git subrepo commit third_party_modules/gtsam_module/gtsam
subrepo: subdir: "third_party_modules/gtsam_module/gtsam" merged: "abb912d" upstream: origin: "ssh://gerrit.skyd.io:29418/gtsam_upstream" branch: "pull_on_6_14" commit: "1ae7204" git-subrepo: version: "0.3.0" origin: "https://github.com/ingydotnet/git-subrepo" commit: "9a0f034"release/4.3a0
						commit
						9152b656cf
					
				| 
						 | 
				
			
			@ -1,4 +1,5 @@
 | 
			
		|||
/build*
 | 
			
		||||
.idea
 | 
			
		||||
*.pyc
 | 
			
		||||
*.DS_Store
 | 
			
		||||
/examples/Data/dubrovnik-3-7-pre-rewritten.txt
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -68,6 +68,12 @@ protected:
 | 
			
		|||
    testGroup##testName##Instance; \
 | 
			
		||||
  void testGroup##testName##Test::run (TestResult& result_) 
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Declare friend in a class to test its private methods
 | 
			
		||||
 */
 | 
			
		||||
#define FRIEND_TEST(testGroup, testName) \
 | 
			
		||||
    friend class testGroup##testName##Test;
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * For debugging only: use TEST_UNSAFE to allow debuggers to have access to exceptions, as this
 | 
			
		||||
 * will not wrap execution with a try/catch block
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -18,8 +18,6 @@
 | 
			
		|||
// 
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifndef TESTRESULT_H
 | 
			
		||||
#define TESTRESULT_H
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,21 @@
 | 
			
		|||
NAME          QP example
 | 
			
		||||
ROWS
 | 
			
		||||
    N  obj
 | 
			
		||||
    G  r1
 | 
			
		||||
    L  r2
 | 
			
		||||
COLUMNS
 | 
			
		||||
    c1        r1                 2.0   r2                -1.0
 | 
			
		||||
    c1        obj                1.5
 | 
			
		||||
    c2        r1                 1.0   r2                 2.0
 | 
			
		||||
    c2        obj               -2.0
 | 
			
		||||
RHS
 | 
			
		||||
    rhs1      obj               -4.0
 | 
			
		||||
    rhs1      r1                 2.0   r2                 6.0
 | 
			
		||||
RANGES
 | 
			
		||||
BOUNDS
 | 
			
		||||
    UP BOUNDS      c1                20.0
 | 
			
		||||
QUADOBJ
 | 
			
		||||
    c1        c1                 8.0
 | 
			
		||||
    c1        c2                 2.0
 | 
			
		||||
    c2        c2                10.0
 | 
			
		||||
ENDATA
 | 
			
		||||
| 
						 | 
				
			
			@ -354,3 +354,5 @@ namespace gtsam {
 | 
			
		|||
  }; // FactorGraph
 | 
			
		||||
 | 
			
		||||
} // namespace gtsam
 | 
			
		||||
 | 
			
		||||
#include <gtsam/inference/FactorGraph-inst.h>
 | 
			
		||||
| 
						 | 
				
			
			@ -142,7 +142,7 @@ boost::tuple<V, int> nonlinearConjugateGradient(const S &system,
 | 
			
		|||
 | 
			
		||||
  // GTSAM_CONCEPT_MANIFOLD_TYPE(V);
 | 
			
		||||
 | 
			
		||||
  int iteration = 0;
 | 
			
		||||
  size_t iteration = 0;
 | 
			
		||||
 | 
			
		||||
  // check if we're already close enough
 | 
			
		||||
  double currentError = system.error(initial);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -131,7 +131,8 @@ public:
 | 
			
		|||
  }
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Creates a shared_ptr clone of the factor with different keys using
 | 
			
		||||
   * Creates a shared_ptr clone of the
 | 
			
		||||
   * factor with different keys using
 | 
			
		||||
   * a map from old->new keys
 | 
			
		||||
   */
 | 
			
		||||
  shared_ptr rekey(const std::map<Key,Key>& rekey_mapping) const;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -38,7 +38,7 @@ public:
 | 
			
		|||
    SILENT, TERMINATION, ERROR, VALUES, DELTA, LINEAR
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  int maxIterations; ///< The maximum iterations to stop iterating (default 100)
 | 
			
		||||
  size_t maxIterations; ///< The maximum iterations to stop iterating (default 100)
 | 
			
		||||
  double relativeErrorTol; ///< The maximum relative error decrease to stop iterating (default 1e-5)
 | 
			
		||||
  double absoluteErrorTol; ///< The maximum absolute error decrease to stop iterating (default 1e-5)
 | 
			
		||||
  double errorTol; ///< The maximum total error to stop iterating (default 0.0)
 | 
			
		||||
| 
						 | 
				
			
			@ -54,7 +54,7 @@ public:
 | 
			
		|||
  }
 | 
			
		||||
  virtual void print(const std::string& str = "") const;
 | 
			
		||||
 | 
			
		||||
  int getMaxIterations() const {
 | 
			
		||||
  size_t getMaxIterations() const {
 | 
			
		||||
    return maxIterations;
 | 
			
		||||
  }
 | 
			
		||||
  double getRelativeErrorTol() const {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,290 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     ActiveSetSolver-inl.h
 | 
			
		||||
 * @brief    Implmentation of ActiveSetSolver.
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @author   Duy Nguyen Ta
 | 
			
		||||
 * @date     2/11/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
// Convenient macros to reduce syntactic noise. undef later.
 | 
			
		||||
#define Template template <class PROBLEM, class POLICY, class INITSOLVER>
 | 
			
		||||
#define This ActiveSetSolver<PROBLEM, POLICY, INITSOLVER>
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
 | 
			
		||||
 * If some inactive inequality constraints complain about the full step (alpha = 1),
 | 
			
		||||
 * we have to adjust alpha to stay within the inequality constraints' feasible regions.
 | 
			
		||||
 *
 | 
			
		||||
 * For each inactive inequality j:
 | 
			
		||||
 *  - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
 | 
			
		||||
 *  - We want: aj'*(xk + alpha*p) - bj <= 0
 | 
			
		||||
 *  - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
 | 
			
		||||
 *  it's good!
 | 
			
		||||
 *  - We only care when aj'*p > 0. In this case, we need to choose alpha so that
 | 
			
		||||
 *  aj'*xk + alpha*aj'*p - bj <= 0  --> alpha <= (bj - aj'*xk) / (aj'*p)
 | 
			
		||||
 *  We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
 | 
			
		||||
 *
 | 
			
		||||
 * We want the minimum of all those alphas among all inactive inequality.
 | 
			
		||||
 */
 | 
			
		||||
Template boost::tuple<double, int> This::computeStepSize(
 | 
			
		||||
    const InequalityFactorGraph& workingSet, const VectorValues& xk,
 | 
			
		||||
    const VectorValues& p, const double& maxAlpha) const {
 | 
			
		||||
  double minAlpha = maxAlpha;
 | 
			
		||||
  int closestFactorIx = -1;
 | 
			
		||||
  for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
 | 
			
		||||
    const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
 | 
			
		||||
    double b = factor->getb()[0];
 | 
			
		||||
    // only check inactive factors
 | 
			
		||||
    if (!factor->active()) {
 | 
			
		||||
      // Compute a'*p
 | 
			
		||||
      double aTp = factor->dotProductRow(p);
 | 
			
		||||
 | 
			
		||||
      // Check if  a'*p >0. Don't care if it's not.
 | 
			
		||||
      if (aTp <= 0)
 | 
			
		||||
        continue;
 | 
			
		||||
 | 
			
		||||
      // Compute a'*xk
 | 
			
		||||
      double aTx = factor->dotProductRow(xk);
 | 
			
		||||
 | 
			
		||||
      // alpha = (b - a'*xk) / (a'*p)
 | 
			
		||||
      double alpha = (b - aTx) / aTp;
 | 
			
		||||
      // We want the minimum of all those max alphas
 | 
			
		||||
      if (alpha < minAlpha) {
 | 
			
		||||
        closestFactorIx = factorIx;
 | 
			
		||||
        minAlpha = alpha;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return boost::make_tuple(minAlpha, closestFactorIx);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
/*
 | 
			
		||||
 * The goal of this function is to find currently active inequality constraints
 | 
			
		||||
 * that violate the condition to be active. The one that violates the condition
 | 
			
		||||
 * the most will be removed from the active set. See Nocedal06book, pg 469-471
 | 
			
		||||
 *
 | 
			
		||||
 * Find the BAD active inequality that pulls x strongest to the wrong direction
 | 
			
		||||
 * of its constraint (i.e. it is pulling towards >0, while its feasible region is <=0)
 | 
			
		||||
 *
 | 
			
		||||
 * For active inequality constraints (those that are enforced as equality constraints
 | 
			
		||||
 * in the current working set), we want lambda < 0.
 | 
			
		||||
 * This is because:
 | 
			
		||||
 *   - From the Lagrangian L = f - lambda*c, we know that the constraint force
 | 
			
		||||
 *     is (lambda * \grad c) = \grad f. Intuitively, to keep the solution x stay
 | 
			
		||||
 *     on the constraint surface, the constraint force has to balance out with
 | 
			
		||||
 *     other unconstrained forces that are pulling x towards the unconstrained
 | 
			
		||||
 *     minimum point. The other unconstrained forces are pulling x toward (-\grad f),
 | 
			
		||||
 *     hence the constraint force has to be exactly \grad f, so that the total
 | 
			
		||||
 *     force is 0.
 | 
			
		||||
 *   - We also know that  at the constraint surface c(x)=0, \grad c points towards + (>= 0),
 | 
			
		||||
 *     while we are solving for - (<=0) constraint.
 | 
			
		||||
 *   - We want the constraint force (lambda * \grad c) to pull x towards the - (<=0) direction
 | 
			
		||||
 *     i.e., the opposite direction of \grad c where the inequality constraint <=0 is satisfied.
 | 
			
		||||
 *     That means we want lambda < 0.
 | 
			
		||||
 *   - This is because when the constrained force pulls x towards the infeasible region (+),
 | 
			
		||||
 *     the unconstrained force is pulling x towards the opposite direction into
 | 
			
		||||
 *     the feasible region (again because the total force has to be 0 to make x stay still)
 | 
			
		||||
 *     So we can drop this constraint to have a lower error but feasible solution.
 | 
			
		||||
 *
 | 
			
		||||
 * In short, active inequality constraints with lambda > 0 are BAD, because they
 | 
			
		||||
 * violate the condition to be active.
 | 
			
		||||
 *
 | 
			
		||||
 * And we want to remove the worst one with the largest lambda from the active set.
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
Template int This::identifyLeavingConstraint(
 | 
			
		||||
    const InequalityFactorGraph& workingSet,
 | 
			
		||||
    const VectorValues& lambdas) const {
 | 
			
		||||
  int worstFactorIx = -1;
 | 
			
		||||
  // preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
 | 
			
		||||
  // inactive or a good inequality constraint, so we don't care!
 | 
			
		||||
  double maxLambda = 0.0;
 | 
			
		||||
  for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
 | 
			
		||||
    const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
 | 
			
		||||
    if (factor->active()) {
 | 
			
		||||
      double lambda = lambdas.at(factor->dualKey())[0];
 | 
			
		||||
      if (lambda > maxLambda) {
 | 
			
		||||
        worstFactorIx = factorIx;
 | 
			
		||||
        maxLambda = lambda;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return worstFactorIx;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
Template JacobianFactor::shared_ptr This::createDualFactor(
 | 
			
		||||
    Key key, const InequalityFactorGraph& workingSet,
 | 
			
		||||
    const VectorValues& delta) const {
 | 
			
		||||
  // Transpose the A matrix of constrained factors to have the jacobian of the
 | 
			
		||||
  // dual key
 | 
			
		||||
  TermsContainer Aterms = collectDualJacobians<LinearEquality>(
 | 
			
		||||
      key, problem_.equalities, equalityVariableIndex_);
 | 
			
		||||
  TermsContainer AtermsInequalities = collectDualJacobians<LinearInequality>(
 | 
			
		||||
      key, workingSet, inequalityVariableIndex_);
 | 
			
		||||
  Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
 | 
			
		||||
                AtermsInequalities.end());
 | 
			
		||||
 | 
			
		||||
  // Collect the gradients of unconstrained cost factors to the b vector
 | 
			
		||||
  if (Aterms.size() > 0) {
 | 
			
		||||
    Vector b = problem_.costGradient(key, delta);
 | 
			
		||||
    // to compute the least-square approximation of dual variables
 | 
			
		||||
    return boost::make_shared<JacobianFactor>(Aterms, b);
 | 
			
		||||
  } else {
 | 
			
		||||
    return boost::make_shared<JacobianFactor>();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
/*  This function will create a dual graph that solves for the
 | 
			
		||||
 *  lagrange multipliers for the current working set.
 | 
			
		||||
 *  You can use lagrange multipliers as a necessary condition for optimality.
 | 
			
		||||
 *  The factor graph that is being solved is f' = -lambda * g'
 | 
			
		||||
 *  where f is the optimized function and g is the function resulting from
 | 
			
		||||
 *  aggregating the working set.
 | 
			
		||||
 *  The lambdas give you information about the feasibility of a constraint.
 | 
			
		||||
 *  if lambda < 0  the constraint is Ok
 | 
			
		||||
 *  if lambda = 0  you are on the constraint
 | 
			
		||||
 *  if lambda > 0  you are violating the constraint.
 | 
			
		||||
 */
 | 
			
		||||
Template GaussianFactorGraph::shared_ptr This::buildDualGraph(
 | 
			
		||||
    const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
 | 
			
		||||
  GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
 | 
			
		||||
  for (Key key : constrainedKeys_) {
 | 
			
		||||
    // Each constrained key becomes a factor in the dual graph
 | 
			
		||||
    JacobianFactor::shared_ptr dualFactor =
 | 
			
		||||
        createDualFactor(key, workingSet, delta);
 | 
			
		||||
    if (!dualFactor->empty()) dualGraph->push_back(dualFactor);
 | 
			
		||||
  }
 | 
			
		||||
  return dualGraph;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
Template GaussianFactorGraph
 | 
			
