Added an optional SensorToBody transformation to the GenericProjectionFactor. This allows the cameras to be rotated and/or translated from the main robot/vehicle frame.

release/4.3a0
Stephen Williams 2012-10-08 10:38:59 +00:00
parent 98b4da1d95
commit 936081a05d
2 changed files with 166 additions and 72 deletions

View File

@ -22,6 +22,7 @@
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/geometry/SimpleCamera.h>
#include <boost/optional.hpp>
namespace gtsam {
@ -37,6 +38,7 @@ namespace gtsam {
// Keep a copy of measurement and calibration for I/O
Point2 measured_; ///< 2D measurement
boost::shared_ptr<CALIBRATION> K_; ///< shared pointer to calibration object
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
public:
@ -63,8 +65,9 @@ namespace gtsam {
* @param K shared pointer to the constant calibration
*/
GenericProjectionFactor(const Point2& measured, const SharedNoiseModel& model,
Key poseKey, Key pointKey, const boost::shared_ptr<CALIBRATION>& K) :
Base(model, poseKey, pointKey), measured_(measured), K_(K) {
Key poseKey, Key pointKey, const boost::shared_ptr<CALIBRATION>& K,
boost::optional<POSE> body_P_sensor = boost::none) :
Base(model, poseKey, pointKey), measured_(measured), K_(K), body_P_sensor_(body_P_sensor) {
}
/** Virtual destructor */
@ -83,22 +86,42 @@ namespace gtsam {
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "GenericProjectionFactor, z = ";
measured_.print();
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
Base::print("", keyFormatter);
}
/// equals
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&p);
return e && Base::equals(p, tol) && this->measured_.equals(e->measured_, tol) && this->K_->equals(*e->K_, tol);
return e
&& Base::equals(p, tol)
&& this->measured_.equals(e->measured_, tol)
&& this->K_->equals(*e->K_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
/// Evaluate error h(x)-z and optionally derivatives
Vector evaluateError(const Pose3& pose, const Point3& point,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 = boost::none) const {
try {
if(body_P_sensor_) {
if(H1) {
gtsam::Matrix H0;
PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_);
Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
*H1 = *H1 * H0;
return reprojectionError.vector();
} else {
PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_);
Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
return reprojectionError.vector();
}
} else {
PinholeCamera<CALIBRATION> camera(pose, *K_);
Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
return reprojectionError.vector();
}
} catch( CheiralityException& e) {
if (H1) *H1 = zeros(2,6);
if (H2) *H2 = zeros(2,3);
@ -127,6 +150,7 @@ namespace gtsam {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(measured_);
ar & BOOST_SERIALIZATION_NVP(K_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
}
};
} // \ namespace gtsam

