Python CLI

release/4.3a0
Frank dellaert 2020-08-19 23:43:24 -04:00
parent 12d18343b9
commit 96a59e6a14
1 changed files with 104 additions and 0 deletions

View File

@ -0,0 +1,104 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Shonan Rotation Averaging CLI reads a *pose* graph, extracts the
rotation constraints, and runs the Shonan algorithm.
Author: Frank Dellaert
Date: August 2020
"""
# pylint: disable=invalid-name, E1101
import argparse
import numpy as np
import gtsam
def estimate_poses_given_rot(factors: gtsam.BetweenFactorPose3s, rotations: gtsam.Values, d: int = 3):
""" Estimate Poses from measurements, given rotations. From SfmProblem in shonan.
Arguments:
factors -- data structure with many BetweenFactorPose3 factors
rotations {Values} -- Estimated rotations
Returns:
Values -- Estimated Poses
"""
def R(j):
return rotations.atRot3(j) if d == 3 else rotations.atRot2(j)
graph = gtsam.GaussianFactorGraph()
model = gtsam.noiseModel.Unit.Create(3)
# Add a factor anchoring t_0
I3 = np.eye(3)
graph.add(0, I3, np.zeros((3,)), model)
# Add a factor saying t_j - t_i = Ri*t_ij for all edges (i,j)
for factor in factors:
keys = factor.keys()
i, j, Tij = keys[0], keys[1], factor.measured()
measured = R(i).rotate(Tij.translation())
graph.add(j, I3, i, -I3, measured.vector(), model)
# Solve linear system
translations = graph.optimize()
# Convert to Values.
result = gtsam.Values()
for j in range(rotations.size()):
tj = gtsam.Point3(translations.at(j))
result.insert(j, gtsam.Pose3(R(j), tj))
return result
def run(args):
"""Run Shonan averaging and then recover translations linearly before saving result."""
# Get input file
if args.input_file:
input_file = args.input_file
else:
if args.named_dataset == "":
raise ValueError(
"You must either specify a named dataset or an input file")
input_file = gtsam.findExampleDataFile(args.named_dataset)
if args.dimension == 2:
print("Running Shonan averaging for SO(2) on ", input_file)
shonan = gtsam.ShonanAveraging2(input_file)
initial = shonan.initializeRandomly()
rotations, _ = shonan.run(initial, 2, 10)
elif args.dimension == 3:
print("Running Shonan averaging for SO(3) on ", input_file)
shonan = gtsam.ShonanAveraging3(input_file)
initial = shonan.initializeRandomly()
rotations, _ = shonan.run(initial, 3, 10)
else:
raise ValueError("Can only run SO(2) or SO(3) averaging")
factors = gtsam.parse3DFactors(input_file)
poses = estimate_poses_given_rot(factors, rotations, args.dimension)
print("Writing result to ", args.output_file)
gtsam.writeG2o(gtsam.NonlinearFactorGraph(), poses, args.output_file)
print(poses)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--named_dataset', type=str, default="pose3example-grid",
help='Find and read frome example dataset file')
parser.add_argument('-i', '--input_file', type=str, default="",
help='Read pose constraints graph from the specified file')
parser.add_argument('-o', '--output_file', type=str, default="shonan.g2o",
help='Write solution to the specified file')
parser.add_argument('-d', '--dimension', type=int, default=3,
help='Optimize over 2D or 3D rotations')
run(parser.parse_args())