remove all LieVector(size_t m, ...), which doesn't check parameter's type and it's also dangerous
parent
ad0662a860
commit
96296333ae
|
@ -30,19 +30,6 @@ LieVector::LieVector(size_t m, const double* const data)
|
|||
(*this)(i) = data[i];
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
LieVector::LieVector(size_t m, ...)
|
||||
: Vector(m)
|
||||
{
|
||||
va_list ap;
|
||||
va_start(ap, m);
|
||||
for( size_t i = 0 ; i < m ; i++) {
|
||||
double value = va_arg(ap, double);
|
||||
(*this)(i) = value;
|
||||
}
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void LieVector::print(const std::string& name) const {
|
||||
gtsam::print(vector(), name);
|
||||
|
|
|
@ -44,9 +44,6 @@ struct LieVector : public Vector, public DerivedValue<LieVector> {
|
|||
/** constructor with size and initial data, row order ! */
|
||||
GTSAM_EXPORT LieVector(size_t m, const double* const data);
|
||||
|
||||
/** Specify arguments directly, as in Vector_() - always force these to be doubles */
|
||||
GTSAM_EXPORT LieVector(size_t m, ...);
|
||||
|
||||
/** get the underlying vector */
|
||||
Vector vector() const {
|
||||
return static_cast<Vector>(*this);
|
||||
|
|
|
@ -39,14 +39,9 @@ TEST( testLieVector, construction ) {
|
|||
TEST( testLieVector, other_constructors ) {
|
||||
Vector init = (Vector(2) << 10.0, 20.0);
|
||||
LieVector exp(init);
|
||||
LieVector a(2,10.0,20.0);
|
||||
double data[] = {10,20};
|
||||
LieVector b(2,data);
|
||||
LieVector c(2.3), c_exp(LieVector(1, 2.3));
|
||||
EXPECT(assert_equal(exp, a));
|
||||
EXPECT(assert_equal(exp, b));
|
||||
EXPECT(assert_equal(b, a));
|
||||
EXPECT(assert_equal(c_exp, c));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -48,7 +48,8 @@ double f2(const LieVector& x) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(testNumericalDerivative, numericalHessian2) {
|
||||
LieVector center(2, 0.5, 1.0);
|
||||
Vector v_center = (Vector(2) << 0.5, 1.0);
|
||||
LieVector center(v_center);
|
||||
|
||||
Matrix expected = (Matrix(2,2) <<
|
||||
-cos(center(1))*sin(center(0)), -sin(center(1))*cos(center(0)),
|
||||
|
@ -67,7 +68,9 @@ double f3(const LieVector& x1, const LieVector& x2) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(testNumericalDerivative, numericalHessian211) {
|
||||
LieVector center1(1, 1.0), center2(1, 5.0);
|
||||
Vector v_center1 = (Vector(1) << 1.0);
|
||||
Vector v_center2 = (Vector(1) << 5.0);
|
||||
LieVector center1(v_center1), center2(v_center2);
|
||||
|
||||
Matrix expected11 = (Matrix(1, 1) << -sin(center1(0))*cos(center2(0)));
|
||||
Matrix actual11 = numericalHessian211(f3, center1, center2);
|
||||
|
@ -90,7 +93,11 @@ double f4(const LieVector& x, const LieVector& y, const LieVector& z) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(testNumericalDerivative, numericalHessian311) {
|
||||
LieVector center1(1, 1.0), center2(1, 2.0), center3(1, 3.0);
|
||||
Vector v_center1 = (Vector(1) << 1.0);
|
||||
Vector v_center2 = (Vector(1) << 2.0);
|
||||
Vector v_center3 = (Vector(1) << 3.0);
|
||||
LieVector center1(v_center1), center2(v_center2), center3(v_center3);
|
||||
|
||||
double x = center1(0), y = center2(0), z = center3(0);
|
||||
Matrix expected11 = (Matrix(1, 1) << -sin(x)*cos(y)*z*z);
|
||||
Matrix actual11 = numericalHessian311(f4, center1, center2, center3);
|
||||
|
|
|
@ -168,9 +168,9 @@ TEST( CombinedImuFactor, ErrorWithBiases )
|
|||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
