Added GenericProjectionFactorCreator. Both smart and generic projection factors now work (again) in batch mode. Incremental not tested yet.

release/4.3a0
Zsolt Kira 2013-10-11 01:59:36 +00:00
parent 6789c5080c
commit 9639660685
2 changed files with 272 additions and 239 deletions

View File

@ -41,9 +41,8 @@
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics SLAM problems.
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam_unstable/slam/SmartProjectionFactor.h>
#include <gtsam_unstable/slam/SmartProjectionFactorsCreator.h>
#include <gtsam_unstable/slam/GenericProjectionFactorsCreator.h>
// Standard headers, added last, so we know headers above work on their own
#include <boost/foreach.hpp>
@ -61,12 +60,8 @@ using symbol_shorthand::X;
using symbol_shorthand::L;
typedef PriorFactor<Pose3> Pose3Prior;
typedef SmartProjectionFactor<Pose3, Point3, Cal3_S2> SmartFactor;
typedef SmartProjectionFactorsCreator<Pose3, Point3, Cal3_S2> SmartFactorsCreator;
typedef GenericProjectionFactor<Pose3, Point3, Cal3_S2> ProjectionFactor;
typedef FastMap<Key, boost::shared_ptr<SmartProjectionFactorState> > SmartFactorToStateMap;
typedef FastMap<Key, boost::shared_ptr<SmartFactor> > SmartFactorMap;
typedef FastMap<Key, std::vector<boost::shared_ptr<ProjectionFactor> > > ProjectionFactorMap;
typedef GenericProjectionFactorsCreator<Pose3, Point3, Cal3_S2> ProjectionFactorsCreator;
typedef FastMap<Key, int> OrderingMap;
bool debug = false;
@ -151,6 +146,7 @@ Cal3_S2::shared_ptr loadCalibration(const string& filename) {
return K;
}
// Write key values to file
void writeValues(string directory_, const Values& values){
string filename = directory_ + "out_camera_poses.txt";
ofstream fout;
@ -187,93 +183,6 @@ void writeValues(string directory_, const Values& values){
}
}
void addTriangulatedLandmarks(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr loadedValues,
gtsam::Values::shared_ptr graphValues, boost::shared_ptr<Cal3_S2> K, ProjectionFactorMap &projectionFactors,
vector<Key> &cameraPoseKeys, vector<Key> &landmarkKeys) {
std::vector<boost::shared_ptr<ProjectionFactor> > projectionFactorVector;
std::vector<boost::shared_ptr<ProjectionFactor> >::iterator vfit;
Point3 point;
Pose3 cameraPose;
ProjectionFactorMap::iterator pfit;
if (debug) graphValues->print("graphValues \n");
if (debug) std::cout << " # END VALUES: " << std::endl;
// Iterate through all landmarks
if (debug) std::cout << " PROJECTION FACTOR GROUPED: " << projectionFactors.size();
int numProjectionFactors = 0;
int numProjectionFactorsAdded = 0;
int numFailures = 0;
for (pfit = projectionFactors.begin(); pfit != projectionFactors.end(); pfit++) {
projectionFactorVector = (*pfit).second;
std::vector<Pose3> cameraPoses;
std::vector<Point2> measured;
// Iterate through projection factors
for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) {
numProjectionFactors++;
if (debug) std::cout << "ProjectionFactor: " << std::endl;
if (debug) (*vfit)->print("ProjectionFactor");
// Iterate through poses
cameraPoses.push_back( loadedValues->at<Pose3>((*vfit)->key1() ) );
measured.push_back( (*vfit)->measured() );
}
// Triangulate landmark based on set of poses and measurements
if (debug) std::cout << "Triangulating: " << std::endl;
try {
point = triangulatePoint3(cameraPoses, measured, *K);
if (debug) std::cout << "Triangulation succeeded: " << point << std::endl;
} catch( TriangulationUnderconstrainedException& e) {
if (debug) std::cout << "Triangulation failed because of unconstrained exception" << std::endl;
if (debug) {
BOOST_FOREACH(const Pose3& pose, cameraPoses) {
std::cout << " Pose: " << pose << std::endl;
}
}
numFailures++;
continue;
} catch( TriangulationCheiralityException& e) {
if (debug) std::cout << "Triangulation failed because of unconstrained exception" << std::endl;
if (debug) {
std::cout << "Triangulation failed because of cheirality exception" << std::endl;