		||||
This::buildWorkingGraph(const InequalityFactorGraph& workingSet,
 | 
			
		||||
                        const VectorValues& xk) const {
 | 
			
		||||
  GaussianFactorGraph workingGraph;
 | 
			
		||||
  workingGraph.push_back(POLICY::buildCostFunction(problem_, xk));
 | 
			
		||||
  workingGraph.push_back(problem_.equalities);
 | 
			
		||||
  for (const LinearInequality::shared_ptr& factor : workingSet)
 | 
			
		||||
    if (factor->active()) workingGraph.push_back(factor);
 | 
			
		||||
  return workingGraph;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
Template typename This::State This::iterate(
 | 
			
		||||
    const typename This::State& state) const {
 | 
			
		||||
  // Algorithm 16.3 from Nocedal06book.
 | 
			
		||||
  // Solve with the current working set eqn 16.39, but instead of solving for p
 | 
			
		||||
  // solve for x
 | 
			
		||||
  GaussianFactorGraph workingGraph =
 | 
			
		||||
      buildWorkingGraph(state.workingSet, state.values);
 | 
			
		||||
  VectorValues newValues = workingGraph.optimize();
 | 
			
		||||
  // If we CAN'T move further
 | 
			
		||||
  // if p_k = 0 is the original condition, modified by Duy to say that the state
 | 
			
		||||
  // update is zero.
 | 
			
		||||
  if (newValues.equals(state.values, 1e-7)) {
 | 
			
		||||
    // Compute lambda from the dual graph
 | 
			
		||||
    GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
 | 
			
		||||
        newValues);
 | 
			
		||||
    VectorValues duals = dualGraph->optimize();
 | 
			
		||||
    int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
 | 
			
		||||
    // If all inequality constraints are satisfied: We have the solution!!
 | 
			
		||||
    if (leavingFactor < 0) {
 | 
			
		||||
      return State(newValues, duals, state.workingSet, true,
 | 
			
		||||
          state.iterations + 1);
 | 
			
		||||
    } else {
 | 
			
		||||
      // Inactivate the leaving constraint
 | 
			
		||||
      InequalityFactorGraph newWorkingSet = state.workingSet;
 | 
			
		||||
      newWorkingSet.at(leavingFactor)->inactivate();
 | 
			
		||||
      return State(newValues, duals, newWorkingSet, false,
 | 
			
		||||
          state.iterations + 1);
 | 
			
		||||
    }
 | 
			
		||||
  } else {
 | 
			
		||||
    // If we CAN make some progress, i.e. p_k != 0
 | 
			
		||||
    // Adapt stepsize if some inactive constraints complain about this move
 | 
			
		||||
    double alpha;
 | 
			
		||||
    int factorIx;
 | 
			
		||||
    VectorValues p = newValues - state.values;
 | 
			
		||||
    boost::tie(alpha, factorIx) = // using 16.41
 | 
			
		||||
        computeStepSize(state.workingSet, state.values, p, POLICY::maxAlpha);
 | 
			
		||||
    // also add to the working set the one that complains the most
 | 
			
		||||
    InequalityFactorGraph newWorkingSet = state.workingSet;
 | 
			
		||||
    if (factorIx >= 0)
 | 
			
		||||
      newWorkingSet.at(factorIx)->activate();
 | 
			
		||||
    // step!
 | 
			
		||||
    newValues = state.values + alpha * p;
 | 
			
		||||
    return State(newValues, state.duals, newWorkingSet, false,
 | 
			
		||||
        state.iterations + 1);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
Template InequalityFactorGraph This::identifyActiveConstraints(
 | 
			
		||||
    const InequalityFactorGraph& inequalities,
 | 
			
		||||
    const VectorValues& initialValues, const VectorValues& duals,
 | 
			
		||||
    bool useWarmStart) const {
 | 
			
		||||
  InequalityFactorGraph workingSet;
 | 
			
		||||
  for (const LinearInequality::shared_ptr& factor : inequalities) {
 | 
			
		||||
    LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
 | 
			
		||||
    if (useWarmStart && duals.size() > 0) {
 | 
			
		||||
      if (duals.exists(workingFactor->dualKey())) workingFactor->activate();
 | 
			
		||||
      else workingFactor->inactivate();
 | 
			
		||||
    } else {
 | 
			
		||||
      double error = workingFactor->error(initialValues);
 | 
			
		||||
      // Safety guard. This should not happen unless users provide a bad init
 | 
			
		||||
      if (error > 0) throw InfeasibleInitialValues();
 | 
			
		||||
      if (fabs(error) < 1e-7)
 | 
			
		||||
        workingFactor->activate();
 | 
			
		||||
      else
 | 
			
		||||
        workingFactor->inactivate();
 | 
			
		||||
    }
 | 
			
		||||
    workingSet.push_back(workingFactor);
 | 
			
		||||
  }
 | 
			
		||||
  return workingSet;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
Template std::pair<VectorValues, VectorValues> This::optimize(
 | 
			
		||||
    const VectorValues& initialValues, const VectorValues& duals,
 | 
			
		||||
    bool useWarmStart) const {
 | 
			
		||||
  // Initialize workingSet from the feasible initialValues
 | 
			
		||||
  InequalityFactorGraph workingSet = identifyActiveConstraints(
 | 
			
		||||
      problem_.inequalities, initialValues, duals, useWarmStart);
 | 
			
		||||
  State state(initialValues, duals, workingSet, false, 0);
 | 
			
		||||
 | 
			
		||||
  /// main loop of the solver
 | 
			
		||||
  while (!state.converged) state = iterate(state);
 | 
			
		||||
 | 
			
		||||
  return std::make_pair(state.values, state.duals);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
Template std::pair<VectorValues, VectorValues> This::optimize() const {
 | 
			
		||||
  INITSOLVER initSolver(problem_);
 | 
			
		||||
  VectorValues initValues = initSolver.solve();
 | 
			
		||||
  return optimize(initValues);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#undef Template
 | 
			
		||||
#undef This
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,204 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     ActiveSetSolver.h
 | 
			
		||||
 * @brief    Active set method for solving LP, QP problems
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @author   Duy Nguyen Ta
 | 
			
		||||
 * @date     1/25/16
 | 
			
		||||
 */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/InequalityFactorGraph.h>
 | 
			
		||||
#include <boost/range/adaptor/map.hpp>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * This class implements the active set algorithm for solving convex
 | 
			
		||||
 * Programming problems.
 | 
			
		||||
 *
 | 
			
		||||
 * @tparam PROBLEM Type of the problem to solve, e.g. LP (linear program) or 
 | 
			
		||||
 *                 QP (quadratic program).
 | 
			
		||||
 * @tparam POLICY specific detail policy tailored for the particular program
 | 
			
		||||
 * @tparam INITSOLVER Solver for an initial feasible solution of this problem.
 | 
			
		||||
 */
 | 
			
		||||
template <class PROBLEM, class POLICY, class INITSOLVER>
 | 
			
		||||
class ActiveSetSolver {
 | 
			
		||||
public:
 | 
			
		||||
  /// This struct contains the state information for a single iteration
 | 
			
		||||
  struct State {
 | 
			
		||||
    VectorValues values;  //!< current best values at each step
 | 
			
		||||
    VectorValues duals;   //!< current values of dual variables at each step
 | 
			
		||||
    InequalityFactorGraph workingSet; /*!< keep track of current active/inactive
 | 
			
		||||
                                           inequality constraints */
 | 
			
		||||
    bool converged;     //!< True if the algorithm has converged to a solution
 | 
			
		||||
    size_t iterations;  /*!< Number of iterations. Incremented at the end of
 | 
			
		||||
                        each iteration. */
 | 
			
		||||
 | 
			
		||||
    /// Default constructor
 | 
			
		||||
    State()
 | 
			
		||||
        : values(), duals(), workingSet(), converged(false), iterations(0) {}
 | 
			
		||||
 | 
			
		||||
    /// Constructor with initial values
 | 
			
		||||
    State(const VectorValues& initialValues, const VectorValues& initialDuals,
 | 
			
		||||
          const InequalityFactorGraph& initialWorkingSet, bool _converged,
 | 
			
		||||
          size_t _iterations)
 | 
			
		||||
        : values(initialValues),
 | 
			
		||||
          duals(initialDuals),
 | 
			
		||||
          workingSet(initialWorkingSet),
 | 
			
		||||
          converged(_converged),
 | 
			
		||||
          iterations(_iterations) {}
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  const PROBLEM& problem_;  //!< the particular [convex] problem to solve
 | 
			
		||||
  VariableIndex equalityVariableIndex_,
 | 
			
		||||
      inequalityVariableIndex_;  /*!< index to corresponding factors to build
 | 
			
		||||
                                 dual graphs */
 | 
			
		||||
  KeySet constrainedKeys_;  /*!< all constrained keys, will become factors in
 | 
			
		||||
                                 dual graphs */
 | 
			
		||||
 | 
			
		||||
  /// Vector of key matrix pairs. Matrices are usually the A term for a factor.
 | 
			
		||||
  typedef std::vector<std::pair<Key, Matrix> > TermsContainer; 
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  /// Constructor
 | 
			
		||||
  ActiveSetSolver(const PROBLEM& problem) :  problem_(problem) {
 | 
			
		||||
    equalityVariableIndex_ = VariableIndex(problem_.equalities);
 | 
			
		||||
    inequalityVariableIndex_ = VariableIndex(problem_.inequalities);
 | 
			
		||||
    constrainedKeys_ = problem_.equalities.keys();
 | 
			
		||||
    constrainedKeys_.merge(problem_.inequalities.keys());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Optimize with provided initial values
 | 
			
		||||
   * For this version, it is the responsibility of the caller to provide
 | 
			
		||||
   * a feasible initial value, otherwise, an exception will be thrown.
 | 
			
		||||
   * @return a pair of <primal, dual> solutions
 | 
			
		||||
   */
 | 
			
		||||
  std::pair<VectorValues, VectorValues> optimize(
 | 
			
		||||
      const VectorValues& initialValues,
 | 
			
		||||
      const VectorValues& duals = VectorValues(),
 | 
			
		||||
      bool useWarmStart = false) const;
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * For this version the caller will not have to provide an initial value
 | 
			
		||||
   * @return a pair of <primal, dual> solutions
 | 
			
		||||
   */
 | 
			
		||||
  std::pair<VectorValues, VectorValues> optimize() const;
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  /**
 | 
			
		||||
   * Compute minimum step size alpha to move from the current point @p xk to the 
 | 
			
		||||
   * next feasible point along a direction @p p:  x' = xk + alpha*p, 
 | 
			
		||||
   * where alpha \in [0,maxAlpha]. 
 | 
			
		||||
   * 
 | 
			
		||||
   * For QP, maxAlpha = 1. For LP: maxAlpha = Inf.
 | 
			
		||||
   *
 | 
			
		||||
   * @return a tuple of (minAlpha, closestFactorIndex) where closestFactorIndex
 | 
			
		||||
   * is the closest inactive inequality constraint that blocks xk to move 
 | 
			
		||||
   * further and that has the minimum alpha, or (-1, maxAlpha) if there is no 
 | 
			
		||||
   * such inactive blocking constraint.
 | 
			
		||||
   * 
 | 
			
		||||
   * If there is a blocking constraint, the closest one will be added to the 
 | 
			
		||||
   * working set and become active in the next iteration.
 | 
			
		||||
   */
 | 
			
		||||
  boost::tuple<double, int> computeStepSize(
 | 
			
		||||
      const InequalityFactorGraph& workingSet, const VectorValues& xk,
 | 
			
		||||
      const VectorValues& p, const double& maxAlpha) const;
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Finds the active constraints in the given factor graph and returns the 
 | 
			
		||||
   * Dual Jacobians used to build a dual factor graph.
 | 
			
		||||
   */
 | 
			
		||||
  template<typename FACTOR>
 | 
			
		||||
  TermsContainer collectDualJacobians(Key key, const FactorGraph<FACTOR>& graph,
 | 
			
		||||
      const VariableIndex& variableIndex) const {
 | 
			
		||||
    /*
 | 
			
		||||
     * Iterates through each factor in the factor graph and checks 
 | 
			
		||||
     * whether it's active. If the factor is active it reutrns the A 
 | 
			
		||||
     * term of the factor.
 | 
			
		||||
     */
 | 
			
		||||
    TermsContainer Aterms;
 | 
			
		||||
    if (variableIndex.find(key) != variableIndex.end()) {
 | 
			
		||||
      for (size_t factorIx : variableIndex[key]) {
 | 
			
		||||
        typename FACTOR::shared_ptr factor = graph.at(factorIx);
 | 
			
		||||
        if (!factor->active())
 | 
			
		||||
          continue;
 | 
			
		||||
        Matrix Ai = factor->getA(factor->find(key)).transpose();
 | 
			
		||||
        Aterms.push_back(std::make_pair(factor->dualKey(), Ai));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    return Aterms;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Creates a dual factor from the current workingSet and the key of the
 | 
			
		||||
   * the variable used to created the dual factor.
 | 
			
		||||
   */
 | 
			
		||||
  JacobianFactor::shared_ptr createDualFactor(
 | 
			
		||||
    Key key, const InequalityFactorGraph& workingSet,
 | 
			
		||||
    const VectorValues& delta) const;
 | 
			
		||||
 | 
			
		||||
public: /// Just for testing...
 | 
			
		||||
 | 
			
		||||
  /// Builds a dual graph from the current working set.
 | 
			
		||||
  GaussianFactorGraph::shared_ptr buildDualGraph(
 | 
			
		||||
      const InequalityFactorGraph& workingSet, const VectorValues& delta) const;
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Build a working graph of cost, equality and active inequality constraints
 | 
			
