static gtsam::VectorValues Zero(const gtsam::VectorValues& model);
//Standard Interface
size_t size() const;
size_t dim(size_t j) const;
bool exists(size_t j) const;
void print(string s) const;
bool equals(const gtsam::VectorValues& expected, double tol) const;
void insert(size_t j, Vector value);
Vector vector() const;
Vector at(size_t j) const;
void update(const gtsam::VectorValues& values);
//Advanced Interface
void setZero();
gtsam::VectorValues add(const gtsam::VectorValues& c) const;
void addInPlace(const gtsam::VectorValues& c);
gtsam::VectorValues subtract(const gtsam::VectorValues& c) const;
gtsam::VectorValues scale(double a) const;
void scaleInPlace(double a);
bool hasSameStructure(const gtsam::VectorValues& other) const;
double dot(const gtsam::VectorValues& V) const;
double norm() const;
double squaredNorm() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/linear/GaussianFactor.h>
virtual class GaussianFactor {
gtsam::KeyVector keys() const;
void print(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
double error(const gtsam::VectorValues& c) const;
gtsam::GaussianFactor* clone() const;
gtsam::GaussianFactor* negate() const;
Matrix augmentedInformation() const;
Matrix information() const;
Matrix augmentedJacobian() const;
pair<Matrix, Vector> jacobian() const;
size_t size() const;
bool empty() const;
};
#include <gtsam/linear/JacobianFactor.h>
virtual class JacobianFactor : gtsam::GaussianFactor {
//Constructors
JacobianFactor();
JacobianFactor(const gtsam::GaussianFactor& factor);
JacobianFactor(Vector b_in);
JacobianFactor(size_t i1, Matrix A1, Vector b,
const gtsam::noiseModel::Diagonal* model);
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, Vector b,
const gtsam::noiseModel::Diagonal* model);
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, size_t i3, Matrix A3,
Vector b, const gtsam::noiseModel::Diagonal* model);
//JacobianFactor(const gtsam::GaussianFactorGraph& graph);
//JacobianFactor(const gtsam::JacobianFactor& other);
//Testable
void print(string s) const;
void printKeys(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
size_t size() const;
Vector unweighted_error(const gtsam::VectorValues& c) const;
Vector error_vector(const gtsam::VectorValues& c) const;
double error(const gtsam::VectorValues& c) const;
//Standard Interface
Matrix getA() const;
Vector getb() const;
size_t rows() const;
size_t cols() const;
bool isConstrained() const;
pair<Matrix, Vector> jacobianUnweighted() const;
Matrix augmentedJacobianUnweighted() const;
void transposeMultiplyAdd(double alpha, const Vector& e, gtsam::VectorValues& x) const;
gtsam::JacobianFactor whiten() const;
//pair<gtsam::GaussianConditional*, gtsam::JacobianFactor*> eliminate(const gtsam::Ordering& keys) const;
void setModel(bool anyConstrained, const Vector& sigmas);
gtsam::noiseModel::Diagonal* get_model() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/linear/HessianFactor.h>
virtual class HessianFactor : gtsam::GaussianFactor {
//Constructors
HessianFactor();
HessianFactor(const gtsam::GaussianFactor& factor);
HessianFactor(size_t j, Matrix G, Vector g, double f);
HessianFactor(size_t j, Vector mu, Matrix Sigma);
HessianFactor(size_t j1, size_t j2, Matrix G11, Matrix G12, Vector g1, Matrix G22,
Vector g2, double f);
HessianFactor(size_t j1, size_t j2, size_t j3, Matrix G11, Matrix G12, Matrix G13,
Vector g1, Matrix G22, Matrix G23, Vector g2, Matrix G33, Vector g3,
double f);
//HessianFactor(const gtsam::GaussianFactorGraph& factors);
//HessianFactor(const gtsam::HessianFactor& other);
//Testable
size_t size() const;
void print(string s) const;
void printKeys(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
double error(const gtsam::VectorValues& c) const;
//Standard Interface
size_t rows() const;
Matrix information() const;
double constantTerm() const;
Vector linearTerm() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/nonlinear/Values.h>
class Values {
Values();
//Values(const gtsam::Values& other);
size_t size() const;
bool empty() const;
void clear();
size_t dim() const;
void print(string s) const;
bool equals(const gtsam::Values& other, double tol) const;
void insert(const gtsam::Values& values);
void update(const gtsam::Values& values);
void erase(size_t j);
void swap(gtsam::Values& values);
bool exists(size_t j) const;
gtsam::KeyVector keys() const;
gtsam::VectorValues zeroVectors() const;
gtsam::Values retract(const gtsam::VectorValues& delta) const;
gtsam::VectorValues localCoordinates(const gtsam::Values& cp) const;
// enabling serialization functionality
void serialize() const;
// New in 4.0, we have to specialize every insert/update/at to generate wrappers
// Instead of the old:
// void insert(size_t j, const gtsam::Value& value);
// void update(size_t j, const gtsam::Value& val);
// gtsam::Value at(size_t j) const;
// template <T = {gtsam::Point2, gtsam::Rot2, gtsam::Pose2, gtsam::Point3,
// gtsam::Rot3, gtsam::Pose3}>
// void insert(size_t j, const T& t);
// template <T = {gtsam::Point2, gtsam::Rot2, gtsam::Pose2, gtsam::Point3,
// gtsam::Rot3, gtsam::Pose3}>
// void update(size_t j, const T& t);
void insert(size_t j, const gtsam::Point2& t);
void insert(size_t j, const gtsam::Point3& t);
void insert(size_t j, const gtsam::Rot2& t);
void insert(size_t j, const gtsam::Pose2& t);
void insert(size_t j, const gtsam::Rot3& t);
void insert(size_t j, const gtsam::Pose3& t);
void insert(size_t j, Vector t);
void insert(size_t j, Matrix t);
void update(size_t j, const gtsam::Point2& t);
void update(size_t j, const gtsam::Point3& t);
void update(size_t j, const gtsam::Rot2& t);
void update(size_t j, const gtsam::Pose2& t);
void update(size_t j, const gtsam::Rot3& t);
void update(size_t j, const gtsam::Pose3& t);
void update(size_t j, Vector t);
void update(size_t j, Matrix t);
template <T = {gtsam::Point2, gtsam::Rot2, gtsam::Pose2, gtsam::Point3,
gtsam::Rot3, gtsam::Pose3, Vector, Matrix}>
T at(size_t j);
/// version for double
void insertDouble(size_t j, double c);
double atDouble(size_t j) const;
};
#include <gtsam/nonlinear/NonlinearFactor.h>
virtual class NonlinearFactor {
// Factor base class
size_t size() const;
gtsam::KeyVector keys() const;
void print(string s) const;
void printKeys(string s) const;
// NonlinearFactor
bool equals(const gtsam::NonlinearFactor& other, double tol) const;
double error(const gtsam::Values& c) const;
size_t dim() const;
bool active(const gtsam::Values& c) const;
gtsam::GaussianFactor* linearize(const gtsam::Values& c) const;
gtsam::NonlinearFactor* clone() const;
// gtsam::NonlinearFactor* rekey(const gtsam::KeyVector& newKeys) const; //FIXME: Conversion from KeyVector to std::vector does not happen
};
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
class NonlinearFactorGraph {
NonlinearFactorGraph();
//NonlinearFactorGraph(const gtsam::NonlinearFactorGraph& graph);
// FactorGraph
void print(string s) const;
bool equals(const gtsam::NonlinearFactorGraph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
gtsam::NonlinearFactor* at(size_t idx) const;
void push_back(const gtsam::NonlinearFactorGraph& factors);
void push_back(gtsam::NonlinearFactor* factor);
void add(gtsam::NonlinearFactor* factor);
bool exists(size_t idx) const;
// gtsam::KeySet keys() const;
// NonlinearFactorGraph
double error(const gtsam::Values& values) const;
double probPrime(const gtsam::Values& values) const;
//gtsam::Ordering orderingCOLAMD() const;
// Ordering* orderingCOLAMDConstrained(const gtsam::Values& c, const std::map<gtsam::Key,int>& constraints) const;
//gtsam::GaussianFactorGraph* linearize(const gtsam::Values& values) const;
gtsam::NonlinearFactorGraph clone() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/nonlinear/NonlinearFactor.h>
virtual class NoiseModelFactor: gtsam::NonlinearFactor {
void equals(const gtsam::NoiseModelFactor& other, double tol) const;
gtsam::noiseModel::Base* get_noiseModel() const; // deprecated by below
gtsam::noiseModel::Base* noiseModel() const;
Vector unwhitenedError(const gtsam::Values& x) const;
Vector whitenedError(const gtsam::Values& x) const;
};
#include <gtsam/slam/PriorFactor.h>
template<T = {Vector, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3}>
virtual class PriorFactor : gtsam::NoiseModelFactor {
PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel);
//PriorFactor(const This& other);
T prior() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/slam/BetweenFactor.h>
template<T = {Vector, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3}>
virtual class BetweenFactor : gtsam::NoiseModelFactor {
BetweenFactor(size_t key1, size_t key2, const T& relativePose, const gtsam::noiseModel::Base* noiseModel);
//BetweenFactor(const This& other);
T measured() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/inference/Symbol.h>
size_t symbol(char chr, size_t index);
char symbolChr(size_t key);
size_t symbolIndex(size_t key);
#include <gtsam/inference/Key.h>
// Default keyformatter
void PrintKeyVector(const gtsam::KeyVector& keys);
void PrintKeyVector(const gtsam::KeyVector& keys, string s);
#include <gtsam/nonlinear/NonlinearOptimizer.h>
bool checkConvergence(double relativeErrorTreshold,
double absoluteErrorTreshold, double errorThreshold,
double currentError, double newError);
#include <gtsam/slam/dataset.h>
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise, bool smart);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model, int maxID);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D_robust(string filename,
gtsam::noiseModel::Base* model);
void save2D(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& config, gtsam::noiseModel::Diagonal* model,
string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& estimate, string filename);
//*************************************************************************
// Utilities
//*************************************************************************
namespace utilities {
#include <gtsam/nonlinear/utilities.h>
// gtsam::KeyList createKeyList(Vector I);
// gtsam::KeyList createKeyList(string s, Vector I);
gtsam::KeyVector createKeyVector(Vector I);
gtsam::KeyVector createKeyVector(string s, Vector I);
// gtsam::KeySet createKeySet(Vector I);
// gtsam::KeySet createKeySet(string s, Vector I);
Matrix extractPoint2(const gtsam::Values& values);
Matrix extractPoint3(const gtsam::Values& values);
Matrix extractPose2(const gtsam::Values& values);
gtsam::Values allPose3s(gtsam::Values& values);
Matrix extractPose3(const gtsam::Values& values);
void perturbPoint2(gtsam::Values& values, double sigma, int seed);
void perturbPose2 (gtsam::Values& values, double sigmaT, double sigmaR, int seed);
void perturbPoint3(gtsam::Values& values, double sigma, int seed);
// void insertBackprojections(gtsam::Values& values, const gtsam::SimpleCamera& c, Vector J, Matrix Z, double depth);
// void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K);
// void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K, const gtsam::Pose3& body_P_sensor);
Matrix reprojectionErrors(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& values);
gtsam::Values localToWorld(const gtsam::Values& local, const gtsam::Pose2& base);
gtsam::Values localToWorld(const gtsam::Values& local, const gtsam::Pose2& base, const gtsam::KeyVector& keys);
} //\namespace utilities
#include <gtsam/nonlinear/utilities.h>
class RedirectCout {
RedirectCout();
string str();
};
} //\namespace gtsam

View File

@ -1,9 +1,22 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Cal3Unified unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestCal3Unified(unittest.TestCase):
class TestCal3Unified(GtsamTestCase):
def test_Cal3Unified(self):
K = gtsam.Cal3Unified()
@ -11,12 +24,15 @@ class TestCal3Unified(unittest.TestCase):
self.assertEqual(K.fx(), 1.)
def test_retract(self):
expected = gtsam.Cal3Unified(100 + 2, 105 + 3, 0.0 + 4, 320 + 5, 240 + 6, 1e-3 + 7, 2.0*1e-3 + 8, 3.0*1e-3 + 9, 4.0*1e-3 + 10, 0.1 + 1)
K = gtsam.Cal3Unified(100, 105, 0.0, 320, 240, 1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3, 0.1)
expected = gtsam.Cal3Unified(100 + 2, 105 + 3, 0.0 + 4, 320 + 5, 240 + 6,
1e-3 + 7, 2.0*1e-3 + 8, 3.0*1e-3 + 9, 4.0*1e-3 + 10, 0.1 + 1)
K = gtsam.Cal3Unified(100, 105, 0.0, 320, 240,
1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3, 0.1)
d = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10, 1], order='F')
actual = K.retract(d)
self.assertTrue(actual.equals(expected, 1e-9))
self.gtsamAssertEquals(actual, expected)
np.testing.assert_allclose(d, K.localCoordinates(actual))
if __name__ == "__main__":
unittest.main()

View File

@ -1,8 +1,22 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
JacobianFactor unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
import numpy as np
class TestJacobianFactor(unittest.TestCase):
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestJacobianFactor(GtsamTestCase):
def test_eliminate(self):
# Recommended way to specify a matrix (see cython/README)
@ -54,7 +68,7 @@ class TestJacobianFactor(unittest.TestCase):
expectedCG = gtsam.GaussianConditional(
x2, d, R11, l1, S12, x1, S13, gtsam.noiseModel_Unit.Create(2))
# check if the result matches
self.assertTrue(actualCG.equals(expectedCG, 1e-4))
self.gtsamAssertEquals(actualCG, expectedCG, 1e-4)
# the expected linear factor
Bl1 = np.array([[4.47214, 0.00],
@ -72,7 +86,7 @@ class TestJacobianFactor(unittest.TestCase):
expectedLF = gtsam.JacobianFactor(l1, Bl1, x1, Bx1, b1, model2)
# check if the result matches the combined (reduced) factor
self.assertTrue(lf.equals(expectedLF, 1e-4))
self.gtsamAssertEquals(lf, expectedLF, 1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -1,8 +1,22 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
KalmanFilter unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
import numpy as np
class TestKalmanFilter(unittest.TestCase):
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestKalmanFilter(GtsamTestCase):
def test_KalmanFilter(self):
F = np.eye(2)

View File

@ -1,8 +1,22 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Localization unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
import numpy as np
class TestLocalizationExample(unittest.TestCase):
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestLocalizationExample(GtsamTestCase):
def test_LocalizationExample(self):
# Create the graph (defined in pose2SLAM.h, derived from
@ -43,7 +57,7 @@ class TestLocalizationExample(unittest.TestCase):
P = [None] * result.size()
for i in range(0, result.size()):
pose_i = result.atPose2(i)
self.assertTrue(pose_i.equals(groundTruth.atPose2(i), 1e-4))
self.gtsamAssertEquals(pose_i, groundTruth.atPose2(i), 1e-4)
P[i] = marginals.marginalCovariance(i)
if __name__ == "__main__":