|
||||
imuBias::ConstantBias bias2(Vector3(0.2, 0.2, 0), Vector3(1, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
|
||||
LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
|
||||
LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
|
|
|
@ -167,9 +167,9 @@ TEST( ImuFactor, Error )
|
|||
// Linearization point
|
||||
imuBias::ConstantBias bias; // Bias
|
||||
Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
|
||||
LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
|
||||
LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
|
@ -238,16 +238,16 @@ TEST( ImuFactor, ErrorWithBiases )
|
|||
// Linearization point
|
||||
// Vector bias(6); bias << 0.2, 0, 0, 0.1, 0, 0; // Biases (acc, rot)
|
||||
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
|
||||
// LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
// LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/10.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
|
||||
// LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
// LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
|
||||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
|
||||
LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
|
||||
LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
|
@ -445,9 +445,9 @@ TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
|
|||
//{
|
||||
// // Linearization point
|
||||
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
|
||||
// LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
// LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
|
||||
// LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
// LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
// imuBias::ConstantBias bias(Vector3(0.001, 0.002, 0.008), Vector3(0.002, 0.004, 0.012));
|
||||
//
|
||||
// // Pre-integrator
|
||||
|
@ -501,9 +501,9 @@ TEST( ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement )
|
|||
|
||||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
|
||||
LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
|
||||
LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
|
|
|
@ -65,7 +65,8 @@ public:
|
|||
TEST( Values, equals1 )
|
||||
{
|
||||
Values expected;
|
||||
LieVector v(3, 5.0, 6.0, 7.0);
|
||||
LieVector v((Vector(3) << 5.0, 6.0, 7.0));
|
||||
|
||||
expected.insert(key1,v);
|
||||
Values actual;
|
||||
actual.insert(key1,v);
|
||||
|
@ -76,8 +77,9 @@ TEST( Values, equals1 )
|
|||
TEST( Values, equals2 )
|
||||
{
|
||||
Values cfg1, cfg2;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 5.0, 6.0, 8.0);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << 5.0, 6.0, 8.0));
|
||||
|
||||
cfg1.insert(key1, v1);
|
||||
cfg2.insert(key1, v2);
|
||||
CHECK(!cfg1.equals(cfg2));
|
||||
|
@ -88,8 +90,9 @@ TEST( Values, equals2 )
|
|||
TEST( Values, equals_nan )
|
||||
{
|
||||
Values cfg1, cfg2;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, inf, inf, inf);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << inf, inf, inf));
|
||||
|
||||
cfg1.insert(key1, v1);
|
||||
cfg2.insert(key1, v2);
|
||||
CHECK(!cfg1.equals(cfg2));
|
||||
|
@ -100,10 +103,11 @@ TEST( Values, equals_nan )
|
|||
TEST( Values, insert_good )
|
||||
{
|
||||
Values cfg1, cfg2, expected;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 8.0, 9.0, 1.0);
|
||||
LieVector v3(3, 2.0, 4.0, 3.0);
|
||||
LieVector v4(3, 8.0, 3.0, 7.0);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << 8.0, 9.0, 1.0));