		||||
   * to solve at each iteration.
 | 
			
		||||
   * @param  workingSet the collection of all cost and constrained factors
 | 
			
		||||
   * @param  xk   current solution, used to build a special quadratic cost in LP
 | 
			
		||||
   * @return      a new better solution
 | 
			
		||||
   */
 | 
			
		||||
  GaussianFactorGraph buildWorkingGraph(
 | 
			
		||||
      const InequalityFactorGraph& workingSet,
 | 
			
		||||
      const VectorValues& xk = VectorValues()) const;
 | 
			
		||||
  
 | 
			
		||||
  /// Iterate 1 step, return a new state with a new workingSet and values
 | 
			
		||||
  State iterate(const State& state) const;
 | 
			
		||||
 | 
			
		||||
  /// Identify active constraints based on initial values.
 | 
			
		||||
  InequalityFactorGraph identifyActiveConstraints(
 | 
			
		||||
      const InequalityFactorGraph& inequalities,
 | 
			
		||||
      const VectorValues& initialValues,
 | 
			
		||||
      const VectorValues& duals = VectorValues(),
 | 
			
		||||
      bool useWarmStart = false) const;
 | 
			
		||||
 | 
			
		||||
  /// Identifies active constraints that shouldn't be active anymore.
 | 
			
		||||
  int identifyLeavingConstraint(const InequalityFactorGraph& workingSet,
 | 
			
		||||
      const VectorValues& lambdas) const;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Find the max key in a problem.
 | 
			
		||||
 * Useful to determine unique keys for additional slack variables
 | 
			
		||||
 */
 | 
			
		||||
template <class PROBLEM>
 | 
			
		||||
Key maxKey(const PROBLEM& problem) {
 | 
			
		||||
  auto keys = problem.cost.keys();
 | 
			
		||||
  Key maxKey = *std::max_element(keys.begin(), keys.end());
 | 
			
		||||
  if (!problem.equalities.empty())
 | 
			
		||||
    maxKey = std::max(maxKey, *problem.equalities.keys().rbegin());
 | 
			
		||||
  if (!problem.inequalities.empty())
 | 
			
		||||
    maxKey = std::max(maxKey, *problem.inequalities.keys().rbegin());
 | 
			
		||||
  return maxKey;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace gtsam
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/ActiveSetSolver-inl.h>
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,51 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file    EqualityFactorGraph.h
 | 
			
		||||
 * @brief   Factor graph of all LinearEquality factors
 | 
			
		||||
 * @date    Dec 8, 2014
 | 
			
		||||
 * @author  Duy-Nguyen Ta
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/inference/FactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/LinearEquality.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Collection of all Linear Equality constraints Ax=b of
 | 
			
		||||
 * a Programming problem as a Factor Graph
 | 
			
		||||
 */
 | 
			
		||||
class EqualityFactorGraph: public FactorGraph<LinearEquality> {
 | 
			
		||||
public:
 | 
			
		||||
  typedef boost::shared_ptr<EqualityFactorGraph> shared_ptr;
 | 
			
		||||
 | 
			
		||||
  /// Compute error of a guess.
 | 
			
		||||
  double error(const VectorValues& x) const {
 | 
			
		||||
    double total_error = 0.;
 | 
			
		||||
    for (const sharedFactor& factor : *this) {
 | 
			
		||||
      if (factor)
 | 
			
		||||
        total_error += factor->error(x);
 | 
			
		||||
    }
 | 
			
		||||
    return total_error;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// traits
 | 
			
		||||
template<> struct traits<EqualityFactorGraph> : public Testable<
 | 
			
		||||
    EqualityFactorGraph> {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // \ namespace gtsam
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,69 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file    InequalityFactorGraph.h
 | 
			
		||||
 * @brief   Factor graph of all LinearInequality factors
 | 
			
		||||
 * @date    Dec 8, 2014
 | 
			
		||||
 * @author  Duy-Nguyen Ta
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/LinearInequality.h>
 | 
			
		||||
#include <gtsam/inference/FactorGraph-inst.h>
 | 
			
		||||
#include <gtsam/linear/VectorValues.h>
 | 
			
		||||
#include <gtsam/inference/FactorGraph.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Collection of all Linear Inequality constraints Ax-b <= 0 of
 | 
			
		||||
 * a Programming problem as a Factor Graph
 | 
			
		||||
 */
 | 
			
		||||
class InequalityFactorGraph: public FactorGraph<LinearInequality> {
 | 
			
		||||
private:
 | 
			
		||||
  typedef FactorGraph<LinearInequality> Base;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  typedef boost::shared_ptr<InequalityFactorGraph> shared_ptr;
 | 
			
		||||
 | 
			
		||||
  /** print */
 | 
			
		||||
  void print(const std::string& str, const KeyFormatter& keyFormatter =
 | 
			
		||||
      DefaultKeyFormatter) const {
 | 
			
		||||
    Base::print(str, keyFormatter);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** equals */
 | 
			
		||||
  bool equals(const InequalityFactorGraph& other, double tol = 1e-9) const {
 | 
			
		||||
    return Base::equals(other, tol);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Compute error of a guess.
 | 
			
		||||
   * Infinity error if it violates an inequality; zero otherwise. */
 | 
			
		||||
  double error(const VectorValues& x) const {
 | 
			
		||||
    for (const sharedFactor& factor : *this) {
 | 
			
		||||
      if (factor)
 | 
			
		||||
        if (factor->error(x) > 1e-7)
 | 
			
		||||
          return std::numeric_limits<double>::infinity();
 | 
			
		||||
    }
 | 
			
		||||
    return 0.0;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// traits
 | 
			
		||||
template<>
 | 
			
		||||
struct traits<InequalityFactorGraph> : public Testable<InequalityFactorGraph> {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // \ namespace gtsam
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,45 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file InfeasibleInitialValues.h
 | 
			
		||||
 * @brief Exception thrown when given Infeasible Initial Values.
 | 
			
		||||
 * @date jan 24, 2015
 | 
			
		||||
 * @author Duy-Nguyen Ta
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
/** An exception indicating that the provided initial value is infeasible
 | 
			
		||||
 * Also used to inzdicatethat the noise model dimension passed into a
 | 
			
		||||
 * JacobianFactor has a different dimensionality than the factor. */
 | 
			
		||||
class InfeasibleInitialValues: public ThreadsafeException<
 | 
			
		||||
    InfeasibleInitialValues> {
 | 
			
		||||
public:
 | 
			
		||||
  InfeasibleInitialValues() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual ~InfeasibleInitialValues() throw () {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual const char *what() const throw () {
 | 
			
		||||
    if (description_.empty())
 | 
			
		||||
      description_ =
 | 
			
		||||
          "An infeasible initial value was provided for the solver.\n";
 | 
			
		||||
    return description_.c_str();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  mutable std::string description_;
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,40 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     InfeasibleOrUnboundedProblem.h
 | 
			
		||||
 * @brief    Throw when the problem is either infeasible or unbounded
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     1/24/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once 
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
class InfeasibleOrUnboundedProblem: public ThreadsafeException<
 | 
			
		||||
    InfeasibleOrUnboundedProblem> {
 | 
			
		||||
public:
 | 
			
		||||
  InfeasibleOrUnboundedProblem() {
 | 
			
		||||
  }
 | 
			
		||||
  virtual ~InfeasibleOrUnboundedProblem() throw () {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual const char* what() const throw () {
 | 
			
		||||
    if (description_.empty())
 | 
			
		||||
      description_ = "The problem is either infeasible or unbounded.\n";
 | 
			
		||||
    return description_.c_str();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  mutable std::string description_;
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,102 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     LP.h
 | 
			
		||||
 * @brief    Struct used to hold a Linear Programming Problem
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     1/24/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/LinearCost.h>
 | 
			
		||||
#include <gtsam_unstable/linear/EqualityFactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/InequalityFactorGraph.h>
 | 
			
		||||
 | 
			
		||||
#include <string>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
/// Mapping between variable's key and its corresponding dimensionality
 | 
			
		||||
using KeyDimMap = std::map<Key, size_t>;
 | 
			
		||||
/*
 | 
			
		||||
 * Iterates through every factor in a linear graph and generates a
 | 
			
		||||
 * mapping between every factor key and it's corresponding dimensionality.
 | 
			
		||||
 */
 | 
			
		||||
template <class LinearGraph>
 | 
			
		||||
KeyDimMap collectKeyDim(const LinearGraph& linearGraph) {
 | 
			
		||||
  KeyDimMap keyDimMap;
 | 
			
		||||
  for (const typename LinearGraph::sharedFactor& factor : linearGraph) {
 | 
			
		||||
    if (!factor) continue;
 | 
			
		||||
    for (Key key : factor->keys())
 | 
			
		||||
      keyDimMap[key] = factor->getDim(factor->find(key));
 | 
			
		||||
  }
 | 
			
		||||
  return keyDimMap;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Data structure of a Linear Program
 | 
			
		||||
 */
 | 
			
		||||
struct LP {
 | 
			
		||||
  using shared_ptr = boost::shared_ptr<LP>;
 | 
			
		||||
 | 
			
		||||
  LinearCost cost; //!< Linear cost factor
 | 
			
		||||
  EqualityFactorGraph equalities; //!< Linear equality constraints: cE(x) = 0
 | 
			
		||||
  InequalityFactorGraph inequalities; //!< Linear inequality constraints: cI(x) <= 0
 | 
			
		||||
private:
 | 
			
		||||
  mutable KeyDimMap cachedConstrainedKeyDimMap_; //!< cached key-dim map of all variables in the constraints
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  /// check feasibility
 | 
			
		||||
  bool isFeasible(const VectorValues& x) const {
 | 
			
		||||
    return (equalities.error(x) == 0 && inequalities.error(x) == 0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// print
 | 
			
		||||
  void print(const string& s = "") const {
 | 
			
		||||
    std::cout << s << std::endl;
 | 
			
		||||
    cost.print("Linear cost: ");
 | 
			
		||||
    equalities.print("Linear equality factors: ");
 | 
			
		||||
    inequalities.print("Linear inequality factors: ");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// equals
 | 
			
		||||
  bool equals(const LP& other, double tol = 1e-9) const {
 | 
			
		||||
    return cost.equals(other.cost) && equalities.equals(other.equalities)
 | 
			
		||||
        && inequalities.equals(other.inequalities);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  const KeyDimMap& constrainedKeyDimMap() const {
 | 
			
		||||
    if (!cachedConstrainedKeyDimMap_.empty())
 | 
			
		||||
      return cachedConstrainedKeyDimMap_;
 | 
			
		||||
    // Collect key-dim map of all variables in the constraints
 | 
			
		||||
    cachedConstrainedKeyDimMap_ = collectKeyDim(equalities);
 | 
			
		||||
    KeyDimMap keysDim2 = collectKeyDim(inequalities);
 | 
			
		||||
    cachedConstrainedKeyDimMap_.insert(keysDim2.begin(), keysDim2.end());
 | 
			
		||||
    return cachedConstrainedKeyDimMap_;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Vector costGradient(Key key, const VectorValues& delta) const {
 | 
			
		||||
    Vector g = Vector::Zero(delta.at(key).size());
 | 
			
		||||
    Factor::const_iterator it = cost.find(key);
 | 
			
		||||
    if (it != cost.end()) g = cost.getA(it).transpose();
 | 
			
		||||
    return g;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// traits
 | 
			
		||||
template<> struct traits<LP> : public Testable<LP> {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,110 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     LPInitSolver.h
 | 
			
		||||
 * @brief    This finds a feasible solution for an LP problem
 | 
			
		||||
 * @author   Duy Nguyen Ta
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     6/16/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/LPInitSolver.h>
 | 
			
		||||
#include <gtsam_unstable/linear/LPSolver.h>
 | 
			
		||||
#include <gtsam_unstable/linear/InfeasibleOrUnboundedProblem.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
VectorValues LPInitSolver::solve() const {
 | 
			
		||||
  // Build the graph to solve for the initial value of the initial problem
 | 
			
		||||
  GaussianFactorGraph::shared_ptr initOfInitGraph = buildInitOfInitGraph();
 | 
			
		||||
  VectorValues x0 = initOfInitGraph->optimize();
 | 
			
		||||
  double y0 = compute_y0(x0);
 | 
			
		||||
  Key yKey = maxKey(lp_) + 1;  // the unique key for y0
 | 
			
		||||
  VectorValues xy0(x0);
 | 
			
		||||
  xy0.insert(yKey, Vector::Constant(1, y0));
 | 
			
		||||
 | 
			
		||||
  // Formulate and solve the initial LP
 | 
			
		||||
  LP::shared_ptr initLP = buildInitialLP(yKey);
 | 
			
		||||
 | 
			
		||||
  // solve the initialLP
 | 
			
		||||
  LPSolver lpSolveInit(*initLP);
 | 
			
		||||
  VectorValues xyInit = lpSolveInit.optimize(xy0).first;
 | 
			
		||||
  double yOpt = xyInit.at(yKey)[0];
 | 
			
		||||
  xyInit.erase(yKey);
 | 
			
		||||
  if (yOpt > 0)
 | 
			
		||||
    throw InfeasibleOrUnboundedProblem();
 | 
			
		||||
  else
 | 
			
		||||
    return xyInit;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
LP::shared_ptr LPInitSolver::buildInitialLP(Key yKey) const {
 | 
			