View File

@ -0,0 +1,72 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for IMU testing scenarios.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
# pylint: disable=invalid-name, no-name-in-module
from __future__ import print_function
import unittest
import gtsam
from gtsam import (DoglegOptimizer, DoglegParams, GaussNewtonOptimizer,
GaussNewtonParams, LevenbergMarquardtOptimizer,
LevenbergMarquardtParams, NonlinearFactorGraph, Ordering,
Point2, PriorFactorPoint2, Values)
from gtsam.utils.test_case import GtsamTestCase
KEY1 = 1
KEY2 = 2
class TestScenario(GtsamTestCase):
def test_optimize(self):
"""Do trivial test with three optimizer variants."""
fg = NonlinearFactorGraph()
model = gtsam.noiseModel_Unit.Create(2)
fg.add(PriorFactorPoint2(KEY1, Point2(0, 0), model))
# test error at minimum
xstar = Point2(0, 0)
optimal_values = Values()
optimal_values.insert(KEY1, xstar)
self.assertEqual(0.0, fg.error(optimal_values), 0.0)
# test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
x0 = Point2(3, 3)
initial_values = Values()
initial_values.insert(KEY1, x0)
self.assertEqual(9.0, fg.error(initial_values), 1e-3)
# optimize parameters
ordering = Ordering()
ordering.push_back(KEY1)
# Gauss-Newton
gnParams = GaussNewtonParams()
gnParams.setOrdering(ordering)
actual1 = GaussNewtonOptimizer(fg, initial_values, gnParams).optimize()
self.assertAlmostEqual(0, fg.error(actual1))
# Levenberg-Marquardt
lmParams = LevenbergMarquardtParams.CeresDefaults()
lmParams.setOrdering(ordering)
actual2 = LevenbergMarquardtOptimizer(
fg, initial_values, lmParams).optimize()
self.assertAlmostEqual(0, fg.error(actual2))
# Dogleg
dlParams = DoglegParams()
dlParams.setOrdering(ordering)
actual3 = DoglegOptimizer(fg, initial_values, dlParams).optimize()
self.assertAlmostEqual(0, fg.error(actual3))
if __name__ == "__main__":
unittest.main()

View File

@ -1,8 +1,22 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Odometry unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
import numpy as np
class TestOdometryExample(unittest.TestCase):
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestOdometryExample(GtsamTestCase):
def test_OdometryExample(self):
# Create the graph (defined in pose2SLAM.h, derived from
@ -39,7 +53,7 @@ class TestOdometryExample(unittest.TestCase):
# Check first pose equality
pose_1 = result.atPose2(1)
self.assertTrue(pose_1.equals(gtsam.Pose2(), 1e-4))
self.gtsamAssertEquals(pose_1, gtsam.Pose2(), 1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -1,11 +1,25 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
PlanarSLAM unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
from math import pi
import numpy as np
class TestPose2SLAMExample(unittest.TestCase):
import gtsam
from gtsam.utils.test_case import GtsamTestCase
def test_Pose2SLAMExample(self):
class TestPlanarSLAM(GtsamTestCase):
def test_PlanarSLAM(self):
# Assumptions
# - All values are axis aligned
# - Robot poses are facing along the X axis (horizontal, to the right in images)
@ -56,7 +70,7 @@ class TestPose2SLAMExample(unittest.TestCase):
P = marginals.marginalCovariance(1)
pose_1 = result.atPose2(1)
self.assertTrue(pose_1.equals(gtsam.Pose2(), 1e-4))
self.gtsamAssertEquals(pose_1, gtsam.Pose2(), 1e-4)

View File

@ -0,0 +1,32 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Pose2 unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam import Pose2
from gtsam.utils.test_case import GtsamTestCase
class TestPose2(GtsamTestCase):
"""Test selected Pose2 methods."""
def test_adjoint(self):
"""Test adjoint method."""
xi = np.array([1, 2, 3])
expected = np.dot(Pose2.adjointMap_(xi), xi)
actual = Pose2.adjoint_(xi, xi)
np.testing.assert_array_equal(actual, expected)
if __name__ == "__main__":
unittest.main()

View File

@ -1,9 +1,23 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Pose2SLAM unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
from math import pi
import numpy as np
class TestPose2SLAMExample(unittest.TestCase):
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestPose2SLAMExample(GtsamTestCase):
def test_Pose2SLAMExample(self):
# Assumptions
@ -56,7 +70,7 @@ class TestPose2SLAMExample(unittest.TestCase):
P = marginals.marginalCovariance(1)
pose_1 = result.atPose2(1)
self.assertTrue(pose_1.equals(gtsam.Pose2(), 1e-4))
self.gtsamAssertEquals(pose_1, gtsam.Pose2(), 1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -1,13 +1,24 @@
"""Pose3 unit tests."""
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Pose3 unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import math
import unittest
import numpy as np
import gtsam
from gtsam import Point3, Pose3, Rot3
from gtsam.utils.test_case import GtsamTestCase
class TestPose3(unittest.TestCase):
class TestPose3(GtsamTestCase):
"""Test selected Pose3 methods."""
def test_between(self):
@ -16,14 +27,14 @@ class TestPose3(unittest.TestCase):
T3 = Pose3(Rot3.Rodrigues(-90, 0, 0), Point3(1, 2, 3))
expected = T2.inverse().compose(T3)
actual = T2.between(T3)
self.assertTrue(actual.equals(expected, 1e-6))
self.gtsamAssertEquals(actual, expected, 1e-6)
def test_transform_to(self):
"""Test transform_to method."""
transform = Pose3(Rot3.Rodrigues(0, 0, -1.570796), Point3(2, 4, 0))
actual = transform.transform_to(Point3(3, 2, 10))
expected = Point3(2, 1, 10)
self.assertTrue(actual.equals(expected, 1e-6))
self.gtsamAssertEquals(actual, expected, 1e-6)
def test_range(self):
"""Test range method."""
@ -49,8 +60,8 @@ class TestPose3(unittest.TestCase):
def test_adjoint(self):
"""Test adjoint method."""
xi = np.array([1, 2, 3, 4, 5, 6])
expected = np.dot(Pose3.adjointMap(xi), xi)
actual = Pose3.adjoint(xi, xi)
expected = np.dot(Pose3.adjointMap_(xi), xi)
actual = Pose3.adjoint_(xi, xi)
np.testing.assert_array_equal(actual, expected)

View File

@ -1,10 +1,24 @@
import unittest
import numpy as np
import gtsam
from math import pi
from gtsam.utils.circlePose3 import *
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
class TestPose3SLAMExample(unittest.TestCase):
See LICENSE for the license information
PoseSLAM unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
from math import pi
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
from gtsam.utils.circlePose3 import *
class TestPose3SLAMExample(GtsamTestCase):
def test_Pose3SLAMExample(self):
# Create a hexagon of poses
@ -40,7 +54,7 @@ class TestPose3SLAMExample(unittest.TestCase):
result = optimizer.optimizeSafely()
pose_1 = result.atPose3(1)
self.assertTrue(pose_1.equals(p1, 1e-4))
self.gtsamAssertEquals(pose_1, p1, 1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -1,8 +1,22 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
PriorFactor unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
import numpy as np
class TestPriorFactor(unittest.TestCase):
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestPriorFactor(GtsamTestCase):
def test_PriorFactor(self):
values = gtsam.Values()

View File

@ -1,11 +1,24 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
SFM unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
from gtsam import symbol
import numpy as np
import gtsam
import gtsam.utils.visual_data_generator as generator
from gtsam import symbol
from gtsam.utils.test_case import GtsamTestCase
class TestSFMExample(unittest.TestCase):
class TestSFMExample(GtsamTestCase):
def test_SFMExample(self):
options = generator.Options()
@ -59,11 +72,11 @@ class TestSFMExample(unittest.TestCase):
# Check optimized results, should be equal to ground truth
for i in range(len(truth.cameras)):
pose_i = result.atPose3(symbol(ord('x'), i))
self.assertTrue(pose_i.equals(truth.cameras[i].pose(), 1e-5))
self.gtsamAssertEquals(pose_i, truth.cameras[i].pose(), 1e-5)
for j in range(len(truth.points)):
point_j = result.atPoint3(symbol(ord('p'), j))
self.assertTrue(point_j.equals(truth.points[j], 1e-5))
self.gtsamAssertEquals(point_j, truth.points[j], 1e-5)
if __name__ == "__main__":
unittest.main()

View File

@ -1,11 +1,27 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Scenario unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
from __future__ import print_function
import math
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
# pylint: disable=invalid-name, E1101
class TestScenario(unittest.TestCase):
class TestScenario(GtsamTestCase):
def setUp(self):
pass
@ -29,7 +45,8 @@ class TestScenario(unittest.TestCase):
T30 = scenario.pose(T)
np.testing.assert_almost_equal(
np.array([math.pi, 0, math.pi]), T30.rotation().xyz())
self.assert_(gtsam.Point3(0, 0, 2 * R).equals(T30.translation(), 1e-9))
self.gtsamAssertEquals(gtsam.Point3(
0, 0, 2.0 * R), T30.translation(), 1e-9)
if __name__ == '__main__':

View File

@ -1,18 +1,31 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
SimpleCamera unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import math
import numpy as np
import unittest
from gtsam import Pose2, Point3, Rot3, Pose3, Cal3_S2, SimpleCamera
import numpy as np
import gtsam
from gtsam import Cal3_S2, Point3, Pose2, Pose3, Rot3, SimpleCamera
from gtsam.utils.test_case import GtsamTestCase
K = Cal3_S2(625, 625, 0, 0, 0)
class TestSimpleCamera(unittest.TestCase):
class TestSimpleCamera(GtsamTestCase):
def test_constructor(self):
pose1 = Pose3(Rot3(np.diag([1, -1, -1])), Point3(0, 0, 0.5))
camera = SimpleCamera(pose1, K)
self.assertTrue(camera.calibration().equals(K, 1e-9))
self.assertTrue(camera.pose().equals(pose1, 1e-9))
self.gtsamAssertEquals(camera.calibration(), K, 1e-9)
self.gtsamAssertEquals(camera.pose(), pose1, 1e-9)
def test_level2(self):
# Create a level camera, looking in Y-direction
@ -25,7 +38,7 @@ class TestSimpleCamera(unittest.TestCase):
z = Point3(0,1,0)
wRc = Rot3(x,y,z)
expected = Pose3(wRc,Point3(0.4,0.3,0.1))
self.assertTrue(camera.pose().equals(expected, 1e-9))
self.gtsamAssertEquals(camera.pose(), expected, 1e-9)
if __name__ == "__main__":

View File

@ -1,10 +1,23 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Stereo VO unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import gtsam
from gtsam import symbol
import numpy as np
import gtsam
from gtsam import symbol
from gtsam.utils.test_case import GtsamTestCase
class TestStereoVOExample(unittest.TestCase):
class TestStereoVOExample(GtsamTestCase):
def test_StereoVOExample(self):
## Assumptions
@ -60,10 +73,10 @@ class TestStereoVOExample(unittest.TestCase):
## check equality for the first pose and point
pose_x1 = result.atPose3(x1)
self.assertTrue(pose_x1.equals(first_pose,1e-4))
self.gtsamAssertEquals(pose_x1, first_pose,1e-4)
point_l1 = result.atPoint3(l1)
self.assertTrue(point_l1.equals(expected_l1,1e-4))
self.gtsamAssertEquals(point_l1, expected_l1,1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -1,19 +1,34 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Values unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
# pylint: disable=invalid-name, E1101, E0611
import unittest
import numpy as np
from gtsam import Point2, Point3, Unit3, Rot2, Pose2, Rot3, Pose3
from gtsam import Values, Cal3_S2, Cal3DS2, Cal3Bundler, EssentialMatrix, imuBias_ConstantBias
import gtsam
from gtsam import (Cal3_S2, Cal3Bundler, Cal3DS2, EssentialMatrix, Point2,
Point3, Pose2, Pose3, Rot2, Rot3, Unit3, Values,
imuBias_ConstantBias)
from gtsam.utils.test_case import GtsamTestCase
class TestValues(unittest.TestCase):
class TestValues(GtsamTestCase):
def test_values(self):
values = Values()
E = EssentialMatrix(Rot3(), Unit3())
tol = 1e-9
values.insert(0, Point2(0,0))
values.insert(1, Point3(0,0,0))
values.insert(0, Point2(0, 0))
values.insert(1, Point3(0, 0, 0))
values.insert(2, Rot2())
values.insert(3, Pose2())
values.insert(4, Rot3())
@ -34,36 +49,38 @@ class TestValues(unittest.TestCase):
# The wrapper will automatically fix the type and storage order for you,
# but for performance reasons, it's recommended to specify the correct
# type and storage order.
vec = np.array([1., 2., 3.]) # for vectors, the order is not important, but dtype still is
# for vectors, the order is not important, but dtype still is
vec = np.array([1., 2., 3.])
values.insert(11, vec)
mat = np.array([[1., 2.], [3., 4.]], order='F')
values.insert(12, mat)
# Test with dtype int and the default order='C'
# This still works as the wrapper converts to the correct type and order for you
# but is nornally not recommended!
mat2 = np.array([[1,2,],[3,5]])
mat2 = np.array([[1, 2, ], [3, 5]])
values.insert(13, mat2)
self.assertTrue(values.atPoint2(0).equals(Point2(), tol))
self.assertTrue(values.atPoint3(1).equals(Point3(), tol))
self.assertTrue(values.atRot2(2).equals(Rot2(), tol))
self.assertTrue(values.atPose2(3).equals(Pose2(), tol))
self.assertTrue(values.atRot3(4).equals(Rot3(), tol))
self.assertTrue(values.atPose3(5).equals(Pose3(), tol))
self.assertTrue(values.atCal3_S2(6).equals(Cal3_S2(), tol))
self.assertTrue(values.atCal3DS2(7).equals(Cal3DS2(), tol))
self.assertTrue(values.atCal3Bundler(8).equals(Cal3Bundler(), tol))
self.assertTrue(values.atEssentialMatrix(9).equals(E, tol))
self.assertTrue(values.atimuBias_ConstantBias(
10).equals(imuBias_ConstantBias(), tol))
self.gtsamAssertEquals(values.atPoint2(0), Point2(0,0), tol)
self.gtsamAssertEquals(values.atPoint3(1), Point3(0,0,0), tol)
self.gtsamAssertEquals(values.atRot2(2), Rot2(), tol)
self.gtsamAssertEquals(values.atPose2(3), Pose2(), tol)
self.gtsamAssertEquals(values.atRot3(4), Rot3(), tol)
self.gtsamAssertEquals(values.atPose3(5), Pose3(), tol)
self.gtsamAssertEquals(values.atCal3_S2(6), Cal3_S2(), tol)
self.gtsamAssertEquals(values.atCal3DS2(7), Cal3DS2(), tol)
self.gtsamAssertEquals(values.atCal3Bundler(8), Cal3Bundler(), tol)
self.gtsamAssertEquals(values.atEssentialMatrix(9), E, tol)
self.gtsamAssertEquals(values.atimuBias_ConstantBias(
10), imuBias_ConstantBias(), tol)
# special cases for Vector and Matrix:
actualVector = values.atVector(11)
self.assertTrue(np.allclose(vec, actualVector, tol))
np.testing.assert_allclose(vec, actualVector, tol)
actualMatrix = values.atMatrix(12)
self.assertTrue(np.allclose(mat, actualMatrix, tol))
np.testing.assert_allclose(mat, actualMatrix, tol)
actualMatrix2 = values.atMatrix(13)
self.assertTrue(np.allclose(mat2, actualMatrix2, tol))
np.testing.assert_allclose(mat2, actualMatrix2, tol)
if __name__ == "__main__":
unittest.main()