|
||||
LieVector v3((Vector(3) << 2.0, 4.0, 3.0));
|
||||
LieVector v4((Vector(3) << 8.0, 3.0, 7.0));
|
||||
|
||||
cfg1.insert(key1, v1);
|
||||
cfg1.insert(key2, v2);
|
||||
cfg2.insert(key3, v4);
|
||||
|
@ -121,10 +125,11 @@ TEST( Values, insert_good )
|
|||
TEST( Values, insert_bad )
|
||||
{
|
||||
Values cfg1, cfg2;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 8.0, 9.0, 1.0);
|
||||
LieVector v3(3, 2.0, 4.0, 3.0);
|
||||
LieVector v4(3, 8.0, 3.0, 7.0);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << 8.0, 9.0, 1.0));
|
||||
LieVector v3((Vector(3) << 2.0, 4.0, 3.0));
|
||||
LieVector v4((Vector(3) << 8.0, 3.0, 7.0));
|
||||
|
||||
cfg1.insert(key1, v1);
|
||||
cfg1.insert(key2, v2);
|
||||
cfg2.insert(key2, v3);
|
||||
|
@ -137,8 +142,8 @@ TEST( Values, insert_bad )
|
|||
TEST( Values, update_element )
|
||||
{
|
||||
Values cfg;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 8.0, 9.0, 1.0);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << 8.0, 9.0, 1.0));
|
||||
|
||||
cfg.insert(key1, v1);
|
||||
CHECK(cfg.size() == 1);
|
||||
|
@ -181,8 +186,8 @@ TEST(Values, basic_functions)
|
|||
//TEST(Values, dim_zero)
|
||||
//{
|
||||
// Values config0;
|
||||
// config0.insert(key1, LieVector(2, 2.0, 3.0));
|
||||
// config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
// config0.insert(key1, LieVector((Vector(2) << 2.0, 3.0));
|
||||
// config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0));
|
||||
// LONGS_EQUAL(5, config0.dim());
|
||||
//
|
||||
// VectorValues expected;
|
||||
|
@ -195,16 +200,16 @@ TEST(Values, basic_functions)
|
|||
TEST(Values, expmap_a)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
config0.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
|
||||
VectorValues increment = pair_list_of<Key, Vector>
|
||||
(key1, (Vector(3) << 1.0, 1.1, 1.2))
|
||||
(key2, (Vector(3) << 1.3, 1.4, 1.5));
|
||||
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(3, 2.0, 3.1, 4.2));
|
||||
expected.insert(key2, LieVector(3, 6.3, 7.4, 8.5));
|
||||
expected.insert(key1, LieVector((Vector(3) << 2.0, 3.1, 4.2)));
|
||||
expected.insert(key2, LieVector((Vector(3) << 6.3, 7.4, 8.5)));
|
||||
|
||||
CHECK(assert_equal(expected, config0.retract(increment)));
|
||||
}
|
||||
|
@ -213,15 +218,15 @@ TEST(Values, expmap_a)
|
|||
TEST(Values, expmap_b)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
config0.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
|
||||
VectorValues increment = pair_list_of<Key, Vector>
|
||||
(key2, (Vector(3) << 1.3, 1.4, 1.5));
|
||||
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
expected.insert(key2, LieVector(3, 6.3, 7.4, 8.5));
|
||||
expected.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
expected.insert(key2, LieVector((Vector(3) << 6.3, 7.4, 8.5)));
|
||||
|
||||
CHECK(assert_equal(expected, config0.retract(increment)));
|
||||
}
|
||||
|
@ -230,16 +235,16 @@ TEST(Values, expmap_b)
|
|||
//TEST(Values, expmap_c)
|
||||
//{
|
||||
// Values config0;
|
||||
// config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
// config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
// config0.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
// config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
//
|
||||
// Vector increment = LieVector(6,
|
||||
// 1.0, 1.1, 1.2,
|
||||
// 1.3, 1.4, 1.5);
|
||||
//
|
||||
// Values expected;
|
||||