		||||
  LP::shared_ptr initLP(new LP());
 | 
			
		||||
  initLP->cost = LinearCost(yKey, I_1x1);  // min y
 | 
			
		||||
  initLP->equalities = lp_.equalities;     // st. Ax = b
 | 
			
		||||
  initLP->inequalities =
 | 
			
		||||
      addSlackVariableToInequalities(yKey,
 | 
			
		||||
                                     lp_.inequalities);  // Cx-y <= d
 | 
			
		||||
  return initLP;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
GaussianFactorGraph::shared_ptr LPInitSolver::buildInitOfInitGraph() const {
 | 
			
		||||
  // first add equality constraints Ax = b
 | 
			
		||||
  GaussianFactorGraph::shared_ptr initGraph(
 | 
			
		||||
      new GaussianFactorGraph(lp_.equalities));
 | 
			
		||||
 | 
			
		||||
  // create factor ||x||^2 and add to the graph
 | 
			
		||||
  const KeyDimMap& constrainedKeyDim = lp_.constrainedKeyDimMap();
 | 
			
		||||
  for (Key key : constrainedKeyDim | boost::adaptors::map_keys) {
 | 
			
		||||
    size_t dim = constrainedKeyDim.at(key);
 | 
			
		||||
    initGraph->push_back(
 | 
			
		||||
        JacobianFactor(key, Matrix::Identity(dim, dim), Vector::Zero(dim)));
 | 
			
		||||
  }
 | 
			
		||||
  return initGraph;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
double LPInitSolver::compute_y0(const VectorValues& x0) const {
 | 
			
		||||
  double y0 = -std::numeric_limits<double>::infinity();
 | 
			
		||||
  for (const auto& factor : lp_.inequalities) {
 | 
			
		||||
    double error = factor->error(x0);
 | 
			
		||||
    if (error > y0) y0 = error;
 | 
			
		||||
  }
 | 
			
		||||
  return y0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
std::vector<std::pair<Key, Matrix> > LPInitSolver::collectTerms(
 | 
			
		||||
    const LinearInequality& factor) const {
 | 
			
		||||
  std::vector<std::pair<Key, Matrix> > terms;
 | 
			
		||||
  for (Factor::const_iterator it = factor.begin(); it != factor.end(); it++) {
 | 
			
		||||
    terms.push_back(make_pair(*it, factor.getA(it)));
 | 
			
		||||
  }
 | 
			
		||||
  return terms;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/******************************************************************************/
 | 
			
		||||
InequalityFactorGraph LPInitSolver::addSlackVariableToInequalities(
 | 
			
		||||
    Key yKey, const InequalityFactorGraph& inequalities) const {
 | 
			
		||||
  InequalityFactorGraph slackInequalities;
 | 
			
		||||
  for (const auto& factor : lp_.inequalities) {
 | 
			
		||||
    std::vector<std::pair<Key, Matrix> > terms = collectTerms(*factor);  // Cx
 | 
			
		||||
    terms.push_back(make_pair(yKey, Matrix::Constant(1, 1, -1.0)));      // -y
 | 
			
		||||
    double d = factor->getb()[0];
 | 
			
		||||
    slackInequalities.push_back(LinearInequality(terms, d, factor->dualKey()));
 | 
			
		||||
  }
 | 
			
		||||
  return slackInequalities;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,89 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     LPInitSolver.h
 | 
			
		||||
 * @brief    This LPInitSolver implements the strategy in Matlab.
 | 
			
		||||
 * @author   Duy Nguyen Ta
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     1/24/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/LP.h>
 | 
			
		||||
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
			
		||||
#include <CppUnitLite/Test.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
/**
 | 
			
		||||
 * This LPInitSolver implements the strategy in Matlab:
 | 
			
		||||
 * http://www.mathworks.com/help/optim/ug/linear-programming-algorithms.html#brozyzb-9
 | 
			
		||||
 * Solve for x and y:
 | 
			
		||||
 *    min y
 | 
			
		||||
 *    st Ax = b
 | 
			
		||||
 *       Cx - y <= d
 | 
			
		||||
 * where y \in R, x \in R^n, and Ax = b and Cx <= d is the constraints of the original problem.
 | 
			
		||||
 *
 | 
			
		||||
 * If the solution for this problem {x*,y*} has y* <= 0, we'll have x* a feasible initial point
 | 
			
		||||
 * of the original problem
 | 
			
		||||
 * otherwise, if y* > 0 or the problem has no solution, the original problem is infeasible.
 | 
			
		||||
 *
 | 
			
		||||
 * The initial value of this initial problem can be found by solving
 | 
			
		||||
 *    min   ||x||^2
 | 
			
		||||
 *    s.t.   Ax = b
 | 
			
		||||
 * to have a solution x0
 | 
			
		||||
 * then y = max_j ( Cj*x0  - dj )  -- due to the constraints y >= Cx - d
 | 
			
		||||
 *
 | 
			
		||||
 * WARNING: If some xj in the inequality constraints does not exist in the equality constraints,
 | 
			
		||||
 * set them as zero for now. If that is the case, the original problem doesn't have a unique
 | 
			
		||||
 * solution (it could be either infeasible or unbounded).
 | 
			
		||||
 * So, if the initialization fails because we enforce xj=0 in the problematic
 | 
			
		||||
 * inequality constraint, we can't conclude that the problem is infeasible.
 | 
			
		||||
 * However, whether it is infeasible or unbounded, we don't have a unique solution anyway.
 | 
			
		||||
 */
 | 
			
		||||
class LPInitSolver {
 | 
			
		||||
private:
 | 
			
		||||
  const LP& lp_;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  /// Construct with an LP problem
 | 
			
		||||
  LPInitSolver(const LP& lp) : lp_(lp) {}
 | 
			
		||||
 | 
			
		||||
  ///@return a feasible initialization point
 | 
			
		||||
  VectorValues solve() const;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  /// build initial LP
 | 
			
		||||
  LP::shared_ptr buildInitialLP(Key yKey) const;
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Build the following graph to solve for an initial value of the initial problem
 | 
			
		||||
   *    min   ||x||^2    s.t.   Ax = b
 | 
			
		||||
   */
 | 
			
		||||
  GaussianFactorGraph::shared_ptr buildInitOfInitGraph() const;
 | 
			
		||||
 | 
			
		||||
  /// y = max_j ( Cj*x0  - dj )  -- due to the inequality constraints y >= Cx - d
 | 
			
		||||
  double compute_y0(const VectorValues& x0) const;
 | 
			
		||||
 | 
			
		||||
  /// Collect all terms of a factor into a container.
 | 
			
		||||
  std::vector<std::pair<Key, Matrix>> collectTerms(
 | 
			
		||||
      const LinearInequality& factor) const;
 | 
			
		||||
 | 
			
		||||
  /// Turn Cx <= d into Cx - y <= d factors
 | 
			
		||||
  InequalityFactorGraph addSlackVariableToInequalities(Key yKey,
 | 
			
		||||
      const InequalityFactorGraph& inequalities) const;
 | 
			
		||||
 | 
			
		||||
  // friend class for unit-testing private methods
 | 
			
		||||
  FRIEND_TEST(LPInitSolver, initialization);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,25 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     LPSolver.cpp
 | 
			
		||||
 * @brief    
 | 
			
		||||
 * @author   Duy Nguyen Ta
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     1/26/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/LPSolver.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
constexpr double LPPolicy::maxAlpha;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,80 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     LPSolver.h
 | 
			
		||||
 * @brief    Policy of ActiveSetSolver to solve Linear Programming Problems
 | 
			
		||||
 * @author   Duy Nguyen Ta
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     6/16/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/LP.h>
 | 
			
		||||
#include <gtsam_unstable/linear/ActiveSetSolver.h>
 | 
			
		||||
#include <gtsam_unstable/linear/LPInitSolver.h>
 | 
			
		||||
 | 
			
		||||
#include <limits>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/// Policy for ActivetSetSolver to solve Linear Programming \sa LP problems
 | 
			
		||||
struct LPPolicy {
 | 
			
		||||
  /// Maximum alpha for line search x'=xk + alpha*p, where p is the cost gradient
 | 
			
		||||
  /// For LP, maxAlpha = Infinity
 | 
			
		||||
  static constexpr double maxAlpha = std::numeric_limits<double>::infinity();
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Create the factor ||x-xk - (-g)||^2 where xk is the current feasible solution
 | 
			
		||||
   * on the constraint surface and g is the gradient of the linear cost,
 | 
			
		||||
   * i.e. -g is the direction we wish to follow to decrease the cost.
 | 
			
		||||
   *
 | 
			
		||||
   * Essentially, we try to match the direction d = x-xk with -g as much as possible
 | 
			
		||||
   * subject to the condition that x needs to be on the constraint surface, i.e., d is
 | 
			
		||||
   * along the surface's subspace.
 | 
			
		||||
   *
 | 
			
		||||
   * The least-square solution of this quadratic subject to a set of linear constraints
 | 
			
		||||
   * is the projection of the gradient onto the constraints' subspace
 | 
			
		||||
   */
 | 
			
		||||
  static GaussianFactorGraph buildCostFunction(const LP& lp,
 | 
			
		||||
                                               const VectorValues& xk) {
 | 
			
		||||
    GaussianFactorGraph graph;
 | 
			
		||||
    for (LinearCost::const_iterator it = lp.cost.begin(); it != lp.cost.end();
 | 
			
		||||
         ++it) {
 | 
			
		||||
      size_t dim = lp.cost.getDim(it);
 | 
			
		||||
      Vector b = xk.at(*it) - lp.cost.getA(it).transpose();  // b = xk-g
 | 
			
		||||
      graph.push_back(JacobianFactor(*it, Matrix::Identity(dim, dim), b));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    KeySet allKeys = lp.inequalities.keys();
 | 
			
		||||
    allKeys.merge(lp.equalities.keys());
 | 
			
		||||
    allKeys.merge(KeySet(lp.cost.keys()));
 | 
			
		||||
    // Add corresponding factors for all variables that are not explicitly in
 | 
			
		||||
    // the cost function. Gradients of the cost function wrt to these variables 
 | 
			
		||||
    // are zero (g=0), so b=xk
 | 
			
		||||
    if (lp.cost.keys().size() != allKeys.size()) {
 | 
			
		||||
      KeySet difference;
 | 
			
		||||
      std::set_difference(allKeys.begin(), allKeys.end(), lp.cost.begin(),
 | 
			
		||||
                          lp.cost.end(),
 | 
			
		||||
                          std::inserter(difference, difference.end()));
 | 
			
		||||
      for (Key k : difference) {
 | 
			
		||||
        size_t dim = lp.constrainedKeyDimMap().at(k);
 | 
			
		||||
        graph.push_back(
 | 
			
		||||
            JacobianFactor(k, Matrix::Identity(dim, dim), xk.at(k)));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    return graph;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
using LPSolver = ActiveSetSolver<LP, LPPolicy, LPInitSolver>;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,124 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file    LinearCost.h
 | 
			
		||||
 * @brief   LinearCost derived from JacobianFactor to support linear cost functions c'x
 | 
			
		||||
 * @date    Nov 27, 2014
 | 
			
		||||
 * @author  Duy-Nguyen Ta
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/linear/JacobianFactor.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
typedef Eigen::RowVectorXd RowVector;
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * This class defines a linear cost function c'x
 | 
			
		||||
 * which is a JacobianFactor with only one row
 | 
			
		||||
 */
 | 
			
		||||
class LinearCost: public JacobianFactor {
 | 
			
		||||
public:
 | 
			
		||||
  typedef LinearCost This; ///< Typedef to this class
 | 
			
		||||
  typedef JacobianFactor Base; ///< Typedef to base class
 | 
			
		||||
  typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  /** default constructor for I/O */
 | 
			
		||||
  LinearCost() :
 | 
			
		||||
      Base() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Conversion from HessianFactor */
 | 
			
		||||
  explicit LinearCost(const HessianFactor& hf) {
 | 
			
		||||
    throw std::runtime_error("Cannot convert HessianFactor to LinearCost");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Conversion from JacobianFactor */
 | 
			
		||||
  explicit LinearCost(const JacobianFactor& jf) :
 | 
			
		||||
      Base(jf) {
 | 
			
		||||
    if (jf.isConstrained()) {
 | 
			
		||||
      throw std::runtime_error(
 | 
			
		||||
          "Cannot convert a constrained JacobianFactor to LinearCost");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (jf.get_model()->dim() != 1) {
 | 
			
		||||
      throw std::runtime_error(
 | 
			
		||||
          "Only support single-valued linear cost factor!");
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Construct unary factor */
 | 
			
		||||
  LinearCost(Key i1, const RowVector& A1) :
 | 
			
		||||
      Base(i1, A1, Vector1::Zero()) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Construct binary factor */
 | 
			
		||||
  LinearCost(Key i1, const RowVector& A1, Key i2, const RowVector& A2, double b) :
 | 
			
		||||
      Base(i1, A1, i2, A2, Vector1::Zero()) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Construct ternary factor */
 | 
			
		||||
  LinearCost(Key i1, const RowVector& A1, Key i2, const RowVector& A2, Key i3,
 | 
			
		||||
      const RowVector& A3) :
 | 
			
		||||
      Base(i1, A1, i2, A2, i3, A3, Vector1::Zero()) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Construct an n-ary factor
 | 
			
		||||
   * @tparam TERMS A container whose value type is std::pair<Key, Matrix>, specifying the
 | 
			
		||||
   *         collection of keys and matrices making up the factor. */
 | 
			
		||||
  template<typename TERMS>
 | 
			
		||||
  LinearCost(const TERMS& terms) :
 | 
			
		||||
      Base(terms, Vector1::Zero()) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Virtual destructor */
 | 
			
		||||
  virtual ~LinearCost() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** equals */
 | 
			
		||||
  virtual bool equals(const GaussianFactor& lf, double tol = 1e-9) const {
 | 
			
		||||
    return Base::equals(lf, tol);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** print */
 | 
			
		||||
  virtual void print(const std::string& s = "", const KeyFormatter& formatter =
 | 
			
		||||
      DefaultKeyFormatter) const {
 | 
			
		||||
    Base::print(s + " LinearCost: ", formatter);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Clone this LinearCost */
 | 
			
		||||
  virtual GaussianFactor::shared_ptr clone() const {
 | 
			
		||||
    return boost::static_pointer_cast < GaussianFactor
 | 
			
		||||
        > (boost::make_shared < LinearCost > (*this));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Special error_vector for constraints (A*x-b) */
 | 
			
		||||
  Vector error_vector(const VectorValues& c) const {
 | 
			
		||||
    return unweighted_error(c);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Special error for single-valued inequality constraints. */
 | 
			
		||||
  virtual double error(const VectorValues& c) const {
 | 
			
		||||
    return error_vector(c)[0];
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
// \ LinearCost
 | 
			
		||||
 | 
			
		||||
/// traits
 | 
			
		||||
template<> struct traits<LinearCost> : public Testable<LinearCost> {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // \ namespace gtsam
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -9,11 +9,11 @@
 | 
			
		|||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * LinearEquality.h
 | 
			
		||||
 * @brief: LinearEquality derived from Base with constrained noise model
 | 
			
		||||
 * @date: Nov 27, 2014
 | 
			
		||||
 * @author: thduynguyen
 | 
			
		||||
/**
 | 
			
		||||
 * @file    LinearEquality.h
 | 
			
		||||
 * @brief   LinearEquality derived from Base with constrained noise model
 | 
			
		||||
 * @date    Nov 27, 2014
 | 
			
		||||
 * @author  Duy-Nguyen Ta
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
| 
						 | 
				