View File

@ -1,10 +1,25 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
visual_isam unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
from gtsam import symbol
import gtsam
import gtsam.utils.visual_data_generator as generator
import gtsam.utils.visual_isam as visual_isam
from gtsam import symbol
from gtsam.utils.test_case import GtsamTestCase
class TestVisualISAMExample(unittest.TestCase):
class TestVisualISAMExample(GtsamTestCase):
def test_VisualISAMExample(self):
# Data Options
@ -32,11 +47,11 @@ class TestVisualISAMExample(unittest.TestCase):
for i in range(len(truth.cameras)):
pose_i = result.atPose3(symbol(ord('x'), i))
self.assertTrue(pose_i.equals(truth.cameras[i].pose(), 1e-5))
self.gtsamAssertEquals(pose_i, truth.cameras[i].pose(), 1e-5)
for j in range(len(truth.points)):
point_j = result.atPoint3(symbol(ord('l'), j))
self.assertTrue(point_j.equals(truth.points[j], 1e-5))
self.gtsamAssertEquals(point_j, truth.points[j], 1e-5)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,45 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for testing dataset access.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
# pylint: disable=invalid-name, no-name-in-module, no-member
from __future__ import print_function
import unittest
import gtsam
from gtsam import BetweenFactorPose3, BetweenFactorPose3s
from gtsam.utils.test_case import GtsamTestCase
class TestDataset(GtsamTestCase):
"""Tests for datasets.h wrapper."""
def setUp(self):
"""Get some common paths."""
self.pose3_example_g2o_file = gtsam.findExampleDataFile(
"pose3example.txt")
def test_readG2o3D(self):
"""Test reading directly into factor graph."""
is3D = True
graph, initial = gtsam.readG2o(self.pose3_example_g2o_file, is3D)
self.assertEqual(graph.size(), 6)
self.assertEqual(initial.size(), 5)
def test_parse3Dfactors(self):
"""Test parsing into data structure."""
factors = gtsam.parse3DFactors(self.pose3_example_g2o_file)
self.assertEqual(factors.size(), 6)
self.assertIsInstance(factors.at(0), BetweenFactorPose3)
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,89 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for 3D SLAM initialization, using rotation relaxation.
Author: Luca Carlone and Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101, E0611
import unittest
import numpy as np
import gtsam
from gtsam import NonlinearFactorGraph, Point3, Pose3, Rot3, Values
from gtsam.utils.test_case import GtsamTestCase
x0, x1, x2, x3 = 0, 1, 2, 3
class TestValues(GtsamTestCase):
def setUp(self):
model = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
# We consider a small graph:
# symbolic FG
# x2 0 1
# / | \ 1 2
# / | \ 2 3
# x3 | x1 2 0
# \ | / 0 3
# \ | /
# x0
#
p0 = Point3(0, 0, 0)
self.R0 = Rot3.Expmap(np.array([0.0, 0.0, 0.0]))
p1 = Point3(1, 2, 0)
self.R1 = Rot3.Expmap(np.array([0.0, 0.0, 1.570796]))
p2 = Point3(0, 2, 0)
self.R2 = Rot3.Expmap(np.array([0.0, 0.0, 3.141593]))
p3 = Point3(-1, 1, 0)
self.R3 = Rot3.Expmap(np.array([0.0, 0.0, 4.712389]))
pose0 = Pose3(self.R0, p0)
pose1 = Pose3(self.R1, p1)
pose2 = Pose3(self.R2, p2)
pose3 = Pose3(self.R3, p3)
g = NonlinearFactorGraph()
g.add(gtsam.BetweenFactorPose3(x0, x1, pose0.between(pose1), model))
g.add(gtsam.BetweenFactorPose3(x1, x2, pose1.between(pose2), model))
g.add(gtsam.BetweenFactorPose3(x2, x3, pose2.between(pose3), model))
g.add(gtsam.BetweenFactorPose3(x2, x0, pose2.between(pose0), model))
g.add(gtsam.BetweenFactorPose3(x0, x3, pose0.between(pose3), model))
g.add(gtsam.PriorFactorPose3(x0, pose0, model))
self.graph = g
def test_buildPose3graph(self):
pose3graph = gtsam.InitializePose3.buildPose3graph(self.graph)
def test_orientations(self):
pose3Graph = gtsam.InitializePose3.buildPose3graph(self.graph)
initial = gtsam.InitializePose3.computeOrientationsChordal(pose3Graph)
# comparison is up to M_PI, that's why we add some multiples of 2*M_PI
self.gtsamAssertEquals(initial.atRot3(x0), self.R0, 1e-6)
self.gtsamAssertEquals(initial.atRot3(x1), self.R1, 1e-6)
self.gtsamAssertEquals(initial.atRot3(x2), self.R2, 1e-6)
self.gtsamAssertEquals(initial.atRot3(x3), self.R3, 1e-6)
def test_initializePoses(self):
g2oFile = gtsam.findExampleDataFile("pose3example-grid")
is3D = True
inputGraph, expectedValues = gtsam.readG2o(g2oFile, is3D)
priorModel = gtsam.noiseModel_Unit.Create(6)
inputGraph.add(gtsam.PriorFactorPose3(0, Pose3(), priorModel))
initial = gtsam.InitializePose3.initialize(inputGraph)
# TODO(frank): very loose !!
self.gtsamAssertEquals(initial, expectedValues, 0.1)
if __name__ == "__main__":
unittest.main()

View File

@ -2,9 +2,10 @@
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import patches
def plot_pose2_on_axes(axes, pose, axis_length=0.1):
def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
"""Plot a 2D pose on given axis 'axes' with given 'axis_length'."""
# get rotation and translation (center)
gRp = pose.rotation().matrix() # rotation from pose to global
@ -20,13 +21,26 @@ def plot_pose2_on_axes(axes, pose, axis_length=0.1):
line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], 'g-')
if covariance is not None:
pPp = covariance[0:2, 0:2]
gPp = np.matmul(np.matmul(gRp, pPp), gRp.T)
def plot_pose2(fignum, pose, axis_length=0.1):
w, v = np.linalg.eig(gPp)
# k = 2.296
k = 5.0
angle = np.arctan2(v[1, 0], v[0, 0])
e1 = patches.Ellipse(origin, np.sqrt(w[0]*k), np.sqrt(w[1]*k),
np.rad2deg(angle), fill=False)
axes.add_patch(e1)
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None):
"""Plot a 2D pose on given figure with given 'axis_length'."""
# get figure object
fig = plt.figure(fignum)
axes = fig.gca()
plot_pose2_on_axes(axes, pose, axis_length)
plot_pose2_on_axes(axes, pose, axis_length, covariance)
def plot_point3_on_axes(axes, point, linespec):

View File

@ -0,0 +1,27 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
TestCase class with GTSAM assert utils.
Author: Frank Dellaert
"""
import unittest
class GtsamTestCase(unittest.TestCase):
"""TestCase class with GTSAM assert utils."""
def gtsamAssertEquals(self, actual, expected, tol=1e-9):
""" AssertEqual function that prints out actual and expected if not equal.
Usage:
self.gtsamAssertEqual(actual,expected)
Keyword Arguments:
tol {float} -- tolerance passed to 'equals', default 1e-9
"""
equal = actual.equals(expected, tol)
if not equal:
raise self.failureException(
"Values are not equal:\n{}!={}".format(actual, expected))

View File

@ -22,6 +22,17 @@ cythonize(cythonize_eigency_conversions "../gtsam_eigency/conversions.pyx" "conv
"${OUTPUT_DIR}" "${EIGENCY_INCLUDE_DIR}" "" "" "")
cythonize(cythonize_eigency_core "../gtsam_eigency/core.pyx" "core"
${OUTPUT_DIR} "${EIGENCY_INCLUDE_DIR}" "" "" "")
# Include Eigen headers:
target_include_directories(cythonize_eigency_conversions PUBLIC
$<BUILD_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_BUILD}>
$<INSTALL_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}>
)
target_include_directories(cythonize_eigency_core PUBLIC
$<BUILD_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_BUILD}>
$<INSTALL_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}>
)
add_dependencies(cythonize_eigency_core cythonize_eigency_conversions)
add_custom_target(cythonize_eigency)
add_dependencies(cythonize_eigency cythonize_eigency_conversions cythonize_eigency_core)

View File

@ -1,7 +1,7 @@
import os
import numpy as np
__eigen_dir__ = "${GTSAM_EIGEN_INCLUDE_PREFIX}"
__eigen_dir__ = "${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}"
def get_includes(include_eigen=True):
root = os.path.dirname(__file__)

View File

@ -0,0 +1 @@
from .gtsam_unstable import *

View File

@ -0,0 +1,102 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Demonstration of the fixed-lag smoothers using a planar robot example
and multiple odometry-like sensors
Author: Frank Dellaert (C++), Jeremy Aguilon (Python)
"""
import numpy as np
import gtsam
import gtsam_unstable
def _timestamp_key_value(key, value):
"""
"""
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
key, value
)
def BatchFixedLagSmootherExample():
"""
Runs a batch fixed smoother on an agent with two odometry
sensors that is simply moving to the
"""
# Define a batch fixed lag smoother, which uses
# Levenberg-Marquardt to perform the nonlinear optimization
lag = 2.0
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
# Create containers to store the factors and linearization points
# that will be sent to the smoothers
new_factors = gtsam.NonlinearFactorGraph()
new_values = gtsam.Values()
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
# Create a prior on the first pose, placing it at the origin
prior_mean = gtsam.Pose2(0, 0, 0)
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
X1 = 0
new_factors.push_back(gtsam.PriorFactorPose2(X1, prior_mean, prior_noise))
new_values.insert(X1, prior_mean)
new_timestamps.insert(_timestamp_key_value(X1, 0.0))
delta_time = 0.25
time = 0.25
while time <= 3.0:
previous_key = 1000 * (time - delta_time)
current_key = 1000 * time
# assign current key to the current timestamp
new_timestamps.insert(_timestamp_key_value(current_key, time))
# Add a guess for this pose to the new values
# Assume that the robot moves at 2 m/s. Position is time[s] * 2[m/s]
current_pose = gtsam.Pose2(time * 2, 0, 0)
new_values.insert(current_key, current_pose)
# Add odometry factors from two different sources with different error
# stats
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.1, 0.1, 0.05]))
new_factors.push_back(gtsam.BetweenFactorPose2(
previous_key, current_key, odometry_measurement_1, odometry_noise_1
))
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.05, 0.05, 0.05]))
new_factors.push_back(gtsam.BetweenFactorPose2(
previous_key, current_key, odometry_measurement_2, odometry_noise_2
))
# Update the smoothers with the new factors. In this case,
# one iteration must pass for Levenberg-Marquardt to accurately
# estimate
if time >= 0.50:
smoother_batch.update(new_factors, new_values, new_timestamps)
print("Timestamp = " + str(time) + ", Key = " + str(current_key))
print(smoother_batch.calculateEstimatePose2(current_key))
new_timestamps.clear()
new_values.clear()
new_factors.resize(0)
time += delta_time
if __name__ == '__main__':
BatchFixedLagSmootherExample()
print("Example complete")

View File

View File

@ -0,0 +1,135 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Cal3Unified unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
import gtsam_unstable
from gtsam.utils.test_case import GtsamTestCase
def _timestamp_key_value(key, value):
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
key, value
)
class TestFixedLagSmootherExample(GtsamTestCase):
'''
Tests the fixed lag smoother wrapper
'''
def test_FixedLagSmootherExample(self):
'''
Simple test that checks for equality between C++ example
file and the Python implementation. See
gtsam_unstable/examples/FixedLagSmootherExample.cpp
'''
# Define a batch fixed lag smoother, which uses
# Levenberg-Marquardt to perform the nonlinear optimization
lag = 2.0
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
# Create containers to store the factors and linearization points
# that will be sent to the smoothers
new_factors = gtsam.NonlinearFactorGraph()
new_values = gtsam.Values()
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
# Create a prior on the first pose, placing it at the origin
prior_mean = gtsam.Pose2(0, 0, 0)
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.3, 0.3, 0.1]))
X1 = 0
new_factors.push_back(
gtsam.PriorFactorPose2(
X1, prior_mean, prior_noise))
new_values.insert(X1, prior_mean)
new_timestamps.insert(_timestamp_key_value(X1, 0.0))
delta_time = 0.25
time = 0.25
i = 0
ground_truth = [
gtsam.Pose2(0.995821, 0.0231012, 0.0300001),
gtsam.Pose2(1.49284, 0.0457247, 0.045),
gtsam.Pose2(1.98981, 0.0758879, 0.06),
gtsam.Pose2(2.48627, 0.113502, 0.075),
gtsam.Pose2(2.98211, 0.158558, 0.09),
gtsam.Pose2(3.47722, 0.211047, 0.105),
gtsam.Pose2(3.97149, 0.270956, 0.12),
gtsam.Pose2(4.4648, 0.338272, 0.135),
gtsam.Pose2(4.95705, 0.41298, 0.15),
gtsam.Pose2(5.44812, 0.495063, 0.165),
gtsam.Pose2(5.9379, 0.584503, 0.18),
]
# Iterates from 0.25s to 3.0s, adding 0.25s each loop
# In each iteration, the agent moves at a constant speed
# and its two odometers measure the change. The smoothed
# result is then compared to the ground truth
while time <= 3.0:
previous_key = 1000 * (time - delta_time)
current_key = 1000 * time
# assign current key to the current timestamp
new_timestamps.insert(_timestamp_key_value(current_key, time))
# Add a guess for this pose to the new values
# Assume that the robot moves at 2 m/s. Position is time[s] *
# 2[m/s]
current_pose = gtsam.Pose2(time * 2, 0, 0)
new_values.insert(current_key, current_pose)
# Add odometry factors from two different sources with different
# error stats
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.1, 0.1, 0.05]))
new_factors.push_back(
gtsam.BetweenFactorPose2(
previous_key,
current_key,
odometry_measurement_1,
odometry_noise_1))
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.05, 0.05, 0.05]))
new_factors.push_back(
gtsam.BetweenFactorPose2(
previous_key,
current_key,
odometry_measurement_2,
odometry_noise_2))
# Update the smoothers with the new factors. In this case,
# one iteration must pass for Levenberg-Marquardt to accurately
# estimate
if time >= 0.50:
smoother_batch.update(new_factors, new_values, new_timestamps)
estimate = smoother_batch.calculateEstimatePose2(current_key)
self.assertTrue(estimate.equals(ground_truth[i], 1e-4))
i += 1
new_timestamps.clear()
new_values.clear()
new_factors.resize(0)
time += delta_time
if __name__ == "__main__":
unittest.main()

49
cython/setup.py.in Normal file
View File

@ -0,0 +1,49 @@
import os
import sys
try:
from setuptools import setup, find_packages
except ImportError:
from distutils.core import setup, find_packages
if 'SETUP_PY_NO_CHECK' not in os.environ:
script_path = os.path.abspath(os.path.realpath(__file__))
install_path = os.path.abspath(os.path.realpath(os.path.join('${GTSAM_CYTHON_INSTALL_PATH}', 'setup.py')))
if script_path != install_path:
print('setup.py is being run from an unexpected location: "{}"'.format(script_path))
print('please run `make install` and run the script from there')
sys.exit(1)
packages = find_packages()
setup(
name='gtsam',
description='Georgia Tech Smoothing And Mapping library',
url='https://bitbucket.org/gtborg/gtsam',
version='${GTSAM_VERSION_STRING}', # https://www.python.org/dev/peps/pep-0440/
license='Simplified BSD license',
keywords='slam sam robotics localization mapping optimization',
long_description='''${README_CONTENTS}''',
# https://pypi.org/pypi?%3Aaction=list_classifiers
classifiers=[
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Education',
'Intended Audience :: Developers',
'Intended Audience :: Science/Research',
'Operating System :: MacOS',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'License :: OSI Approved :: BSD License',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 3',
],
packages=packages,
package_data={package:
[f for f in os.listdir(package.replace('.', os.path.sep)) if os.path.splitext(f)[1] in ('.so', '.dll')]
for package in packages
},
install_requires=[line.strip() for line in '''
${CYTHON_INSTALL_REQUIREMENTS}
'''.splitlines() if len(line.strip()) > 0 and not line.strip().startswith('#')]
)