// expected.insert(key1, LieVector(3, 2.0, 3.1, 4.2));
|
||||
// expected.insert(key2, LieVector(3, 6.3, 7.4, 8.5));
|
||||
// expected.insert(key1, LieVector((Vector(3) << 2.0, 3.1, 4.2)));
|
||||
// expected.insert(key2, LieVector((Vector(3) << 6.3, 7.4, 8.5)));
|
||||
//
|
||||
// CHECK(assert_equal(expected, config0.retract(increment)));
|
||||
//}
|
||||
|
@ -248,8 +253,8 @@ TEST(Values, expmap_b)
|
|||
TEST(Values, expmap_d)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
config0.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
//config0.print("config0");
|
||||
CHECK(equal(config0, config0));
|
||||
CHECK(config0.equals(config0));
|
||||
|
@ -266,8 +271,8 @@ TEST(Values, expmap_d)
|
|||
TEST(Values, localCoordinates)
|
||||
{
|
||||
Values valuesA;
|
||||
valuesA.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
valuesA.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
valuesA.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
valuesA.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
|
||||
VectorValues expDelta = pair_list_of<Key, Vector>
|
||||
(key1, (Vector(3) << 0.1, 0.2, 0.3))
|
||||
|
@ -314,17 +319,17 @@ TEST(Values, exists_)
|
|||
TEST(Values, update)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(1, 1.));
|
||||
config0.insert(key2, LieVector(1, 2.));
|
||||
config0.insert(key1, LieVector((Vector(1) << 1.)));
|
||||
config0.insert(key2, LieVector((Vector(1) << 2.)));
|
||||
|
||||
Values superset;
|
||||
superset.insert(key1, LieVector(1, -1.));
|
||||
superset.insert(key2, LieVector(1, -2.));
|
||||
superset.insert(key1, LieVector((Vector(1) << -1.)));
|
||||
superset.insert(key2, LieVector((Vector(1) << -2.)));
|
||||
config0.update(superset);
|
||||
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(1, -1.));
|
||||
expected.insert(key2, LieVector(1, -2.));
|
||||
expected.insert(key1, LieVector((Vector(1) << -1.)));
|
||||
expected.insert(key2, LieVector((Vector(1) << -2.)));
|
||||
CHECK(assert_equal(expected,config0));
|
||||
}
|
||||
|
||||
|
|
|
@ -110,7 +110,7 @@ TEST( GeneralSFMFactor, error ) {
|
|||
Pose3 x1(R,t1);
|
||||
values.insert(X(1), GeneralCamera(x1));
|
||||
Point3 l1; values.insert(L(1), l1);
|
||||
EXPECT(assert_equal((Vector(2) << -3.0, 0.0), factor->unwhitenedError(values)));
|
||||
EXPECT(assert_equal(((Vector) (Vector(2) << -3.0, 0.0)), factor->unwhitenedError(values)));
|
||||
}
|
||||
|
||||
static const double baseline = 5.0 ;
|
||||
|
|
|
@ -166,7 +166,7 @@ public:
|
|||
gtsam::Point3 ray = pw - pt;
|
||||
double theta = atan2(ray.y(), ray.x()); // longitude
|
||||
double phi = atan2(ray.z(), sqrt(ray.x()*ray.x()+ray.y()*ray.y()));
|
||||
return std::make_pair(gtsam::LieVector(5, pt.x(),pt.y(),pt.z(), theta, phi),
|
||||
return std::make_pair(gtsam::LieVector((Vector(5) << pt.x(),pt.y(),pt.z(), theta, phi)),
|
||||
gtsam::LieScalar(1./depth));
|
||||
}
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@ TEST( InvDepthFactor, Project1) {
|
|||
Point2 expected_uv = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector inv_landmark(5, 1., 0., 1., 0., 0.);
|
||||
LieVector inv_landmark((Vector(5) << 1., 0., 1., 0., 0.));
|
||||
LieScalar inv_depth(1./4);
|
||||
Point2 actual_uv = inv_camera.project(inv_landmark, inv_depth);
|
||||
EXPECT(assert_equal(expected_uv, actual_uv));
|
||||
|
@ -45,7 +45,7 @@ TEST( InvDepthFactor, Project2) {
|
|||