			
			@ -23,7 +23,7 @@
 | 
			
		|||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * This class defines Linear constraints by inherit Base
 | 
			
		||||
 * This class defines a linear equality constraints, inheriting JacobianFactor
 | 
			
		||||
 * with the special Constrained noise model
 | 
			
		||||
 */
 | 
			
		||||
class LinearEquality: public JacobianFactor {
 | 
			
		||||
| 
						 | 
				
			
			@ -41,6 +41,17 @@ public:
 | 
			
		|||
      Base() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Construct from a constrained noisemodel JacobianFactor with a dual key.
 | 
			
		||||
   */
 | 
			
		||||
  explicit LinearEquality(const JacobianFactor& jf, Key dualKey) :
 | 
			
		||||
      Base(jf), dualKey_(dualKey) {
 | 
			
		||||
    if (!jf.isConstrained()) {
 | 
			
		||||
      throw std::runtime_error(
 | 
			
		||||
          "Cannot convert an unconstrained JacobianFactor to LinearEquality");
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Conversion from HessianFactor (does Cholesky to obtain Jacobian matrix) */
 | 
			
		||||
  explicit LinearEquality(const HessianFactor& hf) {
 | 
			
		||||
    throw std::runtime_error("Cannot convert HessianFactor to LinearEquality");
 | 
			
		||||
| 
						 | 
				
			
			@ -90,15 +101,19 @@ public:
 | 
			
		|||
 | 
			
		||||
  /** Clone this LinearEquality */
 | 
			
		||||
  virtual GaussianFactor::shared_ptr clone() const {
 | 
			
		||||
    return boost::static_pointer_cast<GaussianFactor>(
 | 
			
		||||
        boost::make_shared<LinearEquality>(*this));
 | 
			
		||||
    return boost::static_pointer_cast < GaussianFactor
 | 
			
		||||
        > (boost::make_shared < LinearEquality > (*this));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// dual key
 | 
			
		||||
  Key dualKey() const { return dualKey_; }
 | 
			
		||||
  Key dualKey() const {
 | 
			
		||||
    return dualKey_;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// for active set method: equality constraints are always active
 | 
			
		||||
  bool active() const { return true; }
 | 
			
		||||
  bool active() const {
 | 
			
		||||
    return true;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Special error_vector for constraints (A*x-b) */
 | 
			
		||||
  Vector error_vector(const VectorValues& c) const {
 | 
			
		||||
| 
						 | 
				
			
			@ -113,11 +128,12 @@ public:
 | 
			
		|||
    return 0.0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}; // \ LinearEquality
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
// \ LinearEquality
 | 
			
		||||
 | 
			
		||||
/// traits
 | 
			
		||||
template<> struct traits<LinearEquality> : public Testable<LinearEquality> {};
 | 
			
		||||
template<> struct traits<LinearEquality> : public Testable<LinearEquality> {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // \ namespace gtsam
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,37 +0,0 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * LinearEqualityFactorGraph.h
 | 
			
		||||
 * @brief: Factor graph of all LinearEquality factors
 | 
			
		||||
 * @date: Dec 8, 2014
 | 
			
		||||
 * @author: thduynguyen
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/inference/FactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/LinearEquality.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
class LinearEqualityFactorGraph : public FactorGraph<LinearEquality> {
 | 
			
		||||
public:
 | 
			
		||||
  typedef boost::shared_ptr<LinearEqualityFactorGraph> shared_ptr;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// traits
 | 
			
		||||
template<> struct traits<LinearEqualityFactorGraph> : public Testable<
 | 
			
		||||
    LinearEqualityFactorGraph> {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // \ namespace gtsam
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -9,24 +9,26 @@
 | 
			
		|||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * LinearInequality.h
 | 
			
		||||
 * @brief: LinearInequality derived from Base with constrained noise model
 | 
			
		||||
 * @date: Nov 27, 2014
 | 
			
		||||
 * @author: thduynguyen
 | 
			
		||||
/**
 | 
			
		||||
 * @file    LinearInequality.h
 | 
			
		||||
 * @brief   LinearInequality derived from Base with constrained noise model
 | 
			
		||||
 * @date    Nov 27, 2014
 | 
			
		||||
 * @author  Duy-Nguyen Ta
 | 
			
		||||
 * @author  Ivan Dario Jimenez
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/linear/JacobianFactor.h>
 | 
			
		||||
#include <gtsam/linear/VectorValues.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
typedef Eigen::RowVectorXd RowVector;
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * This class defines Linear constraints by inherit Base
 | 
			
		||||
 * with the special Constrained noise model
 | 
			
		||||
 * This class defines a linear inequality constraint Ax-b <= 0,
 | 
			
		||||
 * inheriting JacobianFactor with the special Constrained noise model
 | 
			
		||||
 */
 | 
			
		||||
class LinearInequality: public JacobianFactor {
 | 
			
		||||
public:
 | 
			
		||||
| 
						 | 
				
			
			@ -44,35 +46,49 @@ public:
 | 
			
		|||
      Base(), active_(true) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Conversion from HessianFactor (does Cholesky to obtain Jacobian matrix) */
 | 
			
		||||
  /** Conversion from HessianFactor */
 | 
			
		||||
  explicit LinearInequality(const HessianFactor& hf) {
 | 
			
		||||
    throw std::runtime_error(
 | 
			
		||||
        "Cannot convert HessianFactor to LinearInequality");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Conversion from JacobianFactor */
 | 
			
		||||
  explicit LinearInequality(const JacobianFactor& jf, Key dualKey) :
 | 
			
		||||
      Base(jf), dualKey_(dualKey), active_(true) {
 | 
			
		||||
    if (!jf.isConstrained()) {
 | 
			
		||||
      throw std::runtime_error(
 | 
			
		||||
          "Cannot convert an unconstrained JacobianFactor to LinearInequality");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (jf.get_model()->dim() != 1) {
 | 
			
		||||
      throw std::runtime_error("Only support single-valued inequality factor!");
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Construct unary factor */
 | 
			
		||||
  LinearInequality(Key i1, const RowVector& A1, double b, Key dualKey) :
 | 
			
		||||
      Base(i1, A1, (Vector(1) << b).finished(), noiseModel::Constrained::All(1)), dualKey_(
 | 
			
		||||
          dualKey), active_(true) {
 | 
			
		||||
      Base(i1, A1, (Vector(1) << b).finished(),
 | 
			
		||||
          noiseModel::Constrained::All(1)), dualKey_(dualKey), active_(true) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Construct binary factor */
 | 
			
		||||
  LinearInequality(Key i1, const RowVector& A1, Key i2, const RowVector& A2, double b,
 | 
			
		||||
      Key dualKey) :
 | 
			
		||||
      Base(i1, A1, i2, A2, (Vector(1) << b).finished(), noiseModel::Constrained::All(1)), dualKey_(
 | 
			
		||||
          dualKey), active_(true) {
 | 
			
		||||
  LinearInequality(Key i1, const RowVector& A1, Key i2, const RowVector& A2,
 | 
			
		||||
      double b, Key dualKey) :
 | 
			
		||||
      Base(i1, A1, i2, A2, (Vector(1) << b).finished(),
 | 
			
		||||
          noiseModel::Constrained::All(1)), dualKey_(dualKey), active_(true) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Construct ternary factor */
 | 
			
		||||
  LinearInequality(Key i1, const RowVector& A1, Key i2, const RowVector& A2, Key i3,
 | 
			
		||||
      const RowVector& A3, double b, Key dualKey) :
 | 
			
		||||
  LinearInequality(Key i1, const RowVector& A1, Key i2, const RowVector& A2,
 | 
			
		||||
      Key i3, const RowVector& A3, double b, Key dualKey) :
 | 
			
		||||
      Base(i1, A1, i2, A2, i3, A3, (Vector(1) << b).finished(),
 | 
			
		||||
          noiseModel::Constrained::All(1)), dualKey_(dualKey), active_(true) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Construct an n-ary factor
 | 
			
		||||
   * @tparam TERMS A container whose value type is std::pair<Key, Matrix>, specifying the
 | 
			
		||||
   *         collection of keys and matrices making up the factor. */
 | 
			
		||||
   *         collection of keys and matrices making up the factor.
 | 
			
		||||
   *         In this inequality factor, each matrix must have only one row!! */
 | 
			
		||||
  template<typename TERMS>
 | 
			
		||||
  LinearInequality(const TERMS& terms, double b, Key dualKey) :
 | 
			
		||||
      Base(terms, (Vector(1) << b).finished(), noiseModel::Constrained::All(1)), dualKey_(
 | 
			
		||||
| 
						 | 
				
			
			@ -99,21 +115,29 @@ public:
 | 
			
		|||
 | 
			
		||||
  /** Clone this LinearInequality */
 | 
			
		||||
  virtual GaussianFactor::shared_ptr clone() const {
 | 
			
		||||
    return boost::static_pointer_cast<GaussianFactor>(
 | 
			
		||||
        boost::make_shared<LinearInequality>(*this));
 | 
			
		||||
    return boost::static_pointer_cast < GaussianFactor
 | 
			
		||||
        > (boost::make_shared < LinearInequality > (*this));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// dual key
 | 
			
		||||
  Key dualKey() const { return dualKey_; }
 | 
			
		||||
  Key dualKey() const {
 | 
			
		||||
    return dualKey_;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// return true if this constraint is active
 | 
			
		||||
  bool active() const { return active_; }
 | 
			
		||||
  bool active() const {
 | 
			
		||||
    return active_;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// Make this inequality constraint active
 | 
			
		||||
  void activate() { active_ = true; }
 | 
			
		||||
  void activate() {
 | 
			
		||||
    active_ = true;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// Make this inequality constraint inactive
 | 
			
		||||
  void inactivate() { active_ = false; }
 | 
			
		||||
  void inactivate() {
 | 
			
		||||
    active_ = false;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Special error_vector for constraints (A*x-b) */
 | 
			
		||||
  Vector error_vector(const VectorValues& c) const {
 | 
			
		||||
| 
						 | 
				
			
			@ -136,10 +160,12 @@ public:
 | 
			
		|||
    return aTp;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}; // \ LinearInequality
 | 
			
		||||
};
 | 
			
		||||
// \ LinearInequality
 | 
			
		||||
 | 
			
		||||
/// traits
 | 
			
		||||
template<> struct traits<LinearInequality> : public Testable<LinearInequality> {};
 | 
			
		||||
template<> struct traits<LinearInequality> : public Testable<LinearInequality> {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // \ namespace gtsam
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,52 +0,0 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * LinearInequalityFactorGraph.h
 | 
			
		||||
 * @brief: Factor graph of all LinearInequality factors
 | 
			
		||||
 * @date: Dec 8, 2014
 | 
			
		||||
 * @author: thduynguyen
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/inference/FactorGraph-inst.h>
 | 
			
		||||
#include <gtsam_unstable/linear/LinearInequality.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
class LinearInequalityFactorGraph: public FactorGraph<LinearInequality> {
 | 
			
		||||
private:
 | 
			
		||||
  typedef FactorGraph<LinearInequality> Base;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  typedef boost::shared_ptr<LinearInequalityFactorGraph> shared_ptr;
 | 
			
		||||
 | 
			
		||||
  /** print */
 | 
			
		||||
  void print(const std::string& str, const KeyFormatter& keyFormatter =
 | 
			
		||||
      DefaultKeyFormatter) const {
 | 
			
		||||
    Base::print(str, keyFormatter);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** equals */
 | 
			
		||||
  bool equals(const LinearInequalityFactorGraph& other,
 | 
			
		||||
      double tol = 1e-9) const {
 | 
			
		||||
    return Base::equals(other, tol);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// traits
 | 
			
		||||
template<> struct traits<LinearInequalityFactorGraph> : public Testable<
 | 
			
		||||
    LinearInequalityFactorGraph> {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // \ namespace gtsam
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -9,29 +9,34 @@
 | 
			