123
gtsam.h
View File

@ -577,9 +577,9 @@ class Pose2 {
static Matrix LogmapDerivative(const gtsam::Pose2& v);
Matrix AdjointMap() const;
Vector Adjoint(Vector xi) const;
static Matrix adjointMap(Vector v);
Vector adjoint(Vector xi, Vector y);
Vector adjointTranspose(Vector xi, Vector y);
static Matrix adjointMap_(Vector v);
static Vector adjoint_(Vector xi, Vector y);
static Vector adjointTranspose(Vector xi, Vector y);
static Matrix wedge(double vx, double vy, double w);
// Group Actions on Point2
@ -628,8 +628,8 @@ class Pose3 {
static Vector Logmap(const gtsam::Pose3& pose);
Matrix AdjointMap() const;
Vector Adjoint(Vector xi) const;
static Matrix adjointMap(Vector xi);
static Vector adjoint(Vector xi, Vector y);
static Matrix adjointMap_(Vector xi);
static Vector adjoint_(Vector xi, Vector y);
static Vector adjointTranspose(Vector xi, Vector y);
static Matrix ExpmapDerivative(Vector xi);
static Matrix LogmapDerivative(const gtsam::Pose3& xi);
@ -1218,14 +1218,30 @@ class VariableIndex {
namespace noiseModel {
#include <gtsam/linear/NoiseModel.h>
virtual class Base {
void print(string s) const;
// Methods below are available for all noise models. However, can't add them
// because wrap (incorrectly) thinks robust classes derive from this Base as well.
// bool isConstrained() const;
// bool isUnit() const;
// size_t dim() const;
// Vector sigmas() const;
};
virtual class Gaussian : gtsam::noiseModel::Base {
static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R);
static gtsam::noiseModel::Gaussian* Covariance(Matrix R);
Matrix R() const;
bool equals(gtsam::noiseModel::Base& expected, double tol);
void print(string s) const;
// access to noise model
Matrix R() const;
Matrix information() const;
Matrix covariance() const;
// Whitening operations
Vector whiten(Vector v) const;
Vector unwhiten(Vector v) const;
Matrix Whiten(Matrix H) const;
// enabling serialization functionality
void serializable() const;
@ -1236,8 +1252,12 @@ virtual class Diagonal : gtsam::noiseModel::Gaussian {
static gtsam::noiseModel::Diagonal* Variances(Vector variances);
static gtsam::noiseModel::Diagonal* Precisions(Vector precisions);
Matrix R() const;
void print(string s) const;
// access to noise model
Vector sigmas() const;
Vector invsigmas() const;
Vector precisions() const;
// enabling serialization functionality
void serializable() const;
};
@ -1263,7 +1283,9 @@ virtual class Isotropic : gtsam::noiseModel::Diagonal {
static gtsam::noiseModel::Isotropic* Sigma(size_t dim, double sigma);
static gtsam::noiseModel::Isotropic* Variance(size_t dim, double varianace);
static gtsam::noiseModel::Isotropic* Precision(size_t dim, double precision);
void print(string s) const;
// access to noise model
double sigma() const;
// enabling serialization functionality
void serializable() const;
@ -1271,7 +1293,6 @@ virtual class Isotropic : gtsam::noiseModel::Diagonal {
virtual class Unit : gtsam::noiseModel::Isotropic {
static gtsam::noiseModel::Unit* Create(size_t dim);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
@ -1279,11 +1300,11 @@ virtual class Unit : gtsam::noiseModel::Isotropic {
namespace mEstimator {
virtual class Base {
void print(string s) const;
};
virtual class Null: gtsam::noiseModel::mEstimator::Base {
Null();
void print(string s) const;
static gtsam::noiseModel::mEstimator::Null* Create();
// enabling serialization functionality
@ -1292,7 +1313,6 @@ virtual class Null: gtsam::noiseModel::mEstimator::Base {
virtual class Fair: gtsam::noiseModel::mEstimator::Base {
Fair(double c);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Fair* Create(double c);
// enabling serialization functionality
@ -1301,7 +1321,6 @@ virtual class Fair: gtsam::noiseModel::mEstimator::Base {
virtual class Huber: gtsam::noiseModel::mEstimator::Base {
Huber(double k);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Huber* Create(double k);
// enabling serialization functionality
@ -1310,7 +1329,6 @@ virtual class Huber: gtsam::noiseModel::mEstimator::Base {
virtual class Tukey: gtsam::noiseModel::mEstimator::Base {
Tukey(double k);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Tukey* Create(double k);
// enabling serialization functionality
@ -1322,7 +1340,6 @@ virtual class Tukey: gtsam::noiseModel::mEstimator::Base {
virtual class Robust : gtsam::noiseModel::Base {
Robust(const gtsam::noiseModel::mEstimator::Base* robust, const gtsam::noiseModel::Base* noise);
static gtsam::noiseModel::Robust* Create(const gtsam::noiseModel::mEstimator::Base* robust, const gtsam::noiseModel::Base* noise);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
@ -2002,10 +2019,12 @@ virtual class NonlinearOptimizerParams {
void setVerbosity(string s);
string getLinearSolverType() const;
void setLinearSolverType(string solver);
void setOrdering(const gtsam::Ordering& ordering);
void setIterativeParams(gtsam::IterativeOptimizationParameters* params);
void setOrdering(const gtsam::Ordering& ordering);
string getOrderingType() const;
void setOrderingType(string ordering);
bool isMultifrontal() const;
bool isSequential() const;
@ -2026,15 +2045,32 @@ virtual class GaussNewtonParams : gtsam::NonlinearOptimizerParams {
virtual class LevenbergMarquardtParams : gtsam::NonlinearOptimizerParams {
LevenbergMarquardtParams();
double getlambdaInitial() const;
bool getDiagonalDamping() const;
double getlambdaFactor() const;
double getlambdaInitial() const;
double getlambdaLowerBound() const;
double getlambdaUpperBound() const;
bool getUseFixedLambdaFactor();
string getLogFile() const;
string getVerbosityLM() const;
void setlambdaInitial(double value);
void setDiagonalDamping(bool flag);
void setlambdaFactor(double value);
void setlambdaInitial(double value);
void setlambdaLowerBound(double value);
void setlambdaUpperBound(double value);
void setUseFixedLambdaFactor(bool flag);
void setLogFile(string s);
void setVerbosityLM(string s);
static gtsam::LevenbergMarquardtParams LegacyDefaults();
static gtsam::LevenbergMarquardtParams CeresDefaults();
static gtsam::LevenbergMarquardtParams EnsureHasOrdering(
gtsam::LevenbergMarquardtParams params,
const gtsam::NonlinearFactorGraph& graph);
static gtsam::LevenbergMarquardtParams ReplaceOrdering(
gtsam::LevenbergMarquardtParams params, const gtsam::Ordering& ordering);
};
#include <gtsam/nonlinear/DoglegOptimizer.h>
@ -2316,6 +2352,21 @@ virtual class BearingFactor : gtsam::NoiseModelFactor {
typedef gtsam::BearingFactor<gtsam::Pose2, gtsam::Point2, gtsam::Rot2> BearingFactor2D;
typedef gtsam::BearingFactor<gtsam::Pose2, gtsam::Pose2, gtsam::Rot2> BearingFactorPose2;
#include <gtsam/geometry/BearingRange.h>
template <POSE, POINT, BEARING, RANGE>
class BearingRange {
BearingRange(const BEARING& b, const RANGE& r);
BEARING bearing() const;
RANGE range() const;
// TODO(frank): can't class instance itself?
// static gtsam::BearingRange Measure(const POSE& pose, const POINT& point);
static BEARING MeasureBearing(const POSE& pose, const POINT& point);
static RANGE MeasureRange(const POSE& pose, const POINT& point);
void print(string s) const;
};
typedef gtsam::BearingRange<gtsam::Pose2, gtsam::Point2, gtsam::Rot2, double> BearingRange2D;
#include <gtsam/sam/BearingRangeFactor.h>
template<POSE, POINT, BEARING, RANGE>
virtual class BearingRangeFactor : gtsam::NoiseModelFactor {
@ -2449,6 +2500,7 @@ virtual class EssentialMatrixFactor : gtsam::NoiseModelFactor {
};
#include <gtsam/slam/dataset.h>
string findExampleDataFile(string name);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise, bool smart);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
@ -2464,7 +2516,38 @@ void save2D(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& config, gtsam::noiseModel::Diagonal* model,
string filename);
// std::vector<gtsam::BetweenFactor<Pose3>::shared_ptr>
class BetweenFactorPose3s
{
size_t size() const;
gtsam::BetweenFactorPose3* at(size_t i) const;
};
#include <gtsam/slam/InitializePose3.h>
class InitializePose3 {
static gtsam::Values computeOrientationsChordal(
const gtsam::NonlinearFactorGraph& pose3Graph);
static gtsam::Values computeOrientationsGradient(
const gtsam::NonlinearFactorGraph& pose3Graph,
const gtsam::Values& givenGuess, size_t maxIter, const bool setRefFrame);
static gtsam::Values computeOrientationsGradient(
const gtsam::NonlinearFactorGraph& pose3Graph,
const gtsam::Values& givenGuess);
static gtsam::NonlinearFactorGraph buildPose3graph(
const gtsam::NonlinearFactorGraph& graph);
static gtsam::Values initializeOrientations(
const gtsam::NonlinearFactorGraph& graph);
static gtsam::Values initialize(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& givenGuess,
bool useGradient);
static gtsam::Values initialize(const gtsam::NonlinearFactorGraph& graph);
};
gtsam::BetweenFactorPose3s parse3DFactors(string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load3D(string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename, bool is3D);
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& estimate, string filename);

View File

@ -101,15 +101,64 @@ message(STATUS "Building GTSAM - shared: ${BUILD_SHARED_LIBS}")
# BUILD_SHARED_LIBS automatically defines static/shared libs:
add_library(gtsam ${gtsam_srcs})
target_link_libraries(gtsam
PUBLIC
${GTSAM_BOOST_LIBRARIES} ${GTSAM_ADDITIONAL_LIBRARIES})
target_link_libraries(gtsam PUBLIC ${GTSAM_BOOST_LIBRARIES})
target_link_libraries(gtsam PUBLIC ${GTSAM_ADDITIONAL_LIBRARIES})
target_compile_definitions(gtsam PRIVATE ${GTSAM_COMPILE_DEFINITIONS_PRIVATE})
target_compile_definitions(gtsam PUBLIC ${GTSAM_COMPILE_DEFINITIONS_PUBLIC})
if (NOT "${GTSAM_COMPILE_OPTIONS_PUBLIC}" STREQUAL "")
target_compile_options(gtsam PUBLIC ${GTSAM_COMPILE_OPTIONS_PUBLIC})
endif()
target_compile_options(gtsam PRIVATE ${GTSAM_COMPILE_OPTIONS_PRIVATE})
set_target_properties(gtsam PROPERTIES
OUTPUT_NAME gtsam
CLEAN_DIRECT_OUTPUT 1
VERSION ${gtsam_version}
SOVERSION ${gtsam_soversion})
# Append Eigen include path, set in top-level CMakeLists.txt to either
# system-eigen, or GTSAM eigen path
target_include_directories(gtsam PUBLIC
$<BUILD_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_BUILD}>
$<INSTALL_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}>
)
# MKL include dir:
if (GTSAM_USE_EIGEN_MKL)
target_include_directories(gtsam PUBLIC ${MKL_INCLUDE_DIR})
endif()
if(GTSAM_USE_TBB)
target_include_directories(gtsam PUBLIC ${TBB_INCLUDE_DIRS})
endif()
# Add includes for source directories 'BEFORE' boost and any system include
# paths so that the compiler uses GTSAM headers in our source directory instead
# of any previously installed GTSAM headers.
target_include_directories(gtsam BEFORE PUBLIC
# SuiteSparse_config
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/SuiteSparse_config>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_PREFIX}/include/gtsam/3rdparty/SuiteSparse_config>
# CCOLAMD
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/CCOLAMD/Include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_PREFIX}/include/gtsam/3rdparty/CCOLAMD>
# main gtsam includes:
$<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_PREFIX}/include/>
# config.h
$<BUILD_INTERFACE:${CMAKE_BINARY_DIR}>
# unit tests:
$<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}/CppUnitLite>
)
if(GTSAM_SUPPORT_NESTED_DISSECTION)
target_include_directories(gtsam BEFORE PUBLIC
$<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}/gtsam/3rdparty/metis/include>
$<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}/gtsam/3rdparty/metis/libmetis>
$<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}/gtsam/3rdparty/metis/GKlib>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_PREFIX}/include/gtsam/3rdparty/metis/>
)
endif()
if(WIN32) # Add 'lib' prefix to static library to avoid filename collision with shared library
if (NOT BUILD_SHARED_LIBS)
set_target_properties(gtsam PROPERTIES

View File

@ -19,6 +19,7 @@
#pragma once
#include <iostream>
#include <sstream>
#include <string>

View File

@ -44,11 +44,11 @@ struct Range;
* For example BearingRange<Pose2,Point2>(pose,point) will return pair<Rot2,double>
* and BearingRange<Pose3,Point3>(pose,point) will return pair<Unit3,double>
*/
template <typename A1, typename A2>
template <typename A1, typename A2,
typename B = typename Bearing<A1, A2>::result_type,
typename R = typename Range<A1, A2>::result_type>
struct BearingRange {
private:
typedef typename Bearing<A1, A2>::result_type B;
typedef typename Range<A1, A2>::result_type R;
B bearing_;
R range_;
@ -91,6 +91,16 @@ public:
return BearingRange(b, r);
}
/// Predict bearing
static B MeasureBearing(const A1& a1, const A2& a2) {
return Bearing<A1, A2>()(a1, a2);
}
/// Predict range
static R MeasureRange(const A1& a1, const A2& a2) {
return Range<A1, A2>()(a1, a2);
}
/// @}
/// @name Testable
/// @{
@ -170,8 +180,8 @@ struct HasBearing {
typedef RT result_type;
RT operator()(
const A1& a1, const A2& a2,
OptionalJacobian<traits<RT>::dimension, traits<A1>::dimension> H1,
OptionalJacobian<traits<RT>::dimension, traits<A2>::dimension> H2) {
OptionalJacobian<traits<RT>::dimension, traits<A1>::dimension> H1=boost::none,
OptionalJacobian<traits<RT>::dimension, traits<A2>::dimension> H2=boost::none) {
return a1.bearing(a2, H1, H2);
}
};
@ -184,8 +194,8 @@ struct HasRange {
typedef RT result_type;
RT operator()(
const A1& a1, const A2& a2,
OptionalJacobian<traits<RT>::dimension, traits<A1>::dimension> H1,
OptionalJacobian<traits<RT>::dimension, traits<A2>::dimension> H2) {
OptionalJacobian<traits<RT>::dimension, traits<A1>::dimension> H1=boost::none,
OptionalJacobian<traits<RT>::dimension, traits<A2>::dimension> H2=boost::none) {
return a1.range(a2, H1, H2);
}
};