BOOST_FOREACH(const Pose3& pose, cameraPoses) {
std::cout << " Pose: " << pose << std::endl;
}
}
numFailures++;
continue;
}
// Add projection factors and pose values
for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) {
numProjectionFactorsAdded++;
if (debug) std::cout << "Adding factor " << std::endl;
if (debug) (*vfit)->print("Projection Factor");
graph.push_back( (*vfit) );
if (!graphValues->exists<Pose3>( (*vfit)->key1()) && loadedValues->exists<Pose3>((*vfit)->key1())) {
graphValues->insert((*vfit)->key1(), loadedValues->at<Pose3>((*vfit)->key1()));
cameraPoseKeys.push_back( (*vfit)->key1() );
}
}
// Add landmark value
if (debug) std::cout << "Adding value " << std::endl;
graphValues->insert( projectionFactorVector[0]->key2(), point); // add point;
landmarkKeys.push_back( projectionFactorVector[0]->key2() );
}
if (1||debug) std::cout << " # PROJECTION FACTORS CALCULATED: " << numProjectionFactors;
if (1||debug) std::cout << " # PROJECTION FACTORS ADDED: " << numProjectionFactorsAdded;
if (1||debug) std::cout << " # FAILURES: " << numFailures;
}
void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result, boost::shared_ptr<Ordering> &ordering) {
// Optimization parameters
LevenbergMarquardtParams params;
@ -368,14 +277,12 @@ void optimizeGraphISAM2(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr g
// main
int main(int argc, char** argv) {
unsigned int maxNumLandmarks = 389007; //100000000; // 309393 // (loop_closure_merged) //37106 //(reduced kitti);
unsigned int maxNumLandmarks = 10000; //389007; //100000000; // 309393 // (loop_closure_merged) //37106 //(reduced kitti);
unsigned int maxNumPoses = 1e+6;
// Set to true to use SmartProjectionFactor. Otherwise GenericProjectionFactor will be used
bool useSmartProjectionFactor = true;
bool useTriangulation = true;
bool useSmartProjectionFactor = false;
bool useLM = true;
int landmarkFirstOrderingMethod = 1; // 0 - COLAMD, 1 - landmark first, then COLAMD on poses (constrained ordering)
double KittiLinThreshold = -1.0; // 0.005; //
double KittiRankTolerance = 1.0;
@ -384,7 +291,6 @@ int main(int argc, char** argv) {
int optSkip = 200; // we optimize the graph every optSkip poses
std::cout << "PARAM SmartFactor: " << useSmartProjectionFactor << std::endl;
std::cout << "PARAM Triangulation: " << useTriangulation << std::endl;
std::cout << "PARAM LM: " << useLM << std::endl;
std::cout << "PARAM KittiLinThreshold (negative is disabled): " << KittiLinThreshold << std::endl;
@ -395,12 +301,9 @@ int main(int argc, char** argv) {
//string input_dir = HOME + "/data/kitti_00_full_dirty/";
static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2));
static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01)));
//static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9)));
NonlinearFactorGraph graphSmart, graphProjection;
// Load calibration
//Cal3_S2::shared_ptr K(new Cal3_S2(718.856, 718.856, 0.0, 607.1928, 185.2157));
boost::shared_ptr<Cal3_S2> K = loadCalibration(input_dir+"calibration.txt");
K->print("Calibration");
@ -412,12 +315,10 @@ int main(int argc, char** argv) {
exit(1);
}
// Load all values, add priors
// Load all values
gtsam::Values::shared_ptr graphSmartValues(new gtsam::Values());
gtsam::Values::shared_ptr graphProjectionValues(new gtsam::Values());
gtsam::Values::shared_ptr loadedValues = loadPoseValues(input_dir+"camera_poses.txt");
//graph.push_back(Pose3Prior(X(0),loadedValues->at<Pose3>(X(0)), prior_model));
//graph.push_back(Pose3Prior(X(1),loadedValues->at<Pose3>(X(1)), prior_model));
// read all measurements tracked by VO stereo
cout << "Loading stereo_factors.txt" << endl;
@ -427,15 +328,13 @@ int main(int argc, char** argv) {
Key r, l;
double uL, uR, v, x, y, z;
std::vector<Key> landmarkKeys, cameraPoseKeys;
std::vector<Key> views;
std::vector<Point2> measurements;
Values values;
ProjectionFactorMap projectionFactors;
