Use test namespace

release/4.3a0
Frank Dellaert 2019-01-04 15:11:07 -05:00
parent 6c59273a18
commit 968c0c0d4b
1 changed files with 25 additions and 35 deletions

View File

@ -199,29 +199,17 @@ TEST( SmartProjectionPoseFactor, noisy ) {
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, smartFactorWithSensorBodyTransform ){
// make a realistic calibration matrix
double fov = 60; // degrees
size_t w=640,h=480;
TEST(SmartProjectionPoseFactor, smartFactorWithSensorBodyTransform) {
using namespace vanillaPose;
Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 cameraPose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // body poses
Pose3 cameraPose2 = cameraPose1 * Pose3(Rot3(), Point3(1,0,0));
Pose3 cameraPose3 = cameraPose1 * Pose3(Rot3(), Point3(0,-1,0));
SimpleCamera cam1(cameraPose1, *K); // with camera poses
SimpleCamera cam2(cameraPose2, *K);
SimpleCamera cam3(cameraPose3, *K);
// create arbitrary body_Pose_sensor (transforms from sensor to body)
Pose3 sensor_to_body = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(1, 1, 1)); // Pose3(); //
// create arbitrary body_T_sensor (transforms from sensor to body)
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
// These are the poses we want to estimate, from camera measurements
Pose3 bodyPose1 = cameraPose1.compose(sensor_to_body.inverse());
Pose3 bodyPose2 = cameraPose2.compose(sensor_to_body.inverse());
Pose3 bodyPose3 = cameraPose3.compose(sensor_to_body.inverse());
const Pose3 sensor_T_body = body_T_sensor.inverse();
Pose3 wTb1 = cam1.pose() * sensor_T_body;
Pose3 wTb2 = cam2.pose() * sensor_T_body;
Pose3 wTb3 = cam3.pose() * sensor_T_body;
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2);
@ -243,16 +231,16 @@ TEST( SmartProjectionPoseFactor, smartFactorWithSensorBodyTransform ){
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
params.setDegeneracyMode(IGNORE_DEGENERACY);
params.setEnableEPI(false);
SmartProjectionPoseFactor<Cal3_S2> smartFactor1(model, K, sensor_to_body, params);
SmartFactor smartFactor1(model, sharedK, body_T_sensor, params);
smartFactor1.add(measurements_cam1, views);
SmartProjectionPoseFactor<Cal3_S2> smartFactor2(model, K, sensor_to_body, params);
SmartFactor smartFactor2(model, sharedK, body_T_sensor, params);
smartFactor2.add(measurements_cam2, views);
SmartProjectionPoseFactor<Cal3_S2> smartFactor3(model, K, sensor_to_body, params);
SmartFactor smartFactor3(model, sharedK, body_T_sensor, params);
smartFactor3.add(measurements_cam3, views);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
@ -262,30 +250,32 @@ TEST( SmartProjectionPoseFactor, smartFactorWithSensorBodyTransform ){
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.emplace_shared<PriorFactor<Pose3> >(x1, bodyPose1, noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, bodyPose2, noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x1, wTb1, noisePrior);
graph.emplace_shared<PriorFactor<Pose3> >(x2, wTb2, noisePrior);
// Check errors at ground truth poses
Values gtValues;
gtValues.insert(x1, bodyPose1);
gtValues.insert(x2, bodyPose2);
gtValues.insert(x3, bodyPose3);
gtValues.insert(x1, wTb1);
gtValues.insert(x2, wTb2);
gtValues.insert(x3, wTb3);
double actualError = graph.error(gtValues);
double expectedError = 0.0;
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1));
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1));
Values values;
values.insert(x1, bodyPose1);
values.insert(x2, bodyPose2);
// initialize third pose with some noise, we expect it to move back to original pose3
values.insert(x3, bodyPose3*noise_pose);
values.insert(x1, wTb1);
values.insert(x2, wTb2);
// initialize third pose with some noise, we expect it to move back to
// original pose3
values.insert(x3, wTb3 * noise_pose);
LevenbergMarquardtParams lmParams;
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(bodyPose3,result.at<Pose3>(x3)));
EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
}
/* *************************************************************************/