View File

@ -146,17 +146,21 @@ public:
/**
* Action of the adjointMap on a Lie-algebra vector y, with optional derivatives
*/
Vector3 adjoint(const Vector3& xi, const Vector3& y) {
static Vector3 adjoint(const Vector3& xi, const Vector3& y) {
return adjointMap(xi) * y;
}
/**
* The dual version of adjoint action, acting on the dual space of the Lie-algebra vector space.
*/
Vector3 adjointTranspose(const Vector3& xi, const Vector3& y) {
static Vector3 adjointTranspose(const Vector3& xi, const Vector3& y) {
return adjointMap(xi).transpose() * y;
}
// temporary fix for wrappers until case issue is resolved
static Matrix3 adjointMap_(const Vector3 &xi) { return adjointMap(xi);}
static Vector3 adjoint_(const Vector3 &xi, const Vector3 &y) { return adjoint(xi, y);}
/**
* wedge for SE(2):
* @param xi 3-dim twist (v,omega) where
@ -295,17 +299,16 @@ private:
ar & BOOST_SERIALIZATION_NVP(r_);
}
#ifdef GTSAM_TYPEDEF_POINTS_TO_VECTORS
public:
// Make sure Pose2 is aligned if it contains a Vector2
// Align for Point2, which is either derived from, or is typedef, of Vector2
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#endif
}; // Pose2
/** specialization for pose2 wedge function (generic template in Lie.h) */
template <>
inline Matrix wedge<Pose2>(const Vector& xi) {
return Pose2::wedge(xi(0),xi(1),xi(2));
// NOTE(chris): Need eval() as workaround for Apple clang + avx2.
return Matrix(Pose2::wedge(xi(0),xi(1),xi(2))).eval();
}
/**

View File

@ -160,6 +160,10 @@ public:
static Vector6 adjoint(const Vector6 &xi, const Vector6 &y,
OptionalJacobian<6, 6> = boost::none);
// temporary fix for wrappers until case issue is resolved
static Matrix6 adjointMap_(const Vector6 &xi) { return adjointMap(xi);}
static Vector6 adjoint_(const Vector6 &xi, const Vector6 &y) { return adjoint(xi, y);}
/**
* The dual version of adjoint action, acting on the dual space of the Lie-algebra vector space.
*/

View File

@ -122,24 +122,35 @@ public:
virtual ~LevenbergMarquardtParams() {}
void print(const std::string& str = "") const override;
/// @name Getters/Setters, mainly for MATLAB. Use fields above in C++.
/// @name Getters/Setters, mainly for wrappers. Use fields above in C++.
/// @{
bool getDiagonalDamping() const { return diagonalDamping; }
double getlambdaFactor() const { return lambdaFactor; }
double getlambdaInitial() const { return lambdaInitial; }
double getlambdaLowerBound() const { return lambdaLowerBound; }
double getlambdaUpperBound() const { return lambdaUpperBound; }
bool getUseFixedLambdaFactor() { return useFixedLambdaFactor; }
std::string getLogFile() const { return logFile; }
std::string getVerbosityLM() const { return verbosityLMTranslator(verbosityLM);}
void setDiagonalDamping(bool flag) { diagonalDamping = flag; }
void setlambdaFactor(double value) { lambdaFactor = value; }
void setlambdaInitial(double value) { lambdaInitial = value; }
void setlambdaLowerBound(double value) { lambdaLowerBound = value; }
void setlambdaUpperBound(double value) { lambdaUpperBound = value; }
void setLogFile(const std::string& s) { logFile = s; }
void setUseFixedLambdaFactor(bool flag) { useFixedLambdaFactor = flag;}
void setLogFile(const std::string& s) { logFile = s; }
void setVerbosityLM(const std::string& s) { verbosityLM = verbosityLMTranslator(s);}
// @}
/// @name Clone
/// @{
/// @return a deep copy of this object
boost::shared_ptr<NonlinearOptimizerParams> clone() const {
return boost::shared_ptr<NonlinearOptimizerParams>(new LevenbergMarquardtParams(*this));
}
/// @}
};
}

View File

@ -54,47 +54,24 @@ public:
}
virtual void print(const std::string& str = "") const;
size_t getMaxIterations() const {
return maxIterations;
}
double getRelativeErrorTol() const {
return relativeErrorTol;
}
double getAbsoluteErrorTol() const {
return absoluteErrorTol;
}
double getErrorTol() const {
return errorTol;
}
std::string getVerbosity() const {
return verbosityTranslator(verbosity);
}
size_t getMaxIterations() const { return maxIterations; }
double getRelativeErrorTol() const { return relativeErrorTol; }
double getAbsoluteErrorTol() const { return absoluteErrorTol; }
double getErrorTol() const { return errorTol; }
std::string getVerbosity() const { return verbosityTranslator(verbosity); }
void setMaxIterations(int value) {
maxIterations = value;
}
void setRelativeErrorTol(double value) {
relativeErrorTol = value;
}
void setAbsoluteErrorTol(double value) {
absoluteErrorTol = value;
}
void setErrorTol(double value) {
errorTol = value;
}
void setVerbosity(const std::string &src) {
void setMaxIterations(int value) { maxIterations = value; }
void setRelativeErrorTol(double value) { relativeErrorTol = value; }
void setAbsoluteErrorTol(double value) { absoluteErrorTol = value; }
void setErrorTol(double value) { errorTol = value; }
void setVerbosity(const std::string& src) {
verbosity = verbosityTranslator(src);
}
static Verbosity verbosityTranslator(const std::string &s) ;
static std::string verbosityTranslator(Verbosity value) ;
// Successive Linearization Parameters
public:
/** See NonlinearOptimizerParams::linearSolverType */
enum LinearSolverType {
MULTIFRONTAL_CHOLESKY,
MULTIFRONTAL_QR,
@ -168,13 +145,9 @@ public:
private:
std::string linearSolverTranslator(LinearSolverType linearSolverType) const;
LinearSolverType linearSolverTranslator(const std::string& linearSolverType) const;
std::string orderingTypeTranslator(Ordering::OrderingType type) const;
Ordering::OrderingType orderingTypeTranslator(const std::string& type) const;
};
// For backward compatibility:

View File

@ -16,7 +16,7 @@
* @date August, 2014
*/
#include <gtsam/slam/InitializePose3.h>
#include <gtsam/slam/InitializePose3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
@ -29,69 +29,65 @@
using namespace std;
namespace gtsam {
namespace InitializePose3 {
static const Matrix I9 = I_9x9;
static const Vector zero9 = Vector::Zero(9);
static const Matrix zero33 = Z_3x3;
static const Key keyAnchor = symbol('Z', 9999999);
static const Key kAnchorKey = symbol('Z', 9999999);
/* ************************************************************************* */
GaussianFactorGraph buildLinearOrientationGraph(const NonlinearFactorGraph& g) {
GaussianFactorGraph InitializePose3::buildLinearOrientationGraph(const NonlinearFactorGraph& g) {
GaussianFactorGraph linearGraph;
noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(9);
for(const boost::shared_ptr<NonlinearFactor>& factor: g) {
for(const auto& factor: g) {
Matrix3 Rij;
double rotationPrecision = 1.0;
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
if (pose3Between)
auto pose3Between = boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
if (pose3Between){
Rij = pose3Between->measured().rotation().matrix();
else
std::cout << "Error in buildLinearOrientationGraph" << std::endl;
Vector precisions = Vector::Zero(6);
precisions[0] = 1.0; // vector of all zeros except first entry equal to 1
pose3Between->noiseModel()->whitenInPlace(precisions); // gets marginal precision of first variable
rotationPrecision = precisions[0]; // rotations first
}else{
cout << "Error in buildLinearOrientationGraph" << endl;
}
const KeyVector& keys = factor->keys();
const auto& keys = factor->keys();
Key key1 = keys[0], key2 = keys[1];
Matrix M9 = Z_9x9;
M9.block(0,0,3,3) = Rij;
M9.block(3,3,3,3) = Rij;
M9.block(6,6,3,3) = Rij;
linearGraph.add(key1, -I9, key2, M9, zero9, model);
linearGraph.add(key1, -I_9x9, key2, M9, Z_9x1, noiseModel::Isotropic::Precision(9, rotationPrecision));
}
// prior on the anchor orientation
linearGraph.add(keyAnchor, I9, (Vector(9) << 1.0, 0.0, 0.0,/* */ 0.0, 1.0, 0.0, /* */ 0.0, 0.0, 1.0).finished(), model);
linearGraph.add(
kAnchorKey, I_9x9,
(Vector(9) << 1.0, 0.0, 0.0, /* */ 0.0, 1.0, 0.0, /* */ 0.0, 0.0, 1.0)
.finished(),
noiseModel::Isotropic::Precision(9, 1));
return linearGraph;
}
/* ************************************************************************* */
// Transform VectorValues into valid Rot3
Values normalizeRelaxedRotations(const VectorValues& relaxedRot3) {
Values InitializePose3::normalizeRelaxedRotations(
const VectorValues& relaxedRot3) {
gttic(InitializePose3_computeOrientationsChordal);
Matrix ppm = Z_3x3; // plus plus minus
ppm(0,0) = 1; ppm(1,1) = 1; ppm(2,2) = -1;
Values validRot3;
for(const VectorValues::value_type& it: relaxedRot3) {
for(const auto& it: relaxedRot3) {
Key key = it.first;
if (key != keyAnchor) {
const Vector& rotVector = it.second;
Matrix3 rotMat;
rotMat(0,0) = rotVector(0); rotMat(0,1) = rotVector(1); rotMat(0,2) = rotVector(2);
rotMat(1,0) = rotVector(3); rotMat(1,1) = rotVector(4); rotMat(1,2) = rotVector(5);
rotMat(2,0) = rotVector(6); rotMat(2,1) = rotVector(7); rotMat(2,2) = rotVector(8);
if (key != kAnchorKey) {
Matrix3 R; R << it.second;
Matrix U, V; Vector s;
svd(rotMat, U, s, V);
svd(R.transpose(), U, s, V);
Matrix3 normalizedRotMat = U * V.transpose();
// std::cout << "rotMat \n" << rotMat << std::endl;
// std::cout << "U V' \n" << U * V.transpose() << std::endl;
// std::cout << "V \n" << V << std::endl;
if(normalizedRotMat.determinant() < 0)
normalizedRotMat = U * ppm * V.transpose();
@ -103,32 +99,29 @@ Values normalizeRelaxedRotations(const VectorValues& relaxedRot3) {
}
/* ************************************************************************* */
// Select the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
NonlinearFactorGraph buildPose3graph(const NonlinearFactorGraph& graph) {
NonlinearFactorGraph InitializePose3::buildPose3graph(const NonlinearFactorGraph& graph) {
gttic(InitializePose3_buildPose3graph);
NonlinearFactorGraph pose3Graph;
for(const boost::shared_ptr<NonlinearFactor>& factor: graph) {
for(const auto& factor: graph) {
// recast to a between on Pose3
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
const auto pose3Between = boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
if (pose3Between)
pose3Graph.add(pose3Between);
// recast PriorFactor<Pose3> to BetweenFactor<Pose3>
boost::shared_ptr<PriorFactor<Pose3> > pose3Prior =
boost::dynamic_pointer_cast<PriorFactor<Pose3> >(factor);
const auto pose3Prior = boost::dynamic_pointer_cast<PriorFactor<Pose3> >(factor);
if (pose3Prior)
pose3Graph.emplace_shared<BetweenFactor<Pose3> >(keyAnchor, pose3Prior->keys()[0],
pose3Graph.emplace_shared<BetweenFactor<Pose3> >(kAnchorKey, pose3Prior->keys()[0],
pose3Prior->prior(), pose3Prior->noiseModel());
}
return pose3Graph;
}
/* ************************************************************************* */
// Return the orientations of a graph including only BetweenFactors<Pose3>
Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph) {
Values InitializePose3::computeOrientationsChordal(
const NonlinearFactorGraph& pose3Graph) {
gttic(InitializePose3_computeOrientationsChordal);
// regularize measurements and plug everything in a factor graph
@ -142,14 +135,15 @@ Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph) {
}
/* ************************************************************************* */
// Return the orientations of a graph including only BetweenFactors<Pose3>
Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const Values& givenGuess, const size_t maxIter, const bool setRefFrame) {
Values InitializePose3::computeOrientationsGradient(
const NonlinearFactorGraph& pose3Graph, const Values& givenGuess,
const size_t maxIter, const bool setRefFrame) {
gttic(InitializePose3_computeOrientationsGradient);
// this works on the inverse rotations, according to Tron&Vidal,2011
Values inverseRot;
inverseRot.insert(keyAnchor, Rot3());
for(const Values::ConstKeyValuePair& key_value: givenGuess) {
inverseRot.insert(kAnchorKey, Rot3());
for(const auto& key_value: givenGuess) {
Key key = key_value.key;
const Pose3& pose = givenGuess.at<Pose3>(key);
inverseRot.insert(key, pose.rotation().inverse());
@ -164,9 +158,9 @@ Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const
// calculate max node degree & allocate gradient
size_t maxNodeDeg = 0;
VectorValues grad;
for(const Values::ConstKeyValuePair& key_value: inverseRot) {
for(const auto& key_value: inverseRot) {
Key key = key_value.key;
grad.insert(key,Vector3::Zero());
grad.insert(key,Z_3x1);
size_t currNodeDeg = (adjEdgesMap.at(key)).size();
if(currNodeDeg > maxNodeDeg)
maxNodeDeg = currNodeDeg;
@ -180,42 +174,37 @@ Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const
double mu_max = maxNodeDeg * rho;
double stepsize = 2/mu_max; // = 1/(a b dG)
std::cout <<" b " << b <<" f0 " << f0 <<" a " << a <<" rho " << rho <<" stepsize " << stepsize << " maxNodeDeg "<< maxNodeDeg << std::endl;
double maxGrad;
// gradient iterations
size_t it;
for(it=0; it < maxIter; it++){
for (it = 0; it < maxIter; it++) {
//////////////////////////////////////////////////////////////////////////
// compute the gradient at each node
//std::cout << "it " << it <<" b " << b <<" f0 " << f0 <<" a " << a
// <<" rho " << rho <<" stepsize " << stepsize << " maxNodeDeg "<< maxNodeDeg << std::endl;
maxGrad = 0;
for(const Values::ConstKeyValuePair& key_value: inverseRot) {
for (const auto& key_value : inverseRot) {
Key key = key_value.key;
//std::cout << "---------------------------key " << DefaultKeyFormatter(key) << std::endl;
Vector gradKey = Vector3::Zero();
Vector gradKey = Z_3x1;
// collect the gradient for each edge incident on key
for(const size_t& factorId: adjEdgesMap.at(key)){
for (const size_t& factorId : adjEdgesMap.at(key)) {
Rot3 Rij = factorId2RotMap.at(factorId);
Rot3 Ri = inverseRot.at<Rot3>(key);
if( key == (pose3Graph.at(factorId))->keys()[0] ){
Key key1 = (pose3Graph.at(factorId))->keys()[1];
auto factor = pose3Graph.at(factorId);
const auto& keys = factor->keys();
if (key == keys[0]) {
Key key1 = keys[1];
Rot3 Rj = inverseRot.at<Rot3>(key1);
gradKey = gradKey + gradientTron(Ri, Rij * Rj, a, b);
//std::cout << "key1 " << DefaultKeyFormatter(key1) << " gradientTron(Ri, Rij * Rj, a, b) \n " << gradientTron(Ri, Rij * Rj, a, b) << std::endl;
}else if( key == (pose3Graph.at(factorId))->keys()[1] ){
Key key0 = (pose3Graph.at(factorId))->keys()[0];
gradKey = gradKey + gradientTron(Ri, Rij * Rj, a, b);
} else if (key == keys[1]) {
Key key0 = keys[0];
Rot3 Rj = inverseRot.at<Rot3>(key0);
gradKey = gradKey + gradientTron(Ri, Rij.between(Rj), a, b);
//std::cout << "key0 " << DefaultKeyFormatter(key0) << " gradientTron(Ri, Rij.inverse() * Rj, a, b) \n " << gradientTron(Ri, Rij.between(Rj), a, b) << std::endl;
}else{
std::cout << "Error in gradient computation" << std::endl;
} else {
cout << "Error in gradient computation" << endl;
}
} // end of i-th gradient computation
grad.at(key) = stepsize * gradKey;
} // end of i-th gradient computation
grad.at(key) = stepsize * gradKey;
double normGradKey = (gradKey).norm();
//std::cout << "key " << DefaultKeyFormatter(key) <<" \n grad \n" << grad.at(key) << std::endl;
if(normGradKey>maxGrad)
maxGrad = normGradKey;
} // end of loop over nodes
@ -230,14 +219,12 @@ Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const
break;
} // enf of gradient iterations
std::cout << "nr of gradient iterations " << it << "maxGrad " << maxGrad << std::endl;
// Return correct rotations
const Rot3& Rref = inverseRot.at<Rot3>(keyAnchor); // This will be set to the identity as so far we included no prior
const Rot3& Rref = inverseRot.at<Rot3>(kAnchorKey); // This will be set to the identity as so far we included no prior
Values estimateRot;
for(const Values::ConstKeyValuePair& key_value: inverseRot) {
for(const auto& key_value: inverseRot) {
Key key = key_value.key;
if (key != keyAnchor) {
if (key != kAnchorKey) {
const Rot3& R = inverseRot.at<Rot3>(key);
if(setRefFrame)
estimateRot.insert(key, Rref.compose(R.inverse()));
@ -249,11 +236,11 @@ Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const
}
/* ************************************************************************* */
void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap, const NonlinearFactorGraph& pose3Graph){
void InitializePose3::createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap,
const NonlinearFactorGraph& pose3Graph) {
size_t factorId = 0;
for(const boost::shared_ptr<NonlinearFactor>& factor: pose3Graph) {
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
for(const auto& factor: pose3Graph) {
auto pose3Between = boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
if (pose3Between){
Rot3 Rij = pose3Between->measured().rotation();
factorId2RotMap.insert(pair<Key, Rot3 >(factorId,Rij));
@ -275,14 +262,14 @@ void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap,
adjEdgesMap.insert(pair<Key, vector<size_t> >(key2, edge_id));
}
}else{
std::cout << "Error in computeOrientationsGradient" << std::endl;
cout << "Error in createSymbolicGraph" << endl;
}
factorId++;
}
}
/* ************************************************************************* */
Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b) {
Vector3 InitializePose3::gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b) {
Vector3 logRot = Rot3::Logmap(R1.between(R2));
double th = logRot.norm();
@ -292,10 +279,10 @@ Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const doubl
th = logRot.norm();
}
// exclude small or invalid rotations
if (th > 1e-5 && th == th){ // nonzero valid rotations
if (th > 1e-5 && th == th) { // nonzero valid rotations
logRot = logRot / th;
}else{
logRot = Vector3::Zero();
} else {
logRot = Z_3x1;
th = 0.0;
}
@ -304,8 +291,7 @@ Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const doubl
}
/* ************************************************************************* */
Values initializeOrientations(const NonlinearFactorGraph& graph) {
Values InitializePose3::initializeOrientations(const NonlinearFactorGraph& graph) {
// We "extract" the Pose3 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
@ -315,29 +301,30 @@ Values initializeOrientations(const NonlinearFactorGraph& graph) {
}
///* ************************************************************************* */
Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
Values InitializePose3::computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
gttic(InitializePose3_computePoses);
// put into Values structure
Values initialPose;
for(const Values::ConstKeyValuePair& key_value: initialRot){
for (const auto& key_value : initialRot) {
Key key = key_value.key;
const Rot3& rot = initialRot.at<Rot3>(key);
Pose3 initializedPose = Pose3(rot, Point3(0, 0, 0));
initialPose.insert(key, initializedPose);
}
// add prior
noiseModel::Unit::shared_ptr priorModel = noiseModel::Unit::Create(6);
initialPose.insert(keyAnchor, Pose3());
pose3graph.emplace_shared<PriorFactor<Pose3> >(keyAnchor, Pose3(), priorModel);
initialPose.insert(kAnchorKey, Pose3());
pose3graph.emplace_shared<PriorFactor<Pose3> >(kAnchorKey, Pose3(), priorModel);
// Create optimizer
GaussNewtonParams params;
bool singleIter = true;
if(singleIter){
if (singleIter) {
params.maxIterations = 1;
}else{
std::cout << " \n\n\n\n performing more than 1 GN iterations \n\n\n" <<std::endl;
} else {
cout << " \n\n\n\n performing more than 1 GN iterations \n\n\n" << endl;
params.setVerbosity("TERMINATION");
}
GaussNewtonOptimizer optimizer(pose3graph, initialPose, params);
@ -345,9 +332,9 @@ Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
// put into Values structure
Values estimate;
for(const Values::ConstKeyValuePair& key_value: GNresult) {
for (const auto& key_value : GNresult) {
Key key = key_value.key;
if (key != keyAnchor) {
if (key != kAnchorKey) {
const Pose3& pose = GNresult.at<Pose3>(key);
estimate.insert(key, pose);
}
@ -356,22 +343,9 @@ Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
}
/* ************************************************************************* */
Values initialize(const NonlinearFactorGraph& graph) {
Values InitializePose3::initialize(const NonlinearFactorGraph& graph, const Values& givenGuess,
bool useGradient) {
gttic(InitializePose3_initialize);
// We "extract" the Pose3 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
// Get orientations from relative orientation measurements
Values valueRot3 = computeOrientationsChordal(pose3Graph);
// Compute the full poses (1 GN iteration on full poses)
return computePoses(pose3Graph, valueRot3);
}
/* ************************************************************************* */
Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, bool useGradient) {
Values initialValues;
// We "extract" the Pose3 subgraph of the original graph: this
@ -380,27 +354,18 @@ Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, b
// Get orientations from relative orientation measurements
Values orientations;
if(useGradient)
if (useGradient)
orientations = computeOrientationsGradient(pose3Graph, givenGuess);
else
orientations = computeOrientationsChordal(pose3Graph);
// orientations.print("orientations\n");
// Compute the full poses (1 GN iteration on full poses)
return computePoses(pose3Graph, orientations);
// for(const Values::ConstKeyValuePair& key_value: orientations) {
// Key key = key_value.key;
// if (key != keyAnchor) {
// const Point3& pos = givenGuess.at<Pose3>(key).translation();
// const Rot3& rot = orientations.at<Rot3>(key);
// Pose3 initializedPoses = Pose3(rot, pos);
// initialValues.insert(key, initializedPoses);
// }
// }
// return initialValues;
}
} // end of namespace lago
} // end of namespace gtsam
/* ************************************************************************* */
Values InitializePose3::initialize(const NonlinearFactorGraph& graph) {
return initialize(graph, Values(), false);
}
} // namespace gtsam