Values result;
int totalNumMeasurements = 0;
bool optimized = false;
boost::shared_ptr<Ordering> ordering(new Ordering());
bool breakingCondition;
SmartFactorsCreator smartCreator(pixel_sigma, K, KittiRankTolerance, KittiLinThreshold);
ProjectionFactorsCreator projectionCreator(pixel_sigma, K);
// main loop: reads measurements and adds factors (also performs optimization if desired)
// r >> pose id
@ -464,159 +363,63 @@ int main(int argc, char** argv) {
} else {
// or STANDARD PROJECTION FACTORS
// Create projection factor
ProjectionFactor::shared_ptr projectionFactor(new ProjectionFactor(Point2(uL,v), pixel_sigma, X(r), L(l), K));
// Check if landmark exists in mapping
ProjectionFactorMap::iterator pfit = projectionFactors.find(L(l));
if (pfit != projectionFactors.end()) {
if (debug) fprintf(stderr,"Adding measurement to existing landmark\n");
// Add projection factor to list of projection factors associated with this landmark
(*pfit).second.push_back(projectionFactor);
} else {
if (debug) fprintf(stderr,"New landmark (%d)\n", pfit != projectionFactors.end());
// Create a new vector of projection factors
std::vector<ProjectionFactor::shared_ptr> projectionFactorVector;
projectionFactorVector.push_back(projectionFactor);
// Insert projection factor to NEW list of projection factors associated with this landmark
projectionFactors.insert( make_pair(L(l), projectionFactorVector) );
optimized = false; // TODO
// Add projection factor to graph
//graphProjection.push_back(projectionFactor);
// We have a new landmark
//numLandmarks++;
//landmarkKeys.push_back( L(l) );
}
if (!useTriangulation) {
cerr << "Deprecated use of -useTriangulation- flag" << endl;
}
// // Add landmark if triangulation is not being used to initialize them
// if (!useTriangulation) {
// // For projection factor, landmarks positions are used, but have to be transformed to world coordinates
// if (graphProjectionValues->exists<Point3>(L(l)) == boost::none) {
// Pose3 camera = loadedValues->at<Pose3>(X(r));
// Point3 worldPoint = camera.transform_from(Point3(x, y, z));
// graphProjectionValues->insert(L(l), worldPoint); // add point;
// }
//
// // Add initial pose value if pose does not exist
// // Only do this if triangulation is not used. Otherwise, it depends what projection factors are added
// // based on triangulation success
// if (!graphProjectionValues->exists<Pose3>(X(r)) && loadedValues->exists<Pose3>(X(r))) {
// graphProjectionValues->insert(X(r), loadedValues->at<Pose3>(X(r)));
// cameraPoseKeys.push_back( X(r) );
// //numPoses++;
// }
//
// // Add projection factor to graph
// graphProjection.push_back(projectionFactor);
//
// }else {
// // Alternatively: Triangulate similar to how SmartProjectionFactor does it
// // We only do this at the end, when all of the camera poses are available
// // Note we do not add anything to the graph until then, since in some cases
// // of triangulation failure we cannot add the landmark to the graph
// }
projectionCreator.add(L(l), X(r), Point2(uL,v), graphProjection);
numLandmarks = projectionCreator.getNumLandmarks();
optimized = false;
}
breakingCondition = currentLandmark != l && (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks);
// Optimize if have a certain number of poses/landmarks, or we want to do incremental inference
if (incrementalFlag && !optimized && ((numPoses+1) % optSkip)==0) {
if (breakingCondition || (incrementalFlag && !optimized && ((numPoses+1) % optSkip)==0) ) {
if (debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
if (debug) cout << "Adding triangulated landmarks, graph size: " << graphProjection.size() << endl;
//if (useSmartProjectionFactor == false && useTriangulation) {
// addTriangulatedLandmarks(graphProjection, loadedValues, graphProjectionValues, K, projectionFactors, cameraPoseKeys, landmarkKeys);
//}
if (useSmartProjectionFactor == false) {