		|||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * QP.h
 | 
			
		||||
 * @brief: Factor graphs of a Quadratic Programming problem
 | 
			
		||||
 * @date: Dec 8, 2014
 | 
			
		||||
 * @author: thduynguyen
 | 
			
		||||
/**
 | 
			
		||||
 * @file    QP.h
 | 
			
		||||
 * @brief   Factor graphs of a Quadratic Programming problem
 | 
			
		||||
 * @date    Dec 8, 2014
 | 
			
		||||
 * @author  Duy-Nguyen Ta
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/LinearEqualityFactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/LinearInequalityFactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/EqualityFactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/InequalityFactorGraph.h>
 | 
			
		||||
#include <gtsam/slam/dataset.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct contains factor graphs of a Quadratic Programming problem
 | 
			
		||||
 * Struct contains factor graphs of a Quadratic Programming problem
 | 
			
		||||
 */
 | 
			
		||||
struct QP {
 | 
			
		||||
  GaussianFactorGraph cost; //!< Quadratic cost factors
 | 
			
		||||
  LinearEqualityFactorGraph equalities; //!< linear equality constraints
 | 
			
		||||
  LinearInequalityFactorGraph inequalities; //!< linear inequality constraints
 | 
			
		||||
  EqualityFactorGraph equalities; //!< linear equality constraints: cE(x) = 0
 | 
			
		||||
  InequalityFactorGraph inequalities; //!< linear inequality constraints: cI(x) <= 0
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  mutable VariableIndex cachedCostVariableIndex_;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  /** default constructor */
 | 
			
		||||
  QP() :
 | 
			
		||||
      cost(), equalities(), inequalities() {
 | 
			
		||||
| 
						 | 
				
			
			@ -39,8 +44,8 @@ struct QP {
 | 
			
		|||
 | 
			
		||||
  /** constructor */
 | 
			
		||||
  QP(const GaussianFactorGraph& _cost,
 | 
			
		||||
      const LinearEqualityFactorGraph& _linearEqualities,
 | 
			
		||||
      const LinearInequalityFactorGraph& _linearInequalities) :
 | 
			
		||||
      const EqualityFactorGraph& _linearEqualities,
 | 
			
		||||
      const InequalityFactorGraph& _linearInequalities) :
 | 
			
		||||
      cost(_cost), equalities(_linearEqualities), inequalities(
 | 
			
		||||
          _linearInequalities) {
 | 
			
		||||
  }
 | 
			
		||||
| 
						 | 
				
			
			@ -52,6 +57,23 @@ struct QP {
 | 
			
		|||
    equalities.print("Linear equality factors: ");
 | 
			
		||||
    inequalities.print("Linear inequality factors: ");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  const VariableIndex& costVariableIndex() const {
 | 
			
		||||
    if (cachedCostVariableIndex_.size() == 0)
 | 
			
		||||
      cachedCostVariableIndex_ = VariableIndex(cost);
 | 
			
		||||
    return cachedCostVariableIndex_;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Vector costGradient(Key key, const VectorValues& delta) const {
 | 
			
		||||
    Vector g = Vector::Zero(delta.at(key).size());
 | 
			
		||||
    if (costVariableIndex().find(key) != costVariableIndex().end()) {
 | 
			
		||||
      for (size_t factorIx : costVariableIndex()[key]) {
 | 
			
		||||
        GaussianFactor::shared_ptr factor = cost.at(factorIx);
 | 
			
		||||
        g += factor->gradient(key, delta);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    return g;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // namespace gtsam
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,54 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     QPInitSolver.h
 | 
			
		||||
 * @brief    This finds a feasible solution for a QP problem
 | 
			
		||||
 * @author   Duy Nguyen Ta
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     6/16/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/LPInitSolver.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * This class finds a feasible solution for a QP problem.
 | 
			
		||||
 * This uses the Matlab strategy for initialization
 | 
			
		||||
 * For details, see
 | 
			
		||||
 * http://www.mathworks.com/help/optim/ug/quadratic-programming-algorithms.html#brrzwpf-22
 | 
			
		||||
 */
 | 
			
		||||
class QPInitSolver {
 | 
			
		||||
    const QP& qp_;
 | 
			
		||||
public:
 | 
			
		||||
    /// Constructor with a QP problem
 | 
			
		||||
    QPInitSolver(const QP& qp) : qp_(qp) {}
 | 
			
		||||
 | 
			
		||||
    ///@return a feasible initialization point
 | 
			
		||||
    VectorValues solve() const {
 | 
			
		||||
      // Make an LP with any linear cost function. It doesn't matter for
 | 
			
		||||
      // initialization.
 | 
			
		||||
      LP initProblem;
 | 
			
		||||
      // make an unrelated key for a random variable cost
 | 
			
		||||
      Key newKey = maxKey(qp_) + 1;
 | 
			
		||||
      initProblem.cost = LinearCost(newKey, Vector::Ones(1));
 | 
			
		||||
      initProblem.equalities = qp_.equalities;
 | 
			
		||||
      initProblem.inequalities = qp_.inequalities;
 | 
			
		||||
      LPInitSolver initSolver(initProblem);
 | 
			
		||||
      return initSolver.solve();
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,126 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     QPParser.cpp
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     3/5/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#define BOOST_SPIRIT_USE_PHOENIX_V3 1
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/QPSParser.h>
 | 
			
		||||
#include <gtsam_unstable/linear/QPSParserException.h>
 | 
			
		||||
#include <gtsam_unstable/linear/RawQP.h>
 | 
			
		||||
 | 
			
		||||
#include <boost/spirit/include/qi.hpp>
 | 
			
		||||
#include <boost/lambda/lambda.hpp>
 | 
			
		||||
#include <boost/phoenix/bind.hpp>
 | 
			
		||||
#include <boost/spirit/include/classic.hpp>
 | 
			
		||||
 | 
			
		||||
namespace bf = boost::fusion;
 | 
			
		||||
namespace qi = boost::spirit::qi;
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
typedef qi::grammar<boost::spirit::basic_istream_iterator<char>> base_grammar;
 | 
			
		||||
 | 
			
		||||
struct QPSParser::MPSGrammar: base_grammar {
 | 
			
		||||
  typedef std::vector<char> Chars;
 | 
			
		||||
  RawQP * rqp_;
 | 
			
		||||
  boost::function<void(bf::vector<Chars, Chars, Chars> const&)> setName;
 | 
			
		||||
  boost::function<void(bf::vector<Chars, char, Chars, Chars, Chars> const &)> addRow;
 | 
			
		||||
  boost::function<
 | 
			
		||||
      void(bf::vector<Chars, Chars, Chars, Chars, Chars, double, Chars> const &)> rhsSingle;
 | 
			
		||||
  boost::function<
 | 
			
		||||
      void(
 | 
			
		||||
          bf::vector<Chars, Chars, Chars, Chars, Chars, double, Chars, Chars,
 | 
			
		||||
              Chars, double>)> rhsDouble;
 | 
			
		||||
  boost::function<
 | 
			
		||||
      void(bf::vector<Chars, Chars, Chars, Chars, Chars, double, Chars>)> colSingle;
 | 
			
		||||
  boost::function<
 | 
			
		||||
      void(
 | 
			
		||||
          bf::vector<Chars, Chars, Chars, Chars, double, Chars, Chars, Chars,
 | 
			
		||||
              double> const &)> colDouble;
 | 
			
		||||
  boost::function<
 | 
			
		||||
      void(bf::vector<Chars, Chars, Chars, Chars, Chars, double, Chars> const &)> addQuadTerm;
 | 
			
		||||
  boost::function<
 | 
			
		||||
      void(
 | 
			
		||||
          bf::vector<Chars, Chars, Chars, Chars, Chars, Chars, Chars, double> const &)> addBound;
 | 
			
		||||
  boost::function<
 | 
			
		||||
      void(bf::vector<Chars, Chars, Chars, Chars, Chars, Chars, Chars> const &)> addBoundFr;
 | 
			
		||||
  MPSGrammar(RawQP * rqp) :
 | 
			
		||||
      base_grammar(start), rqp_(rqp), setName(
 | 
			
		||||
          boost::bind(&RawQP::setName, rqp, ::_1)), addRow(
 | 
			
		||||
          boost::bind(&RawQP::addRow, rqp, ::_1)), rhsSingle(
 | 
			
		||||
          boost::bind(&RawQP::addRHS, rqp, ::_1)), rhsDouble(
 | 
			
		||||
          boost::bind(&RawQP::addRHSDouble, rqp, ::_1)), colSingle(
 | 
			
		||||
          boost::bind(&RawQP::addColumn, rqp, ::_1)), colDouble(
 | 
			
		||||
          boost::bind(&RawQP::addColumnDouble, rqp, ::_1)), addQuadTerm(
 | 
			
		||||
          boost::bind(&RawQP::addQuadTerm, rqp, ::_1)), addBound(
 | 
			
		||||
          boost::bind(&RawQP::addBound, rqp, ::_1)), addBoundFr(
 | 
			
		||||
          boost::bind(&RawQP::addBoundFr, rqp, ::_1)) {
 | 
			
		||||
    using namespace boost::spirit;
 | 
			
		||||
    using namespace boost::spirit::qi;
 | 
			
		||||
    character = lexeme[alnum | '_' | '-' | '.'];
 | 
			
		||||
    title = lexeme[character >> *(blank | character)];
 | 
			
		||||
    word = lexeme[+character];
 | 
			
		||||
    name = lexeme[lit("NAME") >> *blank >> title >> +space][setName];
 | 
			
		||||
    row = lexeme[*blank >> character >> +blank >> word >> *blank][addRow];
 | 
			
		||||
    rhs_single = lexeme[*blank >> word >> +blank >> word >> +blank >> double_
 | 
			
		||||
        >> *blank][rhsSingle];
 | 
			
		||||
    rhs_double = lexeme[(*blank >> word >> +blank >> word >> +blank >> double_
 | 
			
		||||
        >> +blank >> word >> +blank >> double_)[rhsDouble] >> *blank];
 | 
			
		||||
    col_single = lexeme[*blank >> word >> +blank >> word >> +blank >> double_
 | 
			
		||||
        >> *blank][colSingle];
 | 
			
		||||
    col_double = lexeme[*blank
 | 
			
		||||
        >> (word >> +blank >> word >> +blank >> double_ >> +blank >> word
 | 
			
		||||
            >> +blank >> double_)[colDouble] >> *blank];
 | 
			
		||||
    quad_l = lexeme[*blank >> word >> +blank >> word >> +blank >> double_
 | 
			
		||||
        >> *blank][addQuadTerm];
 | 
			
		||||
    bound = lexeme[*blank >> word >> +blank >> word >> +blank >> word >> +blank
 | 
			
		||||
        >> double_ >> *blank][addBound];
 | 
			
		||||
    bound_fr = lexeme[*blank >> word >> +blank >> word >> +blank >> word
 | 
			
		||||
        >> *blank][addBoundFr];
 | 
			
		||||
    rows = lexeme[lit("ROWS") >> *blank >> eol >> +(row >> eol)];
 | 
			
		||||
    rhs = lexeme[lit("RHS") >> *blank >> eol
 | 
			
		||||
        >> +((rhs_double | rhs_single) >> eol)];
 | 
			
		||||
    cols = lexeme[lit("COLUMNS") >> *blank >> eol
 | 
			
		||||
        >> +((col_double | col_single) >> eol)];
 | 
			
		||||
    quad = lexeme[lit("QUADOBJ") >> *blank >> eol >> +(quad_l >> eol)];
 | 
			
		||||
    bounds = lexeme[lit("BOUNDS") >> +space >> +((bound | bound_fr) >> eol)];
 | 
			
		||||
    ranges = lexeme[lit("RANGES") >> +space];
 | 
			
		||||
    end = lexeme[lit("ENDATA") >> *space];
 | 
			
		||||
    start = lexeme[name >> rows >> cols >> rhs >> -ranges >> bounds >> quad
 | 
			
		||||
        >> end];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  qi::rule<boost::spirit::basic_istream_iterator<char>, char()> character;
 | 
			
		||||
  qi::rule<boost::spirit::basic_istream_iterator<char>, Chars()> word, title;
 | 
			
		||||
  qi::rule<boost::spirit::basic_istream_iterator<char> > row, end, col_single,
 | 
			
		||||
      col_double, rhs_single, rhs_double, ranges, bound, bound_fr, bounds, quad,
 | 
			
		||||
      quad_l, rows, cols, rhs, name, start;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
QP QPSParser::Parse() {
 | 
			
		||||
  RawQP rawData;
 | 
			
		||||
  std::fstream stream(fileName_.c_str());
 | 
			
		||||
  stream.unsetf(std::ios::skipws);
 | 
			
		||||
  boost::spirit::basic_istream_iterator<char> begin(stream);
 | 
			
		||||
  boost::spirit::basic_istream_iterator<char> last;
 | 
			
		||||
 | 
			
		||||
  if (!parse(begin, last, MPSGrammar(&rawData)) || begin != last) {
 | 
			
		||||
    throw QPSParserException();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return rawData.makeQP();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,40 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     QPParser.h
 | 
			
		||||
 * @brief    QPS parser implementation
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     3/5/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/QP.h>
 | 
			
		||||
#include <fstream>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
class QPSParser {
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  std::string fileName_;
 | 
			
		||||
  struct MPSGrammar;
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  QPSParser(const std::string& fileName) :
 | 
			
		||||
      fileName_(findExampleDataFile(fileName)) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  QP Parse();
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,42 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     QPSParserException.h
 | 
			
		||||
 * @brief    Exception thrown if there is an error parsing a QPS file
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     3/5/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
class QPSParserException: public ThreadsafeException<QPSParserException> {
 | 
			
		||||
public:
 | 
			
		||||
  QPSParserException() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual ~QPSParserException() throw () {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual const char *what() const throw () {
 | 
			
		||||
    if (description_.empty())
 | 
			
		||||
      description_ = "There is a problem parsing the QPS file.\n";
 | 
			
		||||
    return description_.c_str();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
  mutable std::string description_;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1,252 +1,23 @@
 | 
			