View File

@ -20,40 +20,68 @@
#pragma once
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/inference/graph.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/inference/graph.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
namespace gtsam {
typedef std::map<Key, std::vector<size_t> > KeyVectorMap;
typedef std::map<Key, Rot3 > KeyRotMap;
typedef std::map<Key, Rot3> KeyRotMap;
namespace InitializePose3 {
struct GTSAM_EXPORT InitializePose3 {
static GaussianFactorGraph buildLinearOrientationGraph(
const NonlinearFactorGraph& g);
GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(const NonlinearFactorGraph& g);
static Values normalizeRelaxedRotations(const VectorValues& relaxedRot3);
GTSAM_EXPORT Values normalizeRelaxedRotations(const VectorValues& relaxedRot3);
/**
* Return the orientations of a graph including only BetweenFactors<Pose3>
*/
static Values computeOrientationsChordal(
const NonlinearFactorGraph& pose3Graph);
GTSAM_EXPORT Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph);
/**
* Return the orientations of a graph including only BetweenFactors<Pose3>
*/
static Values computeOrientationsGradient(
const NonlinearFactorGraph& pose3Graph, const Values& givenGuess,
size_t maxIter = 10000, const bool setRefFrame = true);
GTSAM_EXPORT Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph,
const Values& givenGuess, size_t maxIter = 10000, const bool setRefFrame = true);
static void createSymbolicGraph(KeyVectorMap& adjEdgesMap,
KeyRotMap& factorId2RotMap,
const NonlinearFactorGraph& pose3Graph);
GTSAM_EXPORT void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap,
const NonlinearFactorGraph& pose3Graph);
static Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a,
const double b);
GTSAM_EXPORT Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b);
/**
* Select the subgraph of betweenFactors and transforms priors into between
* wrt a fictitious node
*/
static NonlinearFactorGraph buildPose3graph(
const NonlinearFactorGraph& graph);
GTSAM_EXPORT NonlinearFactorGraph buildPose3graph(const NonlinearFactorGraph& graph);
static Values computePoses(NonlinearFactorGraph& pose3graph,
Values& initialRot);
GTSAM_EXPORT Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot);
/**
* "extract" the Pose3 subgraph of the original graph, get orientations from
* relative orientation measurements using chordal method.
*/
static Values initializeOrientations(const NonlinearFactorGraph& graph);
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph);
/**
* "extract" the Pose3 subgraph of the original graph, get orientations from
* relative orientation measurements (using either gradient or chordal
* method), and finish up with 1 GN iteration on full poses.
*/
static Values initialize(const NonlinearFactorGraph& graph,
const Values& givenGuess, bool useGradient = false);
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, bool useGradient = false);
} // end of namespace lago
} // end of namespace gtsam
/// Calls initialize above using Chordal method.
static Values initialize(const NonlinearFactorGraph& graph);
};
} // end of namespace gtsam

View File

@ -51,7 +51,6 @@ using namespace gtsam::symbol_shorthand;
namespace gtsam {
#ifndef MATLAB_MEX_FILE
/* ************************************************************************* */
string findExampleDataFile(const string& name) {
// Search source tree and installed location
@ -100,9 +99,6 @@ string createRewrittenFileName(const string& name) {
return newpath.string();
}
/* ************************************************************************* */
#endif
/* ************************************************************************* */
GraphAndValues load2D(pair<string, SharedNoiseModel> dataset, int maxID,
bool addNoise, bool smart, NoiseFormat noiseFormat,
@ -413,17 +409,17 @@ void save2D(const NonlinearFactorGraph& graph, const Values& config,
/* ************************************************************************* */
GraphAndValues readG2o(const string& g2oFile, const bool is3D,
KernelFunctionType kernelFunctionType) {
// just call load2D
int maxID = 0;
bool addNoise = false;
bool smart = true;
if(is3D)
KernelFunctionType kernelFunctionType) {
if (is3D) {
return load3D(g2oFile);
return load2D(g2oFile, SharedNoiseModel(), maxID, addNoise, smart,
NoiseFormatG2O, kernelFunctionType);
} else {
// just call load2D
int maxID = 0;
bool addNoise = false;
bool smart = true;
return load2D(g2oFile, SharedNoiseModel(), maxID, addNoise, smart,
NoiseFormatG2O, kernelFunctionType);
}
}
/* ************************************************************************* */
@ -514,15 +510,12 @@ void writeG2o(const NonlinearFactorGraph& graph, const Values& estimate,
}
/* ************************************************************************* */
GraphAndValues load3D(const string& filename) {
std::map<Key, Pose3> parse3DPoses(const string& filename) {
ifstream is(filename.c_str());
if (!is)
throw invalid_argument("load3D: can not find file " + filename);
Values::shared_ptr initial(new Values);
NonlinearFactorGraph::shared_ptr graph(new NonlinearFactorGraph);
throw invalid_argument("parse3DPoses: can not find file " + filename);
std::map<Key, Pose3> poses;
while (!is.eof()) {
char buf[LINESIZE];
is.getline(buf, LINESIZE);
@ -534,22 +527,24 @@ GraphAndValues load3D(const string& filename) {
Key id;
double x, y, z, roll, pitch, yaw;
ls >> id >> x >> y >> z >> roll >> pitch >> yaw;
Rot3 R = Rot3::Ypr(yaw,pitch,roll);
Point3 t = Point3(x, y, z);
initial->insert(id, Pose3(R,t));
poses.emplace(id, Pose3(Rot3::Ypr(yaw, pitch, roll), {x, y, z}));
}
if (tag == "VERTEX_SE3:QUAT") {
Key id;
double x, y, z, qx, qy, qz, qw;
ls >> id >> x >> y >> z >> qx >> qy >> qz >> qw;
Rot3 R = Rot3::Quaternion(qw, qx, qy, qz);
Point3 t = Point3(x, y, z);
initial->insert(id, Pose3(R,t));
poses.emplace(id, Pose3(Rot3::Quaternion(qw, qx, qy, qz), {x, y, z}));
}
}
is.clear(); /* clears the end-of-file and error flags */
is.seekg(0, ios::beg);
return poses;
}
/* ************************************************************************* */
BetweenFactorPose3s parse3DFactors(const string& filename) {
ifstream is(filename.c_str());
if (!is) throw invalid_argument("parse3DFactors: can not find file " + filename);
std::vector<BetweenFactor<Pose3>::shared_ptr> factors;
while (!is.eof()) {
char buf[LINESIZE];
is.getline(buf, LINESIZE);
@ -561,44 +556,55 @@ GraphAndValues load3D(const string& filename) {
Key id1, id2;
double x, y, z, roll, pitch, yaw;
ls >> id1 >> id2 >> x >> y >> z >> roll >> pitch >> yaw;
Rot3 R = Rot3::Ypr(yaw,pitch,roll);
Point3 t = Point3(x, y, z);
Matrix m = I_6x6;
for (int i = 0; i < 6; i++)
for (int j = i; j < 6; j++)
ls >> m(i, j);
Matrix m(6, 6);
for (size_t i = 0; i < 6; i++)
for (size_t j = i; j < 6; j++) ls >> m(i, j);
SharedNoiseModel model = noiseModel::Gaussian::Information(m);
NonlinearFactor::shared_ptr factor(
new BetweenFactor<Pose3>(id1, id2, Pose3(R,t), model));
graph->push_back(factor);
factors.emplace_back(new BetweenFactor<Pose3>(
id1, id2, Pose3(Rot3::Ypr(yaw, pitch, roll), {x, y, z}), model));
}
if (tag == "EDGE_SE3:QUAT") {
Matrix m = I_6x6;
Key id1, id2;
double x, y, z, qx, qy, qz, qw;
ls >> id1 >> id2 >> x >> y >> z >> qx >> qy >> qz >> qw;
Rot3 R = Rot3::Quaternion(qw, qx, qy, qz);
Point3 t = Point3(x, y, z);
for (int i = 0; i < 6; i++){
for (int j = i; j < 6; j++){
Matrix m(6, 6);
for (size_t i = 0; i < 6; i++) {
for (size_t j = i; j < 6; j++) {
double mij;
ls >> mij;
m(i, j) = mij;
m(j, i) = mij;
}
}
Matrix mgtsam = I_6x6;
Matrix mgtsam(6, 6);
mgtsam.block<3,3>(0,0) = m.block<3,3>(3,3); // cov rotation
mgtsam.block<3,3>(3,3) = m.block<3,3>(0,0); // cov translation
mgtsam.block<3,3>(0,3) = m.block<3,3>(0,3); // off diagonal
mgtsam.block<3,3>(3,0) = m.block<3,3>(3,0); // off diagonal
mgtsam.block<3, 3>(0, 0) = m.block<3, 3>(3, 3); // cov rotation
mgtsam.block<3, 3>(3, 3) = m.block<3, 3>(0, 0); // cov translation
mgtsam.block<3, 3>(0, 3) = m.block<3, 3>(0, 3); // off diagonal
mgtsam.block<3, 3>(3, 0) = m.block<3, 3>(3, 0); // off diagonal
SharedNoiseModel model = noiseModel::Gaussian::Information(mgtsam);
NonlinearFactor::shared_ptr factor(new BetweenFactor<Pose3>(id1, id2, Pose3(R,t), model));
graph->push_back(factor);
factors.emplace_back(new BetweenFactor<Pose3>(
id1, id2, Pose3(Rot3::Quaternion(qw, qx, qy, qz), {x, y, z}), model));
}
}
return factors;
}
/* ************************************************************************* */
GraphAndValues load3D(const string& filename) {
const auto factors = parse3DFactors(filename);
NonlinearFactorGraph::shared_ptr graph(new NonlinearFactorGraph);
for (const auto& factor : factors) {
graph->push_back(factor);
}
const auto poses = parse3DPoses(filename);
Values::shared_ptr initial(new Values);
for (const auto& key_pose : poses) {
initial->insert(key_pose.first, key_pose.second);
}
return make_pair(graph, initial);
}