Point2 expected = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector diag_landmark(5, 0., 0., 1., M_PI/4., atan(1.0/sqrt(2.0)));
|
||||
LieVector diag_landmark((Vector(5) << 0., 0., 1., M_PI/4., atan(1.0/sqrt(2.0))));
|
||||
LieScalar inv_depth(1/sqrt(3.0));
|
||||
Point2 actual = inv_camera.project(diag_landmark, inv_depth);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
@ -60,7 +60,7 @@ TEST( InvDepthFactor, Project3) {
|
|||
Point2 expected = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector diag_landmark(5, 0., 0., 0., M_PI/4., atan(2./sqrt(2.0)));
|
||||
LieVector diag_landmark((Vector(5) << 0., 0., 0., M_PI/4., atan(2./sqrt(2.0))));
|
||||
LieScalar inv_depth( 1./sqrt(1.0+1+4));
|
||||
Point2 actual = inv_camera.project(diag_landmark, inv_depth);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
@ -75,7 +75,7 @@ TEST( InvDepthFactor, Project4) {
|
|||
Point2 expected = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector diag_landmark(5, 0., 0., 0., atan(4.0/1), atan(2./sqrt(1.+16.)));
|
||||
LieVector diag_landmark((Vector(5) << 0., 0., 0., atan(4.0/1), atan(2./sqrt(1.+16.))));
|
||||
LieScalar inv_depth(1./sqrt(1.+16.+4.));
|
||||
Point2 actual = inv_camera.project(diag_landmark, inv_depth);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
@ -88,7 +88,7 @@ Point2 project_(const Pose3& pose, const LieVector& landmark, const LieScalar& i
|
|||
|
||||
TEST( InvDepthFactor, Dproject_pose)
|
||||
{
|
||||
LieVector landmark(6,0.1,0.2,0.3, 0.1,0.2);
|
||||
LieVector landmark((Vector(5) << 0.1,0.2,0.3, 0.1,0.2));
|
||||
LieScalar inv_depth(1./4);
|
||||
Matrix expected = numericalDerivative31<Point2,Pose3,LieVector>(project_,level_pose, landmark, inv_depth);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose,K);
|
||||
|
@ -100,7 +100,7 @@ TEST( InvDepthFactor, Dproject_pose)
|
|||
/* ************************************************************************* */
|
||||
TEST( InvDepthFactor, Dproject_landmark)
|
||||
{
|
||||
LieVector landmark(5,0.1,0.2,0.3, 0.1,0.2);
|
||||
LieVector landmark((Vector(5) << 0.1,0.2,0.3, 0.1,0.2));
|
||||
LieScalar inv_depth(1./4);
|
||||
Matrix expected = numericalDerivative32<Point2,Pose3,LieVector>(project_,level_pose, landmark, inv_depth);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose,K);
|
||||
|
@ -112,7 +112,7 @@ TEST( InvDepthFactor, Dproject_landmark)
|
|||
/* ************************************************************************* */
|
||||
TEST( InvDepthFactor, Dproject_inv_depth)
|
||||
{
|
||||
LieVector landmark(5,0.1,0.2,0.3, 0.1,0.2);
|
||||
LieVector landmark((Vector(5) << 0.1,0.2,0.3, 0.1,0.2));
|
||||
LieScalar inv_depth(1./4);
|
||||
Matrix expected = numericalDerivative33<Point2,Pose3,LieVector>(project_,level_pose, landmark, inv_depth);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose,K);
|
||||
|
@ -124,7 +124,7 @@ TEST( InvDepthFactor, Dproject_inv_depth)
|
|||
/* ************************************************************************* */
|
||||
TEST(InvDepthFactor, backproject)
|
||||
{
|
||||
LieVector expected(5,0.,0.,1., 0.1,0.2);
|
||||
LieVector expected((Vector(5) << 0.,0.,1., 0.1,0.2));
|
||||
LieScalar inv_depth(1./4);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose,K);
|
||||
Point2 z = inv_camera.project(expected, inv_depth);
|
||||
|
@ -140,7 +140,7 @@ TEST(InvDepthFactor, backproject)
|
|||
TEST(InvDepthFactor, backproject2)
|
||||
{
|
||||
// backwards facing camera
|
||||
LieVector expected(5,-5.,-5.,2., 3., -0.1);
