Weighted pseudo-inverse now takes weights (1/sigma^2). Does not make a lot of performance difference.
parent
fce2a668bb
commit
91a0fb23df
|
|
@ -328,7 +328,7 @@ weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas) {
|
|||
Vector pseudo(m); // allocate storage for pseudo-inverse
|
||||
|
||||
// TODO: calculate weights once
|
||||
// Vector weights =
|
||||
Vector weights = reciprocal(emul(sigmas,sigmas));
|
||||
|
||||
// We loop over all columns, because the columns that can be eliminated
|
||||
// are not necessarily contiguous. For each one, estimate the corresponding
|
||||
|
|
@ -341,9 +341,7 @@ weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas) {
|
|||
Vector a(column(A, j));
|
||||
|
||||
// Calculate weighted pseudo-inverse and corresponding precision
|
||||
// TODO: pass in weights which are calculated once
|
||||
// TODO return variance
|
||||
double precision = weightedPseudoinverse(a, sigmas, pseudo);
|
||||
double precision = weightedPseudoinverse(a, weights, pseudo);
|
||||
|
||||
// if precision is zero, no information on this column
|
||||
if (precision < 1e-8) continue;
|
||||
|
|
@ -357,6 +355,7 @@ weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas) {
|
|||
double d = inner_prod(pseudo, b);
|
||||
|
||||
// construct solution (r, d, sigma)
|
||||
// TODO: avoid sqrt, store precision or at least variance
|
||||
results.push_back(boost::make_tuple(r, d, 1./sqrt(precision)));
|
||||
|
||||
// exit after rank exhausted
|
||||
|
|
|
|||
|
|
@ -195,6 +195,15 @@ namespace gtsam {
|
|||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector reciprocal(const Vector &a) {
|
||||
size_t n = a.size();
|
||||
Vector b(n);
|
||||
for( size_t i = 0; i < n; i++ )
|
||||
b(i) = 1.0/a(i);
|
||||
return b;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double max(const Vector &a) {
|
||||
return *(std::max_element(a.begin(), a.end()));
|
||||
|
|
@ -227,53 +236,57 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Fast version *no error checking* !
|
||||
// Pass in initialized vector of size m or will crash !
|
||||
double weightedPseudoinverse(const Vector& a, const Vector& sigmas, Vector& pseudo) {
|
||||
size_t m = sigmas.size();
|
||||
// Fast version *no error checking* !
|
||||
// Pass in initialized vector of size m or will crash !
|
||||
double weightedPseudoinverse(const Vector& a, const Vector& weights,
|
||||
Vector& pseudo) {
|
||||
|
||||
// If there is a valid (a!=0) constraint (sigma==0) return the first one
|
||||
for(int i=0; i<m; ++i)
|
||||
if (sigmas[i] < 1e-9 && fabs(a[i]) > 1e-9) {
|
||||
pseudo=delta(m,i,1/a[i]);
|
||||
return std::numeric_limits<double>::infinity();
|
||||
}
|
||||
size_t m = weights.size();
|
||||
static const double inf = std::numeric_limits<double>::infinity();
|
||||
|
||||
// Form psuedo-inverse inv(a'inv(Sigma)a)a'inv(Sigma)
|
||||
// For diagonal Sigma, inv(Sigma) = diag(precisions)
|
||||
double precision = 0;
|
||||
// pseudo will be used to store both precisions (an intermediate) and result
|
||||
Vector& precisions = pseudo;
|
||||
for(int i = 0; i<m; i++) {
|
||||
double ai=a[i];
|
||||
if (fabs(ai) < 1e-9) // also catches remaining sigma==0 rows
|
||||
precisions[i] = 0.;
|
||||
else {
|
||||
double si=sigmas[i],pi = 1./(si*si);
|
||||
precision += ai*ai*pi;
|
||||
precisions[i] = pi;
|
||||
}
|
||||
}
|
||||
// precision = a'inv(Sigma)a
|
||||
if (precision<1e-9)
|
||||
for(int i = 0; i<m; i++) pseudo[i]=0;
|
||||
else {
|
||||
// emul(precisions,a)/precision
|
||||
double f = 1.0/precision;