View File

@ -18,6 +18,7 @@
#pragma once
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/geometry/Cal3Bundler.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Point2.h>
@ -34,10 +35,10 @@
#include <utility> // for pair
#include <vector>
#include <iosfwd>
#include <map>
namespace gtsam {
#ifndef MATLAB_MEX_FILE
/**
* Find the full path to an example dataset distributed with gtsam. The name
* may be specified with or without a file extension - if no extension is
@ -56,7 +57,6 @@ GTSAM_EXPORT std::string findExampleDataFile(const std::string& name);
* for checking read-write oprations
*/
GTSAM_EXPORT std::string createRewrittenFileName(const std::string& name);
#endif
/// Indicates how noise parameters are stored in file
enum NoiseFormat {
@ -155,9 +155,14 @@ GTSAM_EXPORT GraphAndValues readG2o(const std::string& g2oFile, const bool is3D
GTSAM_EXPORT void writeG2o(const NonlinearFactorGraph& graph,
const Values& estimate, const std::string& filename);
/**
* Load TORO 3D Graph
*/
/// Parse edges in 3D TORO graph file into a set of BetweenFactors.
using BetweenFactorPose3s = std::vector<gtsam::BetweenFactor<Pose3>::shared_ptr>;
GTSAM_EXPORT BetweenFactorPose3s parse3DFactors(const std::string& filename);
/// Parse vertices in 3D TORO graph file into a map of Pose3s.
GTSAM_EXPORT std::map<Key, Pose3> parse3DPoses(const std::string& filename);
/// Load TORO 3D Graph
GTSAM_EXPORT GraphAndValues load3D(const std::string& filename);
/// A measurement with its camera index

View File

@ -16,8 +16,8 @@
*/
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/TestableAssertions.h>
@ -162,65 +162,74 @@ TEST( dataSet, readG2o)
}
/* ************************************************************************* */
TEST( dataSet, readG2o3D)
{
TEST(dataSet, readG2o3D) {
const string g2oFile = findExampleDataFile("pose3example");
auto model = noiseModel::Isotropic::Precision(6, 10000);
// Initialize 6 relative measurements with quaternion/point3 values:
const std::vector<Pose3> relative_poses = {
{{0.854230, 0.190253, 0.283162, -0.392318},
{1.001367, 0.015390, 0.004948}},
{{0.105373, 0.311512, 0.656877, -0.678505},
{0.523923, 0.776654, 0.326659}},
{{0.568551, 0.595795, -0.561677, 0.079353},
{0.910927, 0.055169, -0.411761}},
{{0.542221, -0.592077, 0.303380, -0.513226},
{0.775288, 0.228798, -0.596923}},
{{0.327419, -0.125250, -0.534379, 0.769122},
{-0.577841, 0.628016, -0.543592}},
{{0.083672, 0.104639, 0.627755, 0.766795},
{-0.623267, 0.086928, 0.773222}},
};
// Initialize 5 poses with quaternion/point3 values:
const std::vector<Pose3> poses = {
{{1.000000, 0.000000, 0.000000, 0.000000}, {0, 0, 0}},
{{0.854230, 0.190253, 0.283162, -0.392318},
{1.001367, 0.015390, 0.004948}},
{{0.421446, -0.351729, -0.597838, 0.584174},
{1.993500, 0.023275, 0.003793}},
{{0.067024, 0.331798, -0.200659, 0.919323},
{2.004291, 1.024305, 0.018047}},
{{0.765488, -0.035697, -0.462490, 0.445933},
{0.999908, 1.055073, 0.020212}},
};
// Specify connectivity:
using KeyPair = pair<Key, Key>;
std::vector<KeyPair> edges = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 0}};
// Created expected factor graph
size_t i = 0;
NonlinearFactorGraph expectedGraph;
for (const auto& keys : edges) {
expectedGraph.emplace_shared<BetweenFactor<Pose3>>(
keys.first, keys.second, relative_poses[i++], model);
}
// Check factor parsing
const auto actualFactors = parse3DFactors(g2oFile);
for (size_t i : {0, 1, 2, 3, 4, 5}) {
EXPECT(assert_equal(
*boost::dynamic_pointer_cast<BetweenFactor<Pose3>>(expectedGraph[i]),
*actualFactors[i], 1e-5));
}
// Check pose parsing
const auto actualPoses = parse3DPoses(g2oFile);
for (size_t j : {0, 1, 2, 3, 4}) {
EXPECT(assert_equal(poses[j], actualPoses.at(j), 1e-5));
}
// Check graph version
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
bool is3D = true;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile, is3D);
Values expectedValues;
Rot3 R0 = Rot3::Quaternion(1.000000, 0.000000, 0.000000, 0.000000 );
Point3 p0 = Point3(0.000000, 0.000000, 0.000000);
expectedValues.insert(0, Pose3(R0, p0));
Rot3 R1 = Rot3::Quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
Point3 p1 = Point3(1.001367, 0.015390, 0.004948);
expectedValues.insert(1, Pose3(R1, p1));
Rot3 R2 = Rot3::Quaternion(0.421446, -0.351729, -0.597838, 0.584174 );
Point3 p2 = Point3(1.993500, 0.023275, 0.003793);
expectedValues.insert(2, Pose3(R2, p2));
Rot3 R3 = Rot3::Quaternion(0.067024, 0.331798, -0.200659, 0.919323);
Point3 p3 = Point3(2.004291, 1.024305, 0.018047);
expectedValues.insert(3, Pose3(R3, p3));
Rot3 R4 = Rot3::Quaternion(0.765488, -0.035697, -0.462490, 0.445933);
Point3 p4 = Point3(0.999908, 1.055073, 0.020212);
expectedValues.insert(4, Pose3(R4, p4));
EXPECT(assert_equal(expectedValues,*actualValues,1e-5));
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions((Vector(6) << 10000.0,10000.0,10000.0,10000.0,10000.0,10000.0).finished());
NonlinearFactorGraph expectedGraph;
Point3 p01 = Point3(1.001367, 0.015390, 0.004948);
Rot3 R01 = Rot3::Quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(0, 1, Pose3(R01,p01), model);
Point3 p12 = Point3(0.523923, 0.776654, 0.326659);
Rot3 R12 = Rot3::Quaternion(0.105373 , 0.311512, 0.656877, -0.678505 );
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 2, Pose3(R12,p12), model);
Point3 p23 = Point3(0.910927, 0.055169, -0.411761);
Rot3 R23 = Rot3::Quaternion(0.568551 , 0.595795, -0.561677, 0.079353 );
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(2, 3, Pose3(R23,p23), model);
Point3 p34 = Point3(0.775288, 0.228798, -0.596923);
Rot3 R34 = Rot3::Quaternion(0.542221 , -0.592077, 0.303380, -0.513226 );
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 4, Pose3(R34,p34), model);
Point3 p14 = Point3(-0.577841, 0.628016, -0.543592);
Rot3 R14 = Rot3::Quaternion(0.327419 , -0.125250, -0.534379, 0.769122 );
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(1, 4, Pose3(R14,p14), model);
Point3 p30 = Point3(-0.623267, 0.086928, 0.773222);
Rot3 R30 = Rot3::Quaternion(0.083672 , 0.104639, 0.627755, 0.766795 );
expectedGraph.emplace_shared<BetweenFactor<Pose3> >(3, 0, Pose3(R30,p30), model);
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
EXPECT(assert_equal(expectedGraph, *actualGraph, 1e-5));
for (size_t j : {0, 1, 2, 3, 4}) {
EXPECT(assert_equal(poses[j], actualValues->at<Pose3>(j), 1e-5));
}
}
/* ************************************************************************* */

View File

@ -70,6 +70,17 @@ NonlinearFactorGraph graph() {
g.add(PriorFactor<Pose3>(x0, pose0, model));
return g;
}
NonlinearFactorGraph graph2() {
NonlinearFactorGraph g;
g.add(BetweenFactor<Pose3>(x0, x1, pose0.between(pose1), noiseModel::Isotropic::Precision(6, 1.0)));
g.add(BetweenFactor<Pose3>(x1, x2, pose1.between(pose2), noiseModel::Isotropic::Precision(6, 1.0)));
g.add(BetweenFactor<Pose3>(x2, x3, pose2.between(pose3), noiseModel::Isotropic::Precision(6, 1.0)));
g.add(BetweenFactor<Pose3>(x2, x0, Pose3(Rot3::Ypr(0.1,0,0.1), Point3()), noiseModel::Isotropic::Precision(6, 0.0))); // random pose, but zero information
g.add(BetweenFactor<Pose3>(x0, x3, Pose3(Rot3::Ypr(0.5,-0.2,0.2), Point3(10,20,30)), noiseModel::Isotropic::Precision(6, 0.0))); // random pose, but zero informatoin
g.add(PriorFactor<Pose3>(x0, pose0, model));
return g;
}
}
/* *************************************************************************** */
@ -91,6 +102,19 @@ TEST( InitializePose3, orientations ) {
EXPECT(assert_equal(simple::R3, initial.at<Rot3>(x3), 1e-6));
}
/* *************************************************************************** */
TEST( InitializePose3, orientationsPrecisions ) {
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph2());
Values initial = InitializePose3::computeOrientationsChordal(pose3Graph);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal(simple::R0, initial.at<Rot3>(x0), 1e-6));
EXPECT(assert_equal(simple::R1, initial.at<Rot3>(x1), 1e-6));
EXPECT(assert_equal(simple::R2, initial.at<Rot3>(x2), 1e-6));
EXPECT(assert_equal(simple::R3, initial.at<Rot3>(x3), 1e-6));
}
/* *************************************************************************** */
TEST( InitializePose3, orientationsGradientSymbolicGraph ) {
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());

View File

@ -9,18 +9,6 @@ set (GTSAM_VERSION_STRING "@GTSAM_VERSION_STRING@")
set (GTSAM_USE_TBB @GTSAM_USE_TBB@)
set (GTSAM_DEFAULT_ALLOCATOR @GTSAM_DEFAULT_ALLOCATOR@)
if("@GTSAM_USE_TBB@")
list(APPEND GTSAM_INCLUDE_DIR "@TBB_INCLUDE_DIRS@")
endif()
# Append Eigen include path, set in top-level CMakeLists.txt to either
# system-eigen, or GTSAM eigen path
list(APPEND GTSAM_INCLUDE_DIR "@GTSAM_EIGEN_INCLUDE_PREFIX@")
if("@GTSAM_USE_EIGEN_MKL@")
list(APPEND GTSAM_INCLUDE_DIR "@MKL_INCLUDE_DIR@")
endif()
if("@GTSAM_INSTALL_CYTHON_TOOLBOX@")
list(APPEND GTSAM_EIGENCY_INSTALL_PATH "@GTSAM_EIGENCY_INSTALL_PATH@")
endif()

View File

@ -14,8 +14,6 @@ if(GTSAM_SUPPORT_NESTED_DISSECTION) # Only build partition if metis is built
set (gtsam_unstable_subdirs ${gtsam_unstable_subdirs} partition)
endif(GTSAM_SUPPORT_NESTED_DISSECTION)
set(GTSAM_UNSTABLE_BOOST_LIBRARIES ${GTSAM_BOOST_LIBRARIES})
add_custom_target(check.unstable COMMAND ${CMAKE_CTEST_COMMAND} --output-on-failure)
# To exclude a source from the library build (in any subfolder)
@ -72,10 +70,8 @@ set_target_properties(gtsam_unstable PROPERTIES
CLEAN_DIRECT_OUTPUT 1
VERSION ${gtsam_unstable_version}
SOVERSION ${gtsam_unstable_soversion})
target_link_libraries(gtsam_unstable
PUBLIC
gtsam
${GTSAM_UNSTABLE_BOOST_LIBRARIES})
target_link_libraries(gtsam_unstable PUBLIC gtsam)
# No need to link against Boost here, it's inherited from gtsam PUBLIC interface
if(WIN32) # Add 'lib' prefix to static library to avoid filename collision with shared library
if (NOT BUILD_SHARED_LIBS)

View File

@ -111,23 +111,27 @@ int main(int argc, char** argv) {
noiseModel::Diagonal::shared_ptr odometryNoise2 = noiseModel::Diagonal::Sigmas(Vector3(0.05, 0.05, 0.05));
newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2));
// Update the smoothers with the new factors
smootherBatch.update(newFactors, newValues, newTimestamps);
smootherISAM2.update(newFactors, newValues, newTimestamps);
for(size_t i = 1; i < 2; ++i) { // Optionally perform multiple iSAM2 iterations
smootherISAM2.update();
// Update the smoothers with the new factors. In this example, batch smoother needs one iteration
// to accurately converge. The ISAM smoother doesn't, but we only start getting estiates when
// both are ready for simplicity.
if (time >= 0.50) {
smootherBatch.update(newFactors, newValues, newTimestamps);
smootherISAM2.update(newFactors, newValues, newTimestamps);
for(size_t i = 1; i < 2; ++i) { // Optionally perform multiple iSAM2 iterations
smootherISAM2.update();
}
// Print the optimized current pose
cout << setprecision(5) << "Timestamp = " << time << endl;
smootherBatch.calculateEstimate<Pose2>(currentKey).print("Batch Estimate:");
smootherISAM2.calculateEstimate<Pose2>(currentKey).print("iSAM2 Estimate:");
cout << endl;
// Clear contains for the next iteration
newTimestamps.clear();
newValues.clear();
newFactors.resize(0);
}
// Print the optimized current pose
cout << setprecision(5) << "Timestamp = " << time << endl;
smootherBatch.calculateEstimate<Pose2>(currentKey).print("Batch Estimate:");
smootherISAM2.calculateEstimate<Pose2>(currentKey).print("iSAM2 Estimate:");
cout << endl;
// Clear contains for the next iteration
newTimestamps.clear();
newValues.clear();
newFactors.resize(0);
}
// And to demonstrate the fixed-lag aspect, print the keys contained in each smoother after 3.0 seconds