|
||||
LieVector expected((Vector(5) << -5.,-5.,2., 3., -0.1));
|
||||
LieScalar inv_depth(1./10);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(Pose3(Rot3::ypr(1.5,0.1, -1.5), Point3(-5, -5, 2)),K);
|
||||
Point2 z = inv_camera.project(expected, inv_depth);
|
||||
|
|
|
@ -119,10 +119,10 @@ TEST( InertialNavFactor_GlobalVelocity, Predict)
|
|||
InertialNavFactor_GlobalVelocity<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
|
||||
|
||||
Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
|
||||
LieVector Vel1(3, 0.50, -0.50, 0.40);
|
||||
LieVector Vel1((Vector(3) << 0.50, -0.50, 0.40));
|
||||
imuBias::ConstantBias Bias1;
|
||||
Pose3 expectedPose2(Rot3(), Point3(2.05, 0.95, 3.04));
|
||||
LieVector expectedVel2(3, 0.51, -0.48, 0.43);
|
||||
LieVector expectedVel2((Vector(3) << 0.51, -0.48, 0.43));
|
||||
Pose3 actualPose2;
|
||||
LieVector actualVel2;
|
||||
f.predict(Pose1, Vel1, Bias1, actualPose2, actualVel2);
|
||||
|
@ -157,8 +157,8 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorPosVel)
|
|||
|
||||
Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
|
||||
Pose3 Pose2(Rot3(), Point3(2.05, 0.95, 3.04));
|
||||
LieVector Vel1(3, 0.50, -0.50, 0.40);
|
||||
LieVector Vel2(3, 0.51, -0.48, 0.43);
|
||||
LieVector Vel1((Vector(3) << 0.50, -0.50, 0.40));
|
||||
LieVector Vel2((Vector(3) << 0.51, -0.48, 0.43));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
|
||||
|
@ -192,8 +192,8 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorRot)
|
|||
|
||||
Pose3 Pose1(Rot3(), Point3(2.0,1.0,3.0));
|
||||
Pose3 Pose2(Rot3::Expmap(measurement_gyro*measurement_dt), Point3(2.0,1.0,3.0));
|
||||
LieVector Vel1(3,0.0,0.0,0.0);
|
||||
LieVector Vel2(3,0.0,0.0,0.0);
|
||||
LieVector Vel1((Vector(3) << 0.0, 0.0, 0.0));
|
||||
LieVector Vel2((Vector(3) << 0.0, 0.0, 0.0));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
|
||||
|
@ -230,7 +230,7 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorRotPosVel)
|
|||
-0.652537293, 0.709880342, 0.265075427);
|
||||
Point3 t1(2.0,1.0,3.0);
|
||||
Pose3 Pose1(R1, t1);
|
||||
LieVector Vel1(3,0.5,-0.5,0.4);
|
||||
LieVector Vel1((Vector(3) << 0.5, -0.5, 0.4));
|
||||
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
|
||||
0.609241153, 0.67099888, -0.422594037,
|
||||
-0.636011287, 0.731761397, 0.244979388);
|
||||
|
@ -302,13 +302,13 @@ TEST (InertialNavFactor_GlobalVelocity, Jacobian ) {
|
|||
-0.652537293, 0.709880342, 0.265075427);
|
||||
Point3 t1(2.0,1.0,3.0);
|
||||
Pose3 Pose1(R1, t1);
|
||||
LieVector Vel1(3,0.5,-0.5,0.4);
|
||||
LieVector Vel1((Vector(3) << 0.5, -0.5, 0.4));
|
||||
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
|
||||
0.609241153, 0.67099888, -0.422594037,
|
||||
-0.636011287, 0.731761397, 0.244979388);
|
||||
Point3 t2(2.052670960415706, 0.977252139079380, 2.942482135362800);
|
||||
Pose3 Pose2(R2, t2);
|
||||
LieVector Vel2(3,0.510000000000000, -0.480000000000000, 0.430000000000000);
|
||||
LieVector Vel2((Vector(3) << 0.510000000000000, -0.480000000000000, 0.430000000000000));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Matrix H1_actual, H2_actual, H3_actual, H4_actual, H5_actual;
|
||||
|
@ -447,10 +447,10 @@ TEST( InertialNavFactor_GlobalVelocity, PredictWithTransform)
|
|||
InertialNavFactor_GlobalVelocity<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model, body_P_sensor);
|
||||
|
||||
Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