projectionCreator.update(graphProjection, loadedValues, graphProjectionValues);
ordering = projectionCreator.getOrdering();
}
if (debug) cout << "Adding triangulated landmarks, graph size after: " << graphProjection.size() << endl;
if (1||debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
// Optimize every optSkip poses if we want to do incremental inference
if (incrementalFlag && !optimized && ((numPoses+1) % optSkip)==0 ){
if (useSmartProjectionFactor == false && useTriangulation) {
addTriangulatedLandmarks(graphSmart, loadedValues, graphSmartValues, K, projectionFactors, cameraPoseKeys, landmarkKeys);
}
if (useLM)
optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
else
optimizeGraphISAM2(graphSmart, graphSmartValues, result);
if(incrementalFlag) *graphSmartValues = result; // we use optimized solution as initial guess for the next one
optimized = true;
if (1||debug) std::cout << "Landmark Keys: " << landmarkKeys.size() << " Pose Keys: " << cameraPoseKeys.size() << std::endl;
if (1||debug) std::cout << "Pose ordering: " << ordering->size() << std::endl;
if (landmarkFirstOrderingMethod == 1) {
OrderingMap orderingMap;
// Add landmark keys first for ordering
BOOST_FOREACH(const Key& key, landmarkKeys) {
orderingMap.insert( make_pair(key, 1) );
}
//Ordering::iterator oit;
BOOST_FOREACH(const Key& key, cameraPoseKeys) {
orderingMap.insert( make_pair(key, 2) );
}
*ordering = graphProjection.orderingCOLAMDConstrained(orderingMap);
}
if (1||debug) std::cout << "Optimizing landmark first " << ordering->size() << std::endl;
//optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
// Only process first N measurements (for development/debugging)
if ( (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks) ) {
if (debug) fprintf(stderr,"%d: BREAKING %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
break;
}
if(!incrementalFlag) break;
if (useSmartProjectionFactor) {
if (useLM)
optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
else
optimizeGraphISAM2(graphSmart, graphSmartValues, result);
} else {
if (useLM)
optimizeGraphLM(graphProjection, graphProjectionValues, result, ordering);
else
optimizeGraphISAM2(graphSmart, graphSmartValues, result);
}
if(incrementalFlag) *graphSmartValues = result; // we use optimized solution as initial guess for the next one
optimized = true;
if (debug) fprintf(stderr,"%d %d\n", count, maxNumLandmarks);
if (debug) cout << "CurrentLandmark " << currentLandmark << " Landmark " << l << std::endl;
currentLandmark = l;
count++;
if(count==100000) {
cout << "Loading graph smart... " << graphSmart.size() << endl;
cout << "Loading graph projection... " << graphProjection.size() << endl;
}
}
if(currentLandmark != l && (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks)){ // reached desired number of landmarks/poses
if (debug) fprintf(stderr,"%d %d\n", count, maxNumLandmarks);
if (debug) cout << "CurrentLandmark " << currentLandmark << " Landmark " << l << std::endl;
if (1||debug) fprintf(stderr,"%d: %d, %d > %d, %d > %d\n", count, currentLandmark != l, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
if(breakingCondition){ // reached desired number of landmarks/poses
break;
}
currentLandmark = l;
count++;
if(count==100000) {
cout << "Loading graph smart... " << graphSmart.size() << endl;
cout << "Loading graph projection... " << graphProjection.size() << endl;
}
} // end of while
if (1||debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
// if we haven't optimized yet
if (!optimized) {
if (useSmartProjectionFactor == false && useTriangulation) {
addTriangulatedLandmarks(graphSmart, loadedValues, graphSmartValues, K, projectionFactors, cameraPoseKeys, landmarkKeys);
}
if (useLM)
optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
else
optimizeGraphISAM2(graphSmart, graphSmartValues, result);
optimized = true;
}