		|||
/*
 | 
			
		||||
 * QPSolver.cpp
 | 
			
		||||
 * @brief:
 | 
			
		||||
 * @date: Apr 15, 2014
 | 
			
		||||
 * @author: thduynguyen
 | 
			
		||||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file    QPSolver.cpp
 | 
			
		||||
 * @brief
 | 
			
		||||
 * @date    Apr 15, 2014
 | 
			
		||||
 * @author  Duy-Nguyen Ta
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam/inference/Symbol.h>
 | 
			
		||||
#include <gtsam/inference/FactorGraph-inst.h>
 | 
			
		||||
#include <gtsam_unstable/linear/QPSolver.h>
 | 
			
		||||
 | 
			
		||||
#include <boost/range/adaptor/map.hpp>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
QPSolver::QPSolver(const QP& qp) : qp_(qp) {
 | 
			
		||||
  baseGraph_ = qp_.cost;
 | 
			
		||||
  baseGraph_.push_back(qp_.equalities.begin(), qp_.equalities.end());
 | 
			
		||||
  costVariableIndex_ = VariableIndex(qp_.cost);
 | 
			
		||||
  equalityVariableIndex_ = VariableIndex(qp_.equalities);
 | 
			
		||||
  inequalityVariableIndex_ = VariableIndex(qp_.inequalities);
 | 
			
		||||
  constrainedKeys_ = qp_.equalities.keys();
 | 
			
		||||
  constrainedKeys_.merge(qp_.inequalities.keys());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
VectorValues QPSolver::solveWithCurrentWorkingSet(
 | 
			
		||||
    const LinearInequalityFactorGraph& workingSet) const {
 | 
			
		||||
  GaussianFactorGraph workingGraph = baseGraph_;
 | 
			
		||||
  for(const LinearInequality::shared_ptr& factor: workingSet) {
 | 
			
		||||
    if (factor->active())
 | 
			
		||||
      workingGraph.push_back(factor);
 | 
			
		||||
  }
 | 
			
		||||
  return workingGraph.optimize();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
JacobianFactor::shared_ptr QPSolver::createDualFactor(Key key,
 | 
			
		||||
    const LinearInequalityFactorGraph& workingSet, const VectorValues& delta) const {
 | 
			
		||||
 | 
			
		||||
  // Transpose the A matrix of constrained factors to have the jacobian of the dual key
 | 
			
		||||
  std::vector<std::pair<Key, Matrix> > Aterms = collectDualJacobians
 | 
			
		||||
      < LinearEquality > (key, qp_.equalities, equalityVariableIndex_);
 | 
			
		||||
  std::vector<std::pair<Key, Matrix> > AtermsInequalities = collectDualJacobians
 | 
			
		||||
      < LinearInequality > (key, workingSet, inequalityVariableIndex_);
 | 
			
		||||
  Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
 | 
			
		||||
      AtermsInequalities.end());
 | 
			
		||||
 | 
			
		||||
  // Collect the gradients of unconstrained cost factors to the b vector
 | 
			
		||||
  if (Aterms.size() > 0) {
 | 
			
		||||
    Vector b = Vector::Zero(delta.at(key).size());
 | 
			
		||||
    if (costVariableIndex_.find(key) != costVariableIndex_.end()) {
 | 
			
		||||
      for(size_t factorIx: costVariableIndex_[key]) {
 | 
			
		||||
        GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx);
 | 
			
		||||
        b += factor->gradient(key, delta);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    return boost::make_shared<JacobianFactor>(Aterms, b, noiseModel::Constrained::All(b.rows()));
 | 
			
		||||
  }
 | 
			
		||||
  else {
 | 
			
		||||
    return boost::make_shared<JacobianFactor>();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
GaussianFactorGraph::shared_ptr QPSolver::buildDualGraph(
 | 
			
		||||
    const LinearInequalityFactorGraph& workingSet, const VectorValues& delta) const {
 | 
			
		||||
  GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
 | 
			
		||||
  for(Key key: constrainedKeys_) {
 | 
			
		||||
    // Each constrained key becomes a factor in the dual graph
 | 
			
		||||
    JacobianFactor::shared_ptr dualFactor = createDualFactor(key, workingSet, delta);
 | 
			
		||||
    if (!dualFactor->empty())
 | 
			
		||||
      dualGraph->push_back(dualFactor);
 | 
			
		||||
  }
 | 
			
		||||
  return dualGraph;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
int QPSolver::identifyLeavingConstraint(
 | 
			
		||||
    const LinearInequalityFactorGraph& workingSet,
 | 
			
		||||
    const VectorValues& lambdas) const {
 | 
			
		||||
  int worstFactorIx = -1;
 | 
			
		||||
  // preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
 | 
			
		||||
  // inactive or a good inequality constraint, so we don't care!
 | 
			
		||||
  double maxLambda = 0.0;
 | 
			
		||||
  for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
 | 
			
		||||
    const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
 | 
			
		||||
    if (factor->active()) {
 | 
			
		||||
      double lambda = lambdas.at(factor->dualKey())[0];
 | 
			
		||||
      if (lambda > maxLambda) {
 | 
			
		||||
        worstFactorIx = factorIx;
 | 
			
		||||
        maxLambda = lambda;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return worstFactorIx;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
/* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
 | 
			
		||||
 * If some inactive inequality constraints complain about the full step (alpha = 1),
 | 
			
		||||
 * we have to adjust alpha to stay within the inequality constraints' feasible regions.
 | 
			
		||||
 *
 | 
			
		||||
 * For each inactive inequality j:
 | 
			
		||||
 *  - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
 | 
			
		||||
 *  - We want: aj'*(xk + alpha*p) - bj <= 0
 | 
			
		||||
 *  - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
 | 
			
		||||
 *  it's good!
 | 
			
		||||
 *  - We only care when aj'*p > 0. In this case, we need to choose alpha so that
 | 
			
		||||
 *  aj'*xk + alpha*aj'*p - bj <= 0  --> alpha <= (bj - aj'*xk) / (aj'*p)
 | 
			
		||||
 *  We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
 | 
			
		||||
 *
 | 
			
		||||
 * We want the minimum of all those alphas among all inactive inequality.
 | 
			
		||||
 */
 | 
			
		||||
boost::tuple<double, int> QPSolver::computeStepSize(
 | 
			
		||||
    const LinearInequalityFactorGraph& workingSet, const VectorValues& xk,
 | 
			
		||||
    const VectorValues& p) const {
 | 
			
		||||
  static bool debug = false;
 | 
			
		||||
 | 
			
		||||
  double minAlpha = 1.0;
 | 
			
		||||
  int closestFactorIx = -1;
 | 
			
		||||
  for(size_t factorIx = 0; factorIx<workingSet.size(); ++factorIx) {
 | 
			
		||||
    const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
 | 
			
		||||
    double b = factor->getb()[0];
 | 
			
		||||
    // only check inactive factors
 | 
			
		||||
    if (!factor->active()) {
 | 
			
		||||
      // Compute a'*p
 | 
			
		||||
      double aTp = factor->dotProductRow(p);
 | 
			
		||||
 | 
			
		||||
      // Check if  a'*p >0. Don't care if it's not.
 | 
			
		||||
      if (aTp <= 0)
 | 
			
		||||
        continue;
 | 
			
		||||
 | 
			
		||||
      // Compute a'*xk
 | 
			
		||||
      double aTx = factor->dotProductRow(xk);
 | 
			
		||||
 | 
			
		||||
      // alpha = (b - a'*xk) / (a'*p)
 | 
			
		||||
      double alpha = (b - aTx) / aTp;
 | 
			
		||||
      if (debug)
 | 
			
		||||
        cout << "alpha: " << alpha << endl;
 | 
			
		||||
 | 
			
		||||
      // We want the minimum of all those max alphas
 | 
			
		||||
      if (alpha < minAlpha) {
 | 
			
		||||
        closestFactorIx = factorIx;
 | 
			
		||||
        minAlpha = alpha;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return boost::make_tuple(minAlpha, closestFactorIx);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
QPState QPSolver::iterate(const QPState& state) const {
 | 
			
		||||
  static bool debug = false;
 | 
			
		||||
 | 
			
		||||
  // Solve with the current working set
 | 
			
		||||
  VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet);
 | 
			
		||||
  if (debug)
 | 
			
		||||
    newValues.print("New solution:");
 | 
			
		||||
 | 
			
		||||
  // If we CAN'T move further
 | 
			
		||||
  if (newValues.equals(state.values, 1e-5)) {
 | 
			
		||||
    // Compute lambda from the dual graph
 | 
			
		||||
    if (debug)
 | 
			
		||||
      cout << "Building dual graph..." << endl;
 | 
			
		||||
    GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet, newValues);
 | 
			
		||||
    if (debug)
 | 
			
		||||
      dualGraph->print("Dual graph: ");
 | 
			
		||||
    VectorValues duals = dualGraph->optimize();
 | 
			
		||||
    if (debug)
 | 
			
		||||
      duals.print("Duals :");
 | 
			
		||||
 | 
			
		||||
    int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
 | 
			
		||||
    if (debug)
 | 
			
		||||
      cout << "leavingFactor: " << leavingFactor << endl;
 | 
			
		||||
 | 
			
		||||
    // If all inequality constraints are satisfied: We have the solution!!
 | 
			
		||||
    if (leavingFactor < 0) {
 | 
			
		||||
      return QPState(newValues, duals, state.workingSet, true);
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      // Inactivate the leaving constraint
 | 
			
		||||
      LinearInequalityFactorGraph newWorkingSet = state.workingSet;
 | 
			
		||||
      newWorkingSet.at(leavingFactor)->inactivate();
 | 
			
		||||
      return QPState(newValues, duals, newWorkingSet, false);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  else {
 | 
			
		||||
    // If we CAN make some progress
 | 
			
		||||
    // Adapt stepsize if some inactive constraints complain about this move
 | 
			
		||||
    double alpha;
 | 
			
		||||
    int factorIx;
 | 
			
		||||
    VectorValues p = newValues - state.values;
 | 
			
		||||
    boost::tie(alpha, factorIx) = //
 | 
			
		||||
        computeStepSize(state.workingSet, state.values, p);
 | 
			
		||||
    if (debug)
 | 
			
		||||
      cout << "alpha, factorIx: " << alpha << " " << factorIx << " "
 | 
			
		||||
           << endl;
 | 
			
		||||
 | 
			
		||||
    // also add to the working set the one that complains the most
 | 
			
		||||
    LinearInequalityFactorGraph newWorkingSet = state.workingSet;
 | 
			
		||||
    if (factorIx >= 0)
 | 
			
		||||
      newWorkingSet.at(factorIx)->activate();
 | 
			
		||||
 | 
			
		||||
    // step!
 | 
			
		||||
    newValues = state.values + alpha * p;
 | 
			
		||||
 | 
			
		||||
    return QPState(newValues, state.duals, newWorkingSet, false);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
LinearInequalityFactorGraph QPSolver::identifyActiveConstraints(
 | 
			
		||||
    const LinearInequalityFactorGraph& inequalities,
 | 
			
		||||
    const VectorValues& initialValues) const {
 | 
			
		||||
  LinearInequalityFactorGraph workingSet;
 | 
			
		||||
  for(const LinearInequality::shared_ptr& factor: inequalities){
 | 
			
		||||
    LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
 | 
			
		||||
    double error = workingFactor->error(initialValues);
 | 
			
		||||
    if (fabs(error)>1e-7){
 | 
			
		||||
      workingFactor->inactivate();
 | 
			
		||||
    } else {
 | 
			
		||||
      workingFactor->activate();
 | 
			
		||||
    }
 | 
			
		||||
    workingSet.push_back(workingFactor);
 | 
			
		||||
  }
 | 
			
		||||
  return workingSet;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//******************************************************************************
 | 
			
		||||
pair<VectorValues, VectorValues> QPSolver::optimize(
 | 
			
		||||
    const VectorValues& initialValues) const {
 | 
			
		||||
 | 
			
		||||
  // Initialize workingSet from the feasible initialValues
 | 
			
		||||
  LinearInequalityFactorGraph workingSet =
 | 
			
		||||
      identifyActiveConstraints(qp_.inequalities, initialValues);
 | 
			
		||||
  QPState state(initialValues, VectorValues(), workingSet, false);
 | 
			
		||||
 | 
			
		||||
  /// main loop of the solver
 | 
			
		||||
  while (!state.converged) {
 | 
			
		||||
    state = iterate(state);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return make_pair(state.values, state.duals);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} /* namespace gtsam */
 | 
			
		||||
constexpr double QPPolicy::maxAlpha;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -1,188 +1,43 @@
 | 
			
		|||
/*
 | 
			
		||||
 * QPSolver.h
 | 
			
		||||
 * @brief: A quadratic programming solver implements the active set method
 | 
			
		||||
 * @date: Apr 15, 2014
 | 
			
		||||
 * @author: thduynguyen
 | 
			
		||||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     QPSolver.h
 | 
			
		||||
 * @brief    Policy of ActiveSetSolver to solve Quadratic Programming Problems
 | 
			
		||||
 * @author   Duy Nguyen Ta
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     6/16/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam/linear/VectorValues.h>
 | 
			
		||||
#include <gtsam_unstable/linear/QP.h>
 | 
			
		||||
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include <set>
 | 
			
		||||
#include <gtsam_unstable/linear/ActiveSetSolver.h>
 | 
			
		||||
#include <gtsam_unstable/linear/QPInitSolver.h>
 | 
			
		||||
#include <limits>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/// This struct holds the state of QPSolver at each iteration
 | 
			
		||||
struct QPState {
 | 
			
		||||
  VectorValues values;
 | 
			
		||||
  VectorValues duals;
 | 
			
		||||
  LinearInequalityFactorGraph workingSet;
 | 
			
		||||
  bool converged;
 | 
			
		||||
/// Policy for ActivetSetSolver to solve Linear Programming \sa QP problems
 | 
			