View File

@ -505,132 +505,130 @@ virtual class DiscreteEulerPoincareHelicopter : gtsam::NoiseModelFactor {
//*************************************************************************
// nonlinear
//*************************************************************************
// #include <gtsam_unstable/nonlinear/sequentialSummarization.h>
// gtsam::GaussianFactorGraph* summarizeGraphSequential(
// const gtsam::GaussianFactorGraph& full_graph, const gtsam::KeyVector& indices);
// gtsam::GaussianFactorGraph* summarizeGraphSequential(
// const gtsam::GaussianFactorGraph& full_graph, const gtsam::Ordering& ordering, const gtsam::KeySet& saved_keys);
#include <gtsam_unstable/nonlinear/FixedLagSmoother.h>
class FixedLagSmootherKeyTimestampMapValue {
FixedLagSmootherKeyTimestampMapValue(size_t key, double timestamp);
FixedLagSmootherKeyTimestampMapValue(const gtsam::FixedLagSmootherKeyTimestampMapValue& other);
};
// #include <gtsam_unstable/nonlinear/FixedLagSmoother.h>
// class FixedLagSmootherKeyTimestampMapValue {
// FixedLagSmootherKeyTimestampMapValue(const gtsam::Key& key, double timestamp);
// FixedLagSmootherKeyTimestampMapValue(const gtsam::FixedLagSmootherKeyTimestampMapValue& other);
// };
//
// class FixedLagSmootherKeyTimestampMap {
// FixedLagSmootherKeyTimestampMap();
// FixedLagSmootherKeyTimestampMap(const gtsam::FixedLagSmootherKeyTimestampMap& other);
//
// // Note: no print function
//
// // common STL methods
// size_t size() const;
// bool empty() const;
// void clear();
//
// double at(const gtsam::Key& key) const;
// void insert(const gtsam::FixedLagSmootherKeyTimestampMapValue& value);
// };
//
// class FixedLagSmootherResult {
// size_t getIterations() const;
// size_t getNonlinearVariables() const;
// size_t getLinearVariables() const;
// double getError() const;
// };
//
// #include <gtsam_unstable/nonlinear/FixedLagSmoother.h>
// virtual class FixedLagSmoother {
// void print(string s) const;
// bool equals(const gtsam::FixedLagSmoother& rhs, double tol) const;
//
// gtsam::FixedLagSmootherKeyTimestampMap timestamps() const;
// double smootherLag() const;
//
// gtsam::FixedLagSmootherResult update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta, const gtsam::FixedLagSmootherKeyTimestampMap& timestamps);
// gtsam::Values calculateEstimate() const;
// };
//
// #include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
// virtual class BatchFixedLagSmoother : gtsam::FixedLagSmoother {
// BatchFixedLagSmoother();
// BatchFixedLagSmoother(double smootherLag);
// BatchFixedLagSmoother(double smootherLag, const gtsam::LevenbergMarquardtParams& params);
//
// gtsam::LevenbergMarquardtParams params() const;
// };
//
// #include <gtsam_unstable/nonlinear/IncrementalFixedLagSmoother.h>
// virtual class IncrementalFixedLagSmoother : gtsam::FixedLagSmoother {
// IncrementalFixedLagSmoother();
// IncrementalFixedLagSmoother(double smootherLag);
// IncrementalFixedLagSmoother(double smootherLag, const gtsam::ISAM2Params& params);
//
// gtsam::ISAM2Params params() const;
// };
//
// #include <gtsam_unstable/nonlinear/ConcurrentFilteringAndSmoothing.h>
// virtual class ConcurrentFilter {
// void print(string s) const;
// bool equals(const gtsam::ConcurrentFilter& rhs, double tol) const;
// };
//
// virtual class ConcurrentSmoother {
// void print(string s) const;
// bool equals(const gtsam::ConcurrentSmoother& rhs, double tol) const;
// };
//
// // Synchronize function
// void synchronize(gtsam::ConcurrentFilter& filter, gtsam::ConcurrentSmoother& smoother);
//
// #include <gtsam_unstable/nonlinear/ConcurrentBatchFilter.h>
// class ConcurrentBatchFilterResult {
// size_t getIterations() const;
// size_t getLambdas() const;
// size_t getNonlinearVariables() const;
// size_t getLinearVariables() const;
// double getError() const;
// };
//
// virtual class ConcurrentBatchFilter : gtsam::ConcurrentFilter {
// ConcurrentBatchFilter();
// ConcurrentBatchFilter(const gtsam::LevenbergMarquardtParams& parameters);
//
// gtsam::NonlinearFactorGraph getFactors() const;
// gtsam::Values getLinearizationPoint() const;
// gtsam::Ordering getOrdering() const;
// gtsam::VectorValues getDelta() const;
//
// gtsam::ConcurrentBatchFilterResult update();
// gtsam::ConcurrentBatchFilterResult update(const gtsam::NonlinearFactorGraph& newFactors);
// gtsam::ConcurrentBatchFilterResult update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta);
// gtsam::ConcurrentBatchFilterResult update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta, const gtsam::KeyList& keysToMove);
// gtsam::Values calculateEstimate() const;
// };
//
// #include <gtsam_unstable/nonlinear/ConcurrentBatchSmoother.h>
// class ConcurrentBatchSmootherResult {
// size_t getIterations() const;
// size_t getLambdas() const;
// size_t getNonlinearVariables() const;
// size_t getLinearVariables() const;
// double getError() const;
// };
//
// virtual class ConcurrentBatchSmoother : gtsam::ConcurrentSmoother {
// ConcurrentBatchSmoother();
// ConcurrentBatchSmoother(const gtsam::LevenbergMarquardtParams& parameters);
//
// gtsam::NonlinearFactorGraph getFactors() const;
// gtsam::Values getLinearizationPoint() const;
// gtsam::Ordering getOrdering() const;
// gtsam::VectorValues getDelta() const;
//
// gtsam::ConcurrentBatchSmootherResult update();
// gtsam::ConcurrentBatchSmootherResult update(const gtsam::NonlinearFactorGraph& newFactors);
// gtsam::ConcurrentBatchSmootherResult update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta);
// gtsam::Values calculateEstimate() const;
// };
class FixedLagSmootherKeyTimestampMap {
FixedLagSmootherKeyTimestampMap();
FixedLagSmootherKeyTimestampMap(const gtsam::FixedLagSmootherKeyTimestampMap& other);
// Note: no print function
// common STL methods
size_t size() const;
bool empty() const;
void clear();
double at(const size_t key) const;
void insert(const gtsam::FixedLagSmootherKeyTimestampMapValue& value);
};
class FixedLagSmootherResult {
size_t getIterations() const;
size_t getNonlinearVariables() const;
size_t getLinearVariables() const;
double getError() const;
};
#include <gtsam_unstable/nonlinear/FixedLagSmoother.h>
virtual class FixedLagSmoother {
void print(string s) const;
bool equals(const gtsam::FixedLagSmoother& rhs, double tol) const;
gtsam::FixedLagSmootherKeyTimestampMap timestamps() const;
double smootherLag() const;
gtsam::FixedLagSmootherResult update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta, const gtsam::FixedLagSmootherKeyTimestampMap& timestamps);
gtsam::Values calculateEstimate() const;
};
#include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
virtual class BatchFixedLagSmoother : gtsam::FixedLagSmoother {
BatchFixedLagSmoother();
BatchFixedLagSmoother(double smootherLag);
BatchFixedLagSmoother(double smootherLag, const gtsam::LevenbergMarquardtParams& params);
gtsam::LevenbergMarquardtParams params() const;
template <VALUE = {gtsam::Point2, gtsam::Rot2, gtsam::Pose2, gtsam::Point3,
gtsam::Rot3, gtsam::Pose3, gtsam::Cal3_S2, gtsam::Cal3DS2,
Vector, Matrix}>
VALUE calculateEstimate(size_t key) const;
};
#include <gtsam_unstable/nonlinear/IncrementalFixedLagSmoother.h>
virtual class IncrementalFixedLagSmoother : gtsam::FixedLagSmoother {
IncrementalFixedLagSmoother();
IncrementalFixedLagSmoother(double smootherLag);
IncrementalFixedLagSmoother(double smootherLag, const gtsam::ISAM2Params& params);
gtsam::ISAM2Params params() const;
};
#include <gtsam_unstable/nonlinear/ConcurrentFilteringAndSmoothing.h>
virtual class ConcurrentFilter {
void print(string s) const;
bool equals(const gtsam::ConcurrentFilter& rhs, double tol) const;
};
virtual class ConcurrentSmoother {
void print(string s) const;
bool equals(const gtsam::ConcurrentSmoother& rhs, double tol) const;
};
// Synchronize function
void synchronize(gtsam::ConcurrentFilter& filter, gtsam::ConcurrentSmoother& smoother);
#include <gtsam_unstable/nonlinear/ConcurrentBatchFilter.h>
class ConcurrentBatchFilterResult {
size_t getIterations() const;
size_t getLambdas() const;
size_t getNonlinearVariables() const;
size_t getLinearVariables() const;
double getError() const;
};
virtual class ConcurrentBatchFilter : gtsam::ConcurrentFilter {
ConcurrentBatchFilter();
ConcurrentBatchFilter(const gtsam::LevenbergMarquardtParams& parameters);
gtsam::NonlinearFactorGraph getFactors() const;
gtsam::Values getLinearizationPoint() const;
gtsam::Ordering getOrdering() const;
gtsam::VectorValues getDelta() const;
gtsam::ConcurrentBatchFilterResult update();
gtsam::ConcurrentBatchFilterResult update(const gtsam::NonlinearFactorGraph& newFactors);
gtsam::ConcurrentBatchFilterResult update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta);
gtsam::ConcurrentBatchFilterResult update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta, const gtsam::KeyList& keysToMove);
gtsam::Values calculateEstimate() const;
};
#include <gtsam_unstable/nonlinear/ConcurrentBatchSmoother.h>
class ConcurrentBatchSmootherResult {
size_t getIterations() const;
size_t getLambdas() const;
size_t getNonlinearVariables() const;
size_t getLinearVariables() const;
double getError() const;
};
virtual class ConcurrentBatchSmoother : gtsam::ConcurrentSmoother {
ConcurrentBatchSmoother();
ConcurrentBatchSmoother(const gtsam::LevenbergMarquardtParams& parameters);
gtsam::NonlinearFactorGraph getFactors() const;
gtsam::Values getLinearizationPoint() const;
gtsam::Ordering getOrdering() const;
gtsam::VectorValues getDelta() const;
gtsam::ConcurrentBatchSmootherResult update();
gtsam::ConcurrentBatchSmootherResult update(const gtsam::NonlinearFactorGraph& newFactors);
gtsam::ConcurrentBatchSmootherResult update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta);
gtsam::Values calculateEstimate() const;
};
//*************************************************************************
// slam

View File

@ -1,22 +1,30 @@
# Build/install Wrap
set(WRAP_BOOST_LIBRARIES ${Boost_SYSTEM_LIBRARY} ${Boost_FILESYSTEM_LIBRARY} ${Boost_THREAD_LIBRARY})
set(WRAP_BOOST_LIBRARIES
Boost::system
Boost::filesystem
Boost::thread
)
# Allow for disabling serialization to handle errors related to Clang's linker
option(GTSAM_WRAP_SERIALIZATION "If enabled, allows for wrapped objects to be saved via boost.serialization" ON)
if (NOT GTSAM_WRAP_SERIALIZATION)
add_definitions(-DWRAP_DISABLE_SERIALIZE)
endif()
# Build the executable itself
file(GLOB wrap_srcs "*.cpp")
file(GLOB wrap_headers "*.h")
list(REMOVE_ITEM wrap_srcs ${CMAKE_CURRENT_SOURCE_DIR}/wrap.cpp)
add_library(wrap_lib STATIC ${wrap_srcs} ${wrap_headers})
target_include_directories(wrap_lib PUBLIC
$<BUILD_INTERFACE:${CMAKE_SOURCE_DIR}>
)
if (NOT GTSAM_WRAP_SERIALIZATION)
target_compile_definitions(wrap_lib PUBLIC -DWRAP_DISABLE_SERIALIZE)
endif()
target_link_libraries(wrap_lib ${WRAP_BOOST_LIBRARIES})
gtsam_assign_source_folders(${wrap_srcs} ${wrap_headers})
add_executable(wrap wrap.cpp)
target_link_libraries(wrap wrap_lib ${WRAP_BOOST_LIBRARIES})
target_link_libraries(wrap PRIVATE wrap_lib)
# Set folder in Visual Studio
file(RELATIVE_PATH relative_path "${PROJECT_SOURCE_DIR}" "${CMAKE_CURRENT_SOURCE_DIR}")
@ -32,4 +40,3 @@ install(FILES matlab.h DESTINATION include/wrap)
# Build tests
add_subdirectory(tests)

View File

@ -200,6 +200,6 @@ void Method::emit_cython_pyx(FileWriter& file, const Class& cls) const {
file.oss << " pass\n";
}
file.oss
<< " raise TypeError('Incorrect arguments for method call.')\n\n";
<< " raise TypeError('Incorrect arguments or types for method call.')\n\n";
}
/* ************************************************************************* */

View File

@ -394,14 +394,18 @@ void Module::emit_cython_pxd(FileWriter& pxdFile) const {
/* ************************************************************************* */
void Module::emit_cython_pyx(FileWriter& pyxFile) const {
// directives...
// allow str to automatically coerce to std::string and back (for python3)
pyxFile.oss << "# cython: c_string_type=str, c_string_encoding=ascii\n\n";
// headers...
string pxdHeader = name;
pyxFile.oss << "cimport numpy as np\n"
"import numpy as npp\n"
"cimport " << pxdHeader << "\n"
"from "<< pxdHeader << " cimport shared_ptr\n"
"from "<< pxdHeader << " cimport dynamic_pointer_cast\n"
"from "<< pxdHeader << " cimport make_shared\n";
"from ."<< pxdHeader << " cimport shared_ptr\n"
"from ."<< pxdHeader << " cimport dynamic_pointer_cast\n"
"from ."<< pxdHeader << " cimport make_shared\n";
pyxFile.oss << "# C helper function that copies all arguments into a positional list.\n"
"cdef list process_args(list keywords, tuple args, dict kwargs):\n"

View File

@ -1,9 +1,11 @@
# cython: c_string_type=str, c_string_encoding=ascii
cimport numpy as np
import numpy as npp
cimport geometry
from geometry cimport shared_ptr
from geometry cimport dynamic_pointer_cast
from geometry cimport make_shared
from .geometry cimport shared_ptr
from .geometry cimport dynamic_pointer_cast
from .geometry cimport make_shared
# C helper function that copies all arguments into a positional list.
cdef list process_args(list keywords, tuple args, dict kwargs):
cdef str keyword