|
||||
for(int i = 0; i<m; i++)
|
||||
pseudo[i]=f*precisions[i]*a[i];
|
||||
}
|
||||
return precision;
|
||||
}
|
||||
// If there is a valid (a!=0) constraint (sigma==0) return the first one
|
||||
for (int i = 0; i < m; ++i)
|
||||
if (weights[i] == inf && fabs(a[i]) > 1e-9) {
|
||||
pseudo = delta(m, i, 1 / a[i]);
|
||||
return inf;
|
||||
}
|
||||
|
||||
// Form psuedo-inverse inv(a'inv(Sigma)a)a'inv(Sigma)
|
||||
// For diagonal Sigma, inv(Sigma) = diag(precisions)
|
||||
double precision = 0;
|
||||
for (int i = 0; i < m; i++) {
|
||||
double ai = a[i];
|
||||
if (fabs(ai) > 1e-9) // also catches remaining sigma==0 rows
|
||||
precision += weights[i] * (ai * ai);
|
||||
}
|
||||
|
||||
// precision = a'inv(Sigma)a
|
||||
if (precision < 1e-9)
|
||||
for (int i = 0; i < m; i++)
|
||||
pseudo[i] = 0;
|
||||
else {
|
||||
// emul(precisions,a)/precision
|
||||
double variance = 1.0 / precision;
|
||||
for (int i = 0; i < m; i++) {
|
||||
double ai = a[i];
|
||||
if (fabs(ai) < 1e-9) // also catches remaining sigma==0 rows
|
||||
pseudo[i] = 0;
|
||||
else
|
||||
pseudo[i] = variance * weights[i] * ai;
|
||||
}
|
||||
}
|
||||
return precision; // sum of weights
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Slow version with error checking
|
||||
pair<Vector, double> weightedPseudoinverse(const Vector& a, const Vector& sigmas) {
|
||||
size_t m = sigmas.size();
|
||||
pair<Vector, double>
|
||||
weightedPseudoinverse(const Vector& a, const Vector& weights) {
|
||||
size_t m = weights.size();
|
||||
if (a.size() != m)
|
||||
throw invalid_argument("V and precisions have different sizes!");
|
||||
throw invalid_argument("a and weights have different sizes!");
|
||||
Vector pseudo(m);
|
||||
double precision = weightedPseudoinverse(a, sigmas, pseudo);
|
||||
double precision = weightedPseudoinverse(a, weights, pseudo);
|
||||
return make_pair(pseudo, precision);
|
||||
}
|
||||
|
||||
|
|
@ -325,6 +338,4 @@ namespace gtsam {
|
|||
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
20
cpp/Vector.h
20
cpp/Vector.h
|
|
@ -170,6 +170,13 @@ Vector ediv_(const Vector &a, const Vector &b);
|
|||
*/
|
||||
double sum(const Vector &a);
|
||||
|
||||
/**
|
||||
* elementwise reciprocal of vector elements
|
||||
* @param a vector
|
||||
* @return [1/a(i)]
|
||||
*/
|
||||
Vector reciprocal(const Vector &a);
|
||||
|
||||
/**
|
||||
* return the max element of a vector
|
||||
* @param a vector
|
||||
|
|
@ -192,19 +199,20 @@ std::pair<double,Vector> house(Vector &x);
|
|||
* a.k.a., the pseudoinverse of the column
|
||||
* NOTE: if any sigmas are zero (indicating a constraint)
|
||||
* the pseudoinverse will be a selection vector, and the
|
||||
* precision will be infinite
|
||||
* variance will be zero
|
||||
* @param v is the first column of the matrix to solve
|
||||
* @param simgas is a vector of standard deviations
|
||||
* @return a pair of the pseudoinverse of v and the precision
|
||||
* @param weights is a vector of weights/precisions where w=1/(s*s)
|
||||
* @return a pair of the pseudoinverse of v and the associated precision/weight
|
||||
*/
|
||||
std::pair<Vector, double> weightedPseudoinverse(const Vector& v, const Vector& sigmas);
|
||||
std::pair<Vector, double>
|
||||
weightedPseudoinverse(const Vector& v, const Vector& weights);
|
||||
|
||||
/*
|
||||
* Fast version *no error checking* !
|
||||
* Pass in initialized vector pseudo of size(sigma) or will crash !
|
||||
* Pass in initialized vector pseudo of size(weights) or will crash !