|
||||
LieVector Vel1(3, 0.50, -0.50, 0.40);
|
||||
LieVector Vel1((Vector(3) << 0.50, -0.50, 0.40));
|
||||
imuBias::ConstantBias Bias1;
|
||||
Pose3 expectedPose2(Rot3(), Point3(2.05, 0.95, 3.04));
|
||||
LieVector expectedVel2(3, 0.51, -0.48, 0.43);
|
||||
LieVector expectedVel2((Vector(3) << 0.51, -0.48, 0.43));
|
||||
Pose3 actualPose2;
|
||||
LieVector actualVel2;
|
||||
f.predict(Pose1, Vel1, Bias1, actualPose2, actualVel2);
|
||||
|
@ -488,8 +488,8 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorPosVelWithTransform)
|
|||
|
||||
Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
|
||||
Pose3 Pose2(Rot3(), Point3(2.05, 0.95, 3.04));
|
||||
LieVector Vel1(3, 0.50, -0.50, 0.40);
|
||||
LieVector Vel2(3, 0.51, -0.48, 0.43);
|
||||
LieVector Vel1((Vector(3) << 0.50, -0.50, 0.40));
|
||||
LieVector Vel2((Vector(3) << 0.51, -0.48, 0.43));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
|
||||
|
@ -527,8 +527,8 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorRotWithTransform)
|
|||
|
||||
Pose3 Pose1(Rot3(), Point3(2.0,1.0,3.0));
|
||||
Pose3 Pose2(Rot3::Expmap(body_P_sensor.rotation().matrix()*measurement_gyro*measurement_dt), Point3(2.0, 1.0, 3.0));
|
||||
LieVector Vel1(3,0.0,0.0,0.0);
|
||||
LieVector Vel2(3,0.0,0.0,0.0);
|
||||
LieVector Vel1((Vector(3) << 0.0,0.0,0.0));
|
||||
LieVector Vel2((Vector(3) << 0.0,0.0,0.0));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
|
||||
|
@ -569,7 +569,7 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorRotPosVelWithTransform)
|
|||
-0.652537293, 0.709880342, 0.265075427);
|
||||
Point3 t1(2.0,1.0,3.0);
|
||||
Pose3 Pose1(R1, t1);
|
||||
LieVector Vel1(3,0.5,-0.5,0.4);
|
||||
LieVector Vel1((Vector(3) << 0.5,-0.5,0.4));
|
||||
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
|
||||
0.609241153, 0.67099888, -0.422594037,
|
||||
-0.636011287, 0.731761397, 0.244979388);
|
||||
|
@ -618,13 +618,13 @@ TEST (InertialNavFactor_GlobalVelocity, JacobianWithTransform ) {
|
|||
-0.652537293, 0.709880342, 0.265075427);
|
||||
Point3 t1(2.0,1.0,3.0);
|
||||
Pose3 Pose1(R1, t1);
|
||||
LieVector Vel1(3,0.5,-0.5,0.4);
|
||||
LieVector Vel1((Vector(3) << 0.5,-0.5,0.4));
|
||||
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
|
||||
0.609241153, 0.67099888, -0.422594037,
|
||||
-0.636011287, 0.731761397, 0.244979388);
|
||||
Point3 t2(2.052670960415706, 0.977252139079380, 2.942482135362800);
|
||||
Pose3 Pose2(R2, t2);
|
||||
LieVector Vel2(3,0.510000000000000, -0.480000000000000, 0.430000000000000);
|
||||
LieVector Vel2((Vector(3) << 0.510000000000000, -0.480000000000000, 0.430000000000000));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Matrix H1_actual, H2_actual, H3_actual, H4_actual, H5_actual;
|
||||
|
|
|
@ -38,7 +38,7 @@ TEST( InvDepthFactor, optimize) {
|
|||
Point2 expected_uv = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector inv_landmark(5, 0., 0., 1., 0., 0.);
|
||||
LieVector inv_landmark((Vector(5) << 0., 0., 1., 0., 0.));
|
||||
// initialize inverse depth with "incorrect" depth of 1/4
|
||||
// in reality this is 1/5, but initial depth is guessed
|
||||
LieScalar inv_depth(1./4);
|
||||
|
|
|
@ -45,7 +45,7 @@ TEST( InvDepthFactorVariant1, optimize) {
|
|||
double theta = atan2(ray.y(), ray.x());
|
||||
double phi = atan2(ray.z(), sqrt(ray.x()*ray.x()+ray.y()*ray.y()));
|
||||
double rho = 1./ray.norm();
|
||||
LieVector expected(6, x, y, z, theta, phi, rho);
|
||||