if (useSmartProjectionFactor||debug) std::cout << "TOTAL NUM MEASUREMENTS " << totalNumMeasurements;
cout << "===================================================" << endl;
//graphSmartValues->print("before optimization ");
//result.print("results of kitti optimization ");

View File

@ -0,0 +1,230 @@
/*
* GenericProjectionFactorsCreator.h
*
* Created on: Oct 10, 2013
* Author: zkira
*/
#ifndef GENERICPROJECTIONFACTORSCREATOR_H_
#define GENERICPROJECTIONFACTORSCREATOR_H_
// Both relative poses and recovered trajectory poses will be stored as Pose3 objects
#include <gtsam/geometry/Pose3.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// Use a map to store landmark/smart factor pairs
#include <gtsam/base/FastMap.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/geometry/PinholeCamera.h>
//#include <boost/foreach.hpp>
//#include <boost/assign.hpp>
//#include <boost/assign/std/vector.hpp>
//#include <fstream>
//#include <iostream>
#include <utility>
namespace gtsam {
typedef GenericProjectionFactor<Pose3, Point3, Cal3_S2> ProjectionFactor;
typedef FastMap<Key, std::vector<boost::shared_ptr<ProjectionFactor> > > ProjectionFactorMap;
typedef FastMap<Key, int> OrderingMap;
template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
class GenericProjectionFactorsCreator {
public:
GenericProjectionFactorsCreator(const SharedNoiseModel& model,
const boost::shared_ptr<CALIBRATION>& K,
boost::optional<POSE> body_P_sensor = boost::none) :
noise_(model), K_(K), body_P_sensor_(body_P_sensor),
orderingMethod(0), totalNumMeasurements(0), numLandmarks(0) {
ordering = boost::make_shared<Ordering>(*(new Ordering()));
};
void add(Key landmarkKey,
Key poseKey, Point2 measurement, NonlinearFactorGraph &graph) {
bool debug = false;
// Create projection factor
ProjectionFactor::shared_ptr projectionFactor(new ProjectionFactor(measurement, noise_, poseKey, landmarkKey, K_));
// Check if landmark exists in mapping
ProjectionFactorMap::iterator pfit = projectionFactors.find(landmarkKey);
if (pfit != projectionFactors.end()) {
if (debug) fprintf(stderr,"Adding measurement to existing landmark\n");
// Add projection factor to list of projection factors associated with this landmark
(*pfit).second.push_back(projectionFactor);
} else {
if (debug) fprintf(stderr,"New landmark (%d)\n", pfit != projectionFactors.end());
// Create a new vector of projection factors
std::vector<ProjectionFactor::shared_ptr> projectionFactorVector;
projectionFactorVector.push_back(projectionFactor);
// Insert projection factor to NEW list of projection factors associated with this landmark
projectionFactors.insert( std::make_pair(landmarkKey, projectionFactorVector) );
// Add projection factor to graph
//graph.push_back(projectionFactor);
// We have a new landmark
numLandmarks++;
landmarkKeys.push_back( landmarkKey );
}
}
void update(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr inputValues, gtsam::Values::shared_ptr outputValues) {
addTriangulatedLandmarks(graph, inputValues, outputValues);
updateOrdering(graph);
}
unsigned int getTotalNumMeasurements() { return totalNumMeasurements; }
unsigned int getNumLandmarks() { return numLandmarks; }
unsigned int getNumPoses() { return cameraPoseKeys.size(); }
boost::shared_ptr<Ordering> getOrdering() { return ordering; }
protected:
void updateTriangulations() {
}
void updateOrdering(NonlinearFactorGraph &graph) {
bool debug = false;
if (1||debug) std::cout << "Landmark Keys: " << landmarkKeys.size() << " Pose Keys: " << cameraPoseKeys.size() << std::endl;
if (1||debug) std::cout << "Pose ordering: " << ordering->size() << std::endl;
if (orderingMethod == 1) {
OrderingMap orderingMap;
// Add landmark keys first for ordering
BOOST_FOREACH(const Key& key, landmarkKeys) {
orderingMap.insert( std::make_pair(key, 1) );
}
//Ordering::iterator oit;
BOOST_FOREACH(const Key& key, cameraPoseKeys) {
orderingMap.insert( std::make_pair(key, 2) );
}