|
||||
* @return the precision, pseudoinverse in third argument
|
||||
*/
|
||||
double weightedPseudoinverse(const Vector& a, const Vector& sigmas, Vector& pseudo);
|
||||
double weightedPseudoinverse(const Vector& a, const Vector& weights, Vector& pseudo);
|
||||
|
||||
/**
|
||||
* concatenate Vectors
|
||||
|
|
|
|||
|
|
@ -141,18 +141,19 @@ TEST( TestVector, weightedPseudoinverse )
|
|||
// create sigmas
|
||||
Vector sigmas(2);
|
||||
sigmas(0) = 0.1; sigmas(1) = 0.2;
|
||||
Vector weights = reciprocal(emul(sigmas,sigmas));
|
||||
|
||||
// perform solve
|
||||
Vector act; double precision;
|
||||
boost::tie(act, precision) = weightedPseudoinverse(x, sigmas);
|
||||
Vector actual; double precision;
|
||||
boost::tie(actual, precision) = weightedPseudoinverse(x, weights);
|
||||
|
||||
// construct expected
|
||||
Vector exp(2);
|
||||
exp(0) = 0.5; exp(1) = 0.25;
|
||||
Vector expected(2);
|
||||
expected(0) = 0.5; expected(1) = 0.25;
|
||||
double expPrecision = 200.0;
|
||||
|
||||
// verify
|
||||
CHECK(assert_equal(act, exp));
|
||||
CHECK(assert_equal(expected,actual));
|
||||
CHECK(fabs(expPrecision-precision) < 1e-5);
|
||||
}
|
||||
|
||||
|
|
@ -166,17 +167,18 @@ TEST( TestVector, weightedPseudoinverse_constraint )
|
|||
// create sigmas
|
||||
Vector sigmas(2);
|
||||
sigmas(0) = 0.0; sigmas(1) = 0.2;
|
||||
Vector weights = reciprocal(emul(sigmas,sigmas));
|
||||
|
||||
// perform solve
|
||||
Vector act; double precision;
|
||||
boost::tie(act, precision) = weightedPseudoinverse(x, sigmas);
|
||||
Vector actual; double precision;
|
||||
boost::tie(actual, precision) = weightedPseudoinverse(x, weights);
|
||||
|
||||
// construct expected
|
||||
Vector exp(2);
|
||||
exp(0) = 1.0; exp(1) = 0.0;
|
||||
Vector expected(2);
|
||||
expected(0) = 1.0; expected(1) = 0.0;
|
||||
|
||||
// verify
|
||||
CHECK(assert_equal(act, exp));
|
||||
CHECK(assert_equal(expected,actual));
|
||||
CHECK(isinf(precision));
|
||||
}
|
||||
|
||||
|
|
@ -185,11 +187,12 @@ TEST( TestVector, weightedPseudoinverse_nan )
|
|||
{
|
||||
Vector a = Vector_(4, 1., 0., 0., 0.);
|
||||
Vector sigmas = Vector_(4, 0.1, 0.1, 0., 0.);
|
||||
Vector weights = reciprocal(emul(sigmas,sigmas));
|
||||
Vector pseudo; double precision;
|
||||
boost::tie(pseudo, precision) = weightedPseudoinverse(a, sigmas);
|
||||
boost::tie(pseudo, precision) = weightedPseudoinverse(a, weights);
|
||||
|
||||
Vector exp = Vector_(4, 1., 0., 0.,0.);
|
||||
CHECK(assert_equal(pseudo, exp));
|
||||
Vector expected = Vector_(4, 1., 0., 0.,0.);
|
||||
CHECK(assert_equal(expected, pseudo));
|
||||
DOUBLES_EQUAL(100, precision, 1e-5);
|
||||
}
|
||||
|
||||
|
|
@ -223,6 +226,13 @@ TEST( TestVector, greater_than )
|
|||
CHECK(greaterThanOrEqual(v1, v2)); // test equals
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( TestVector, reciprocal )
|
||||
{
|
||||
Vector v = Vector_(3, 1.0, 2.0, 4.0);
|
||||
CHECK(assert_equal(Vector_(3, 1.0, 0.5, 0.25),reciprocal(v)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -51,8 +51,9 @@ TEST(timeGaussianFactorGraph, linearTime)
|
|||
/* ************************************************************************* */
|
||||
TEST(timeGaussianFactorGraph, planar)
|
||||
{
|
||||
// 1741: 8.12, 8.12, 8.12, 8.16, 8.14
|
||||
// 1742: 5.99, 5.97, 5.97, 6.02, 5.97
|
||||
// 1741: 8.12, 8.12, 8.12, 8.14, 8.16
|
||||
// 1742: 5.97, 5.97, 5.97, 5.99, 6.02
|
||||
// 1746: 5.96, 5.96, 5.97, 6.00, 6.04
|
||||
int N = 30;
|
||||
double time = timePlanarSmoother(N); cout << time << endl;
|
||||
DOUBLES_EQUAL(5.97,time,0.1);
|
||||
|
|
|
|||
Loading…
Reference in New Issue