LieVector expected((Vector(6) << x, y, z, theta, phi, rho));
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -43,7 +43,7 @@ TEST( InvDepthFactorVariant2, optimize) {
|
|||
double theta = atan2(ray.y(), ray.x());
|
||||
double phi = atan2(ray.z(), sqrt(ray.x()*ray.x()+ray.y()*ray.y()));
|
||||
double rho = 1./ray.norm();
|
||||
LieVector expected(3, theta, phi, rho);
|
||||
LieVector expected((Vector(3) << theta, phi, rho));
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -43,7 +43,7 @@ TEST( InvDepthFactorVariant3, optimize) {
|
|||
double theta = atan2(landmark_p1.x(), landmark_p1.z());
|
||||
double phi = atan2(landmark_p1.y(), sqrt(landmark_p1.x()*landmark_p1.x()+landmark_p1.z()*landmark_p1.z()));
|
||||
double rho = 1./landmark_p1.norm();
|
||||
LieVector expected(3, theta, phi, rho);
|
||||
LieVector expected((Vector(3) << theta, phi, rho));
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -266,10 +266,10 @@ public:
|
|||
TEST(NonlinearFactor, NoiseModelFactor4) {
|
||||
TestFactor4 tf;
|
||||
Values tv;
|
||||
tv.insert(X(1), LieVector(1, 1.0));
|
||||
tv.insert(X(2), LieVector(1, 2.0));
|
||||
tv.insert(X(3), LieVector(1, 3.0));
|
||||
tv.insert(X(4), LieVector(1, 4.0));
|
||||
tv.insert(X(1), LieVector((Vector(1) << 1.0)));
|
||||
tv.insert(X(2), LieVector((Vector(1) << 2.0)));
|
||||
tv.insert(X(3), LieVector((Vector(1) << 3.0)));
|
||||
tv.insert(X(4), LieVector((Vector(1) << 4.0)));
|
||||
EXPECT(assert_equal((Vector(1) << 10.0), tf.unwhitenedError(tv)));
|
||||
DOUBLES_EQUAL(25.0/2.0, tf.error(tv), 1e-9);
|
||||
JacobianFactor jf(*boost::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
|
||||
|
@ -312,11 +312,11 @@ public:
|
|||
TEST(NonlinearFactor, NoiseModelFactor5) {
|
||||
TestFactor5 tf;
|
||||
Values tv;
|
||||
tv.insert(X(1), LieVector(1, 1.0));
|
||||
tv.insert(X(2), LieVector(1, 2.0));
|
||||
tv.insert(X(3), LieVector(1, 3.0));
|
||||
tv.insert(X(4), LieVector(1, 4.0));
|
||||
tv.insert(X(5), LieVector(1, 5.0));
|
||||
tv.insert(X(1), LieVector((Vector(1) << 1.0)));
|
||||
tv.insert(X(2), LieVector((Vector(1) << 2.0)));
|
||||
tv.insert(X(3), LieVector((Vector(1) << 3.0)));
|
||||
tv.insert(X(4), LieVector((Vector(1) << 4.0)));
|
||||
tv.insert(X(5), LieVector((Vector(1) << 5.0)));
|
||||
EXPECT(assert_equal((Vector(1) << 15.0), tf.unwhitenedError(tv)));
|
||||
DOUBLES_EQUAL(56.25/2.0, tf.error(tv), 1e-9);
|
||||
JacobianFactor jf(*boost::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
|
||||
|
@ -364,12 +364,12 @@ public:
|
|||
TEST(NonlinearFactor, NoiseModelFactor6) {
|
||||
TestFactor6 tf;
|
||||
Values tv;
|
||||
tv.insert(X(1), LieVector(1, 1.0));
|
||||
tv.insert(X(2), LieVector(1, 2.0));
|
||||
tv.insert(X(3), LieVector(1, 3.0));
|
||||
tv.insert(X(4), LieVector(1, 4.0));
|
||||
tv.insert(X(5), LieVector(1, 5.0));
|
||||
tv.insert(X(6), LieVector(1, 6.0));
|
||||
tv.insert(X(1), LieVector((Vector(1) << 1.0)));
|
||||
tv.insert(X(2), LieVector((Vector(1) << 2.0)));
|
||||
tv.insert(X(3), LieVector((Vector(1) << 3.0)));
|
||||
tv.insert(X(4), LieVector((Vector(1) << 4.0)));
|
||||
tv.insert(X(5), LieVector((Vector(1) << 5.0)));
|
||||
tv.insert(X(6), LieVector((Vector(1) << 6.0)));
|
||||
EXPECT(assert_equal((Vector(1) << 21.0), tf.unwhitenedError(tv)));
|
||||
DOUBLES_EQUAL(110.25/2.0, tf.error(tv), 1e-9);
|
||||
JacobianFactor jf(*boost::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
|
||||
|
|
Loading…
Reference in New Issue