View File

@ -17,104 +17,174 @@
*/
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/Symbol.h>
#include <gtsam/geometry/Cal3DS2.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Point2.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
// make cube
static Point3
x000(-1, -1, -1), x001(-1, -1, +1), x010(-1, +1, -1), x011(-1, +1, +1),
x100(-1, -1, -1), x101(-1, -1, +1), x110(-1, +1, -1), x111(-1, +1, +1);
// make a realistic calibration matrix
static double fov = 60; // degrees
static size_t w=640,h=480;
static Cal3_S2 K(fov,w,h);
static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
static SharedNoiseModel sigma(noiseModel::Unit::Create(2));
static shared_ptrK sK(new Cal3_S2(K));
// Create a noise model for the pixel error
static SharedNoiseModel model(noiseModel::Unit::Create(2));
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
typedef GenericProjectionFactor<Pose3, Point3> MyProjectionFactor;
typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
/* ************************************************************************* */
TEST( ProjectionFactor, nonStandard )
{
TEST( ProjectionFactor, nonStandard ) {
GenericProjectionFactor<Pose3, Point3, Cal3DS2> f;
}
/* ************************************************************************* */
TEST( ProjectionFactor, error )
{
// Create the factor with a measurement that is 3 pixels off in x
Point2 z(323.,240.);
int i=1, j=1;
boost::shared_ptr<MyProjectionFactor>
factor(new MyProjectionFactor(z, sigma, X(i), L(j), sK));
TEST( ProjectionFactor, Constructor) {
Key poseKey(X(1));
Key pointKey(L(1));
// For the following values structure, the factor predicts 320,240
Values config;
Rot3 R;Point3 t1(0,0,-6); Pose3 x1(R,t1); config.insert(X(1), x1);
Point3 l1; config.insert(L(1), l1);
// Point should project to Point2(320.,240.)
CHECK(assert_equal(Vector_(2, -3.0, 0.0), factor->unwhitenedError(config)));
Point2 measurement(323.0, 240.0);
// Which yields an error of 3^2/2 = 4.5
DOUBLES_EQUAL(4.5,factor->error(config),1e-9);
// Check linearize
Ordering ordering; ordering += X(1),L(1);
Matrix Ax1 = Matrix_(2, 6, 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.);
Matrix Al1 = Matrix_(2, 3, 92.376, 0., 0., 0., 92.376, 0.);
Vector b = Vector_(2,3.,0.);
SharedDiagonal probModel1 = noiseModel::Unit::Create(2);
JacobianFactor expected(ordering[X(1)], Ax1, ordering[L(1)], Al1, b, probModel1);
JacobianFactor::shared_ptr actual =
boost::dynamic_pointer_cast<JacobianFactor>(factor->linearize(config, ordering));
CHECK(assert_equal(expected,*actual,1e-3));
// linearize graph
NonlinearFactorGraph graph;
graph.push_back(factor);
FactorGraph<GaussianFactor> expected_lfg;
expected_lfg.push_back(actual);
boost::shared_ptr<FactorGraph<GaussianFactor> > actual_lfg = graph.linearize(config, ordering);
CHECK(assert_equal(expected_lfg,*actual_lfg));
// expmap on a config
Values expected_config;
Point3 t2(1,1,-5); Pose3 x2(R,t2); expected_config.insert(X(1), x2);
Point3 l2(1,2,3); expected_config.insert(L(1), l2);
VectorValues delta(expected_config.dims(ordering));
delta[ordering[X(1)]] = Vector_(6, 0.,0.,0., 1.,1.,1.);
delta[ordering[L(1)]] = Vector_(3, 1.,2.,3.);
Values actual_config = config.retract(delta, ordering);
CHECK(assert_equal(expected_config,actual_config,1e-9));
TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
}
/* ************************************************************************* */
TEST( ProjectionFactor, equals )
{
TEST( ProjectionFactor, ConstructorWithTransform) {
Key poseKey(X(1));
Key pointKey(L(1));
Point2 measurement(323.0, 240.0);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
}
/* ************************************************************************* */
TEST( ProjectionFactor, Equals ) {
// Create two identical factors and make sure they're equal
Vector z = Vector_(2,323.,240.);
int i=1, j=1;
boost::shared_ptr<MyProjectionFactor>
factor1(new MyProjectionFactor(z, sigma, X(i), L(j), sK));
Point2 measurement(323.0, 240.0);
boost::shared_ptr<MyProjectionFactor>
factor2(new MyProjectionFactor(z, sigma, X(i), L(j), sK));
TestProjectionFactor factor1(measurement, model, X(1), L(1), K);
TestProjectionFactor factor2(measurement, model, X(1), L(1), K);
CHECK(assert_equal(*factor1, *factor2));
CHECK(assert_equal(factor1, factor2));
}
/* ************************************************************************* */
TEST( ProjectionFactor, EqualsWithTransform ) {
// Create two identical factors and make sure they're equal
Point2 measurement(323.0, 240.0);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestProjectionFactor factor1(measurement, model, X(1), L(1), K, body_P_sensor);
TestProjectionFactor factor2(measurement, model, X(1), L(1), K, body_P_sensor);
CHECK(assert_equal(factor1, factor2));
}
/* ************************************************************************* */
TEST( ProjectionFactor, Error ) {
// Create the factor with a measurement that is 3 pixels off in x
Key poseKey(X(1));
Key pointKey(L(1));
Point2 measurement(323.0, 240.0);
TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
// Set the linearization point
Pose3 pose(Rot3(), Point3(0,0,-6));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose, point));
// The expected error is (-3.0, 0.0) pixels / UnitCovariance
Vector expectedError = Vector_(2, -3.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
/* ************************************************************************* */
TEST( ProjectionFactor, ErrorWithTransform ) {
// Create the factor with a measurement that is 3 pixels off in x
Key poseKey(X(1));
Key pointKey(L(1));
Point2 measurement(323.0, 240.0);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
// Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose, point));
// The expected error is (-3.0, 0.0) pixels / UnitCovariance
Vector expectedError = Vector_(2, -3.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
/* ************************************************************************* */
TEST( ProjectionFactor, Jacobian ) {
// Create the factor with a measurement that is 3 pixels off in x
Key poseKey(X(1));
Key pointKey(L(1));
Point2 measurement(323.0, 240.0);
TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
// Set the linearization point
Pose3 pose(Rot3(), Point3(0,0,-6));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual;
factor.evaluateError(pose, point, H1Actual, H2Actual);
// The expected Jacobians
Matrix H1Expected = Matrix_(2, 6, 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.);
Matrix H2Expected = Matrix_(2, 3, 92.376, 0., 0., 0., 92.376, 0.);
// Verify the Jacobians are correct
CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
}
/* ************************************************************************* */
TEST( ProjectionFactor, JacobianWithTransform ) {
// Create the factor with a measurement that is 3 pixels off in x
Key poseKey(X(1));
Key pointKey(L(1));
Point2 measurement(323.0, 240.0);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
// Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual;
factor.evaluateError(pose, point, H1Actual, H2Actual);
// The expected Jacobians
Matrix H1Expected = Matrix_(2, 6, -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376);
Matrix H2Expected = Matrix_(2, 3, 0., -92.376, 0., 0., 0., -92.376);
// Verify the Jacobians are correct
CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
}
/* ************************************************************************* */