*ordering = graph.orderingCOLAMDConstrained(orderingMap);
}
if (1||debug) std::cout << "Optimizing landmark first " << ordering->size() << std::endl;
}
void addTriangulatedLandmarks(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr loadedValues,
gtsam::Values::shared_ptr graphValues) {
bool debug = false;
std::vector<boost::shared_ptr<ProjectionFactor> > projectionFactorVector;
std::vector<boost::shared_ptr<ProjectionFactor> >::iterator vfit;
Point3 point;
Pose3 cameraPose;
ProjectionFactorMap::iterator pfit;
if (debug) graphValues->print("graphValues \n");
if (debug) std::cout << " # END VALUES: " << std::endl;
// Iterate through all landmarks
if (debug) std::cout << " PROJECTION FACTOR GROUPED: " << projectionFactors.size();
int numProjectionFactors = 0;
int numProjectionFactorsAdded = 0;
int numFailures = 0;
for (pfit = projectionFactors.begin(); pfit != projectionFactors.end(); pfit++) {
projectionFactorVector = (*pfit).second;
std::vector<Pose3> cameraPoses;
std::vector<Point2> measured;
// Iterate through projection factors
for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) {
numProjectionFactors++;
if (debug) std::cout << "ProjectionFactor: " << std::endl;
if (debug) (*vfit)->print("ProjectionFactor");
// Iterate through poses
cameraPoses.push_back( loadedValues->at<Pose3>((*vfit)->key1() ) );
measured.push_back( (*vfit)->measured() );
}
// Triangulate landmark based on set of poses and measurements
if (debug) std::cout << "Triangulating: " << std::endl;
try {
point = triangulatePoint3(cameraPoses, measured, *K_);
if (debug) std::cout << "Triangulation succeeded: " << point << std::endl;
} catch( TriangulationUnderconstrainedException& e) {
if (debug) std::cout << "Triangulation failed because of unconstrained exception" << std::endl;
if (debug) {
BOOST_FOREACH(const Pose3& pose, cameraPoses) {
std::cout << " Pose: " << pose << std::endl;
}
}
numFailures++;
continue;
} catch( TriangulationCheiralityException& e) {
if (debug) std::cout << "Triangulation failed because of unconstrained exception" << std::endl;
if (debug) {
std::cout << "Triangulation failed because of cheirality exception" << std::endl;
BOOST_FOREACH(const Pose3& pose, cameraPoses) {
std::cout << " Pose: " << pose << std::endl;
}
}
numFailures++;
continue;
}
// Add projection factors and pose values
for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) {
numProjectionFactorsAdded++;
if (debug) std::cout << "Adding factor " << std::endl;
if (debug) (*vfit)->print("Projection Factor");
graph.push_back( (*vfit) );
if (!graphValues->exists<Pose3>( (*vfit)->key1()) && loadedValues->exists<Pose3>((*vfit)->key1())) {
graphValues->insert((*vfit)->key1(), loadedValues->at<Pose3>((*vfit)->key1()));
cameraPoseKeys.push_back( (*vfit)->key1() );
}
}
// Add landmark value
if (debug) std::cout << "Adding value " << std::endl;
graphValues->insert( projectionFactorVector[0]->key2(), point); // add point;
landmarkKeys.push_back( projectionFactorVector[0]->key2() );
}
if (1||debug) std::cout << " # PROJECTION FACTORS CALCULATED: " << numProjectionFactors;
if (1||debug) std::cout << " # PROJECTION FACTORS ADDED: " << numProjectionFactorsAdded;
if (1||debug) std::cout << " # FAILURES: " << numFailures;
}
const SharedNoiseModel noise_; ///< noise model used
///< (important that the order is the same as the keys that we use to create the factor)
boost::shared_ptr<CALIBRATION> K_; ///< shared pointer to calibration object
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
std::vector<Key> cameraPoseKeys;
std::vector<Key> landmarkKeys;
ProjectionFactorMap projectionFactors;
boost::shared_ptr<Ordering> ordering;
// orderingMethod: 0 - COLAMD, 1 - landmark first, then COLAMD on poses (constrained ordering)
int orderingMethod;
unsigned int totalNumMeasurements;
unsigned int numLandmarks;
unsigned int numPoses;
};
}
#endif /* SMARTPROJECTIONFACTORSCREATOR_H_ */