		||||
struct QPPolicy {
 | 
			
		||||
  /// Maximum alpha for line search x'=xk + alpha*p, where p is the cost gradient
 | 
			
		||||
  /// For QP, maxAlpha = 1 is the minimum point of the quadratic cost
 | 
			
		||||
  static constexpr double maxAlpha = 1.0;
 | 
			
		||||
 | 
			
		||||
  /// default constructor
 | 
			
		||||
  QPState() :
 | 
			
		||||
      values(), duals(), workingSet(), converged(false) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// constructor with initial values
 | 
			
		||||
  QPState(const VectorValues& initialValues, const VectorValues& initialDuals,
 | 
			
		||||
      const LinearInequalityFactorGraph& initialWorkingSet, bool _converged) :
 | 
			
		||||
      values(initialValues), duals(initialDuals), workingSet(initialWorkingSet), converged(
 | 
			
		||||
          _converged) {
 | 
			
		||||
  /// Simply the cost of the QP problem
 | 
			
		||||
  static const GaussianFactorGraph& buildCostFunction(
 | 
			
		||||
      const QP& qp, const VectorValues& xk = VectorValues()) {
 | 
			
		||||
    return qp.cost;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * This class implements the active set method to solve quadratic programming problems
 | 
			
		||||
 * encoded in a GaussianFactorGraph with special mixed constrained noise models, in which
 | 
			
		||||
 * a negative sigma denotes an inequality <=0 constraint,
 | 
			
		||||
 * a zero sigma denotes an equality =0 constraint,
 | 
			
		||||
 * and a positive sigma denotes a normal Gaussian noise model.
 | 
			
		||||
 */
 | 
			
		||||
class QPSolver {
 | 
			
		||||
using QPSolver = ActiveSetSolver<QP, QPPolicy, QPInitSolver>;
 | 
			
		||||
 | 
			
		||||
  const QP& qp_; //!< factor graphs of the QP problem, can't be modified!
 | 
			
		||||
  GaussianFactorGraph baseGraph_; //!< factor graphs of cost factors and linear equalities. The working set of inequalities will be added to this base graph in the process.
 | 
			
		||||
  VariableIndex costVariableIndex_, equalityVariableIndex_,
 | 
			
		||||
      inequalityVariableIndex_;
 | 
			
		||||
  KeySet constrainedKeys_; //!< all constrained keys, will become factors in the dual graph
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  /// Constructor
 | 
			
		||||
  QPSolver(const QP& qp);
 | 
			
		||||
 | 
			
		||||
  /// Find solution with the current working set
 | 
			
		||||
  VectorValues solveWithCurrentWorkingSet(
 | 
			
		||||
      const LinearInequalityFactorGraph& workingSet) const;
 | 
			
		||||
 | 
			
		||||
  /// @name Build the dual graph
 | 
			
		||||
  /// @{
 | 
			
		||||
 | 
			
		||||
  /// Collect the Jacobian terms for a dual factor
 | 
			
		||||
  template<typename FACTOR>
 | 
			
		||||
  std::vector<std::pair<Key, Matrix> > collectDualJacobians(Key key,
 | 
			
		||||
      const FactorGraph<FACTOR>& graph,
 | 
			
		||||
      const VariableIndex& variableIndex) const {
 | 
			
		||||
    std::vector<std::pair<Key, Matrix> > Aterms;
 | 
			
		||||
    if (variableIndex.find(key) != variableIndex.end()) {
 | 
			
		||||
      for(size_t factorIx: variableIndex[key]){
 | 
			
		||||
      typename FACTOR::shared_ptr factor = graph.at(factorIx);
 | 
			
		||||
      if (!factor->active()) continue;
 | 
			
		||||
      Matrix Ai = factor->getA(factor->find(key)).transpose();
 | 
			
		||||
      Aterms.push_back(std::make_pair(factor->dualKey(), Ai));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
    return Aterms;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// Create a dual factor
 | 
			
		||||
  JacobianFactor::shared_ptr createDualFactor(Key key,
 | 
			
		||||
      const LinearInequalityFactorGraph& workingSet,
 | 
			
		||||
      const VectorValues& delta) const;
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Build the dual graph to solve for the Lagrange multipliers.
 | 
			
		||||
   *
 | 
			
		||||
   * The Lagrangian function is:
 | 
			
		||||
   *        L(X,lambdas) = f(X) - \sum_k lambda_k * c_k(X),
 | 
			
		||||
   * where the unconstrained part is
 | 
			
		||||
   *        f(X) = 0.5*X'*G*X - X'*g + 0.5*f0
 | 
			
		||||
   * and the linear equality constraints are
 | 
			
		||||
   *        c1(X), c2(X), ..., cm(X)
 | 
			
		||||
   *
 | 
			
		||||
   * Take the derivative of L wrt X at the solution and set it to 0, we have
 | 
			
		||||
   *    \grad f(X) = \sum_k lambda_k * \grad c_k(X)   (*)
 | 
			
		||||
   *
 | 
			
		||||
   * For each set of rows of (*) corresponding to a variable xi involving in some constraints
 | 
			
		||||
   * we have:
 | 
			
		||||
   *    \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
 | 
			
		||||
   *    \grad c_k(xi) = \frac{\partial c_k}{\partial xi}'
 | 
			
		||||
   *
 | 
			
		||||
   * Note: If xi does not involve in any constraint, we have the trivial condition
 | 
			
		||||
   * \grad f(Xi) = 0, which should be satisfied as a usual condition for unconstrained variables.
 | 
			
		||||
   *
 | 
			
		||||
   * So each variable xi involving in some constraints becomes a linear factor A*lambdas - b = 0
 | 
			
		||||
   * on the constraints' lambda multipliers, as follows:
 | 
			
		||||
   *    - The jacobian term A_k for each lambda_k is \grad c_k(xi)
 | 
			
		||||
   *    - The constant term b is \grad f(xi), which can be computed from all unconstrained
 | 
			
		||||
   *    Hessian factors connecting to xi: \grad f(xi) = \sum_j G_ij*xj - gi
 | 
			
		||||
   */
 | 
			
		||||
  GaussianFactorGraph::shared_ptr buildDualGraph(
 | 
			
		||||
      const LinearInequalityFactorGraph& workingSet,
 | 
			
		||||
      const VectorValues& delta) const;
 | 
			
		||||
 | 
			
		||||
  /// @}
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * The goal of this function is to find currently active inequality constraints
 | 
			
		||||
   * that violate the condition to be active. The one that violates the condition
 | 
			
		||||
   * the most will be removed from the active set. See Nocedal06book, pg 469-471
 | 
			
		||||
   *
 | 
			
		||||
   * Find the BAD active inequality that pulls x strongest to the wrong direction
 | 
			
		||||
   * of its constraint (i.e. it is pulling towards >0, while its feasible region is <=0)
 | 
			
		||||
   *
 | 
			
		||||
   * For active inequality constraints (those that are enforced as equality constraints
 | 
			
		||||
   * in the current working set), we want lambda < 0.
 | 
			
		||||
   * This is because:
 | 
			
		||||
   *   - From the Lagrangian L = f - lambda*c, we know that the constraint force
 | 
			
		||||
   *     is (lambda * \grad c) = \grad f. Intuitively, to keep the solution x stay
 | 
			
		||||
   *     on the constraint surface, the constraint force has to balance out with
 | 
			
		||||
   *     other unconstrained forces that are pulling x towards the unconstrained
 | 
			
		||||
   *     minimum point. The other unconstrained forces are pulling x toward (-\grad f),
 | 
			
		||||
   *     hence the constraint force has to be exactly \grad f, so that the total
 | 
			
		||||
   *     force is 0.
 | 
			
		||||
   *   - We also know that  at the constraint surface c(x)=0, \grad c points towards + (>= 0),
 | 
			
		||||
   *     while we are solving for - (<=0) constraint.
 | 
			
		||||
   *   - We want the constraint force (lambda * \grad c) to pull x towards the - (<=0) direction
 | 
			
		||||
   *     i.e., the opposite direction of \grad c where the inequality constraint <=0 is satisfied.
 | 
			
		||||
   *     That means we want lambda < 0.
 | 
			
		||||
   *   - This is because when the constrained force pulls x towards the infeasible region (+),
 | 
			
		||||
   *     the unconstrained force is pulling x towards the opposite direction into
 | 
			
		||||
   *     the feasible region (again because the total force has to be 0 to make x stay still)
 | 
			
		||||
   *     So we can drop this constraint to have a lower error but feasible solution.
 | 
			
		||||
   *
 | 
			
		||||
   * In short, active inequality constraints with lambda > 0 are BAD, because they
 | 
			
		||||
   * violate the condition to be active.
 | 
			
		||||
   *
 | 
			
		||||
   * And we want to remove the worst one with the largest lambda from the active set.
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
  int identifyLeavingConstraint(const LinearInequalityFactorGraph& workingSet,
 | 
			
		||||
      const VectorValues& lambdas) const;
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Compute step size alpha for the new solution x' = xk + alpha*p, where alpha \in [0,1]
 | 
			
		||||
   *
 | 
			
		||||
   *    @return a tuple of (alpha, factorIndex, sigmaIndex) where (factorIndex, sigmaIndex)
 | 
			
		||||
   *            is the constraint that has minimum alpha, or (-1,-1) if alpha = 1.
 | 
			
		||||
   *            This constraint will be added to the working set and become active
 | 
			
		||||
   *            in the next iteration
 | 
			
		||||
   */
 | 
			
		||||
  boost::tuple<double, int> computeStepSize(
 | 
			
		||||
      const LinearInequalityFactorGraph& workingSet, const VectorValues& xk,
 | 
			
		||||
      const VectorValues& p) const;
 | 
			
		||||
 | 
			
		||||
  /** Iterate 1 step, return a new state with a new workingSet and values */
 | 
			
		||||
  QPState iterate(const QPState& state) const;
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Identify active constraints based on initial values.
 | 
			
		||||
   */
 | 
			
		||||
  LinearInequalityFactorGraph identifyActiveConstraints(
 | 
			
		||||
      const LinearInequalityFactorGraph& inequalities,
 | 
			
		||||
      const VectorValues& initialValues) const;
 | 
			
		||||
 | 
			
		||||
  /** Optimize with a provided initial values
 | 
			
		||||
   * For this version, it is the responsibility of the caller to provide
 | 
			
		||||
   * a feasible initial value.
 | 
			
		||||
   * @return a pair of <primal, dual> solutions
 | 
			
		||||
   */
 | 
			
		||||
  std::pair<VectorValues, VectorValues> optimize(
 | 
			
		||||
      const VectorValues& initialValues) const;
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} /* namespace gtsam */
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,271 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     RawQP.cpp
 | 
			
		||||
 * @brief    
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     3/5/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/RawQP.h>
 | 
			
		||||
#include <iostream>
 | 
			
		||||
 | 
			
		||||
using boost::fusion::at_c;
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
void RawQP::setName(
 | 
			
		||||
    boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>> const &name) {
 | 
			
		||||
  name_ = std::string(at_c < 1 > (name).begin(), at_c < 1 > (name).end());
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    std::cout << "Parsing file: " << name_ << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void RawQP::addColumn(
 | 
			
		||||
    boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>, std::vector<char>, double,
 | 
			
		||||
        std::vector<char>> const &vars) {
 | 
			
		||||
 | 
			
		||||
  std::string var_(at_c < 1 > (vars).begin(), at_c < 1 > (vars).end());
 | 
			
		||||
  std::string row_(at_c < 3 > (vars).begin(), at_c < 3 > (vars).end());
 | 
			
		||||
  Matrix11 coefficient = at_c < 5 > (vars) * I_1x1;
 | 
			
		||||
 | 
			
		||||
  if (!varname_to_key.count(var_))
 | 
			
		||||
    varname_to_key[var_] = Symbol('X', varNumber++);
 | 
			
		||||
  if (row_ == obj_name) {
 | 
			
		||||
    g[varname_to_key[var_]] = coefficient;
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
  (*row_to_constraint_v[row_])[row_][varname_to_key[var_]] = coefficient;
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    std::cout << "Added Column for Var: " << var_ << " Row: " << row_
 | 
			
		||||
        << " Coefficient: " << coefficient << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void RawQP::addColumnDouble(
 | 
			
		||||
    boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>, double, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>, double> const &vars) {
 | 
			
		||||
 | 
			
		||||
  std::string var_(at_c < 0 > (vars).begin(), at_c < 0 > (vars).end());
 | 
			
		||||
  std::string row1_(at_c < 2 > (vars).begin(), at_c < 2 > (vars).end());
 | 
			
		||||
  std::string row2_(at_c < 6 > (vars).begin(), at_c < 6 > (vars).end());
 | 
			
		||||
  Matrix11 coefficient1 = at_c < 4 > (vars) * I_1x1;
 | 
			
		||||
  Matrix11 coefficient2 = at_c < 8 > (vars) * I_1x1;
 | 
			
		||||
  if (!varname_to_key.count(var_))
 | 
			
		||||
    varname_to_key.insert( { var_, Symbol('X', varNumber++) });
 | 
			
		||||
  if (row1_ == obj_name)
 | 
			
		||||
    g[varname_to_key[var_]] = coefficient1;
 | 
			
		||||
  else
 | 
			
		||||
    (*row_to_constraint_v[row1_])[row1_][varname_to_key[var_]] = coefficient1;
 | 
			
		||||
  if (row2_ == obj_name)
 | 
			
		||||
    g[varname_to_key[var_]] = coefficient2;
 | 
			
		||||
  else
 | 
			
		||||
    (*row_to_constraint_v[row2_])[row2_][varname_to_key[var_]] = coefficient2;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void RawQP::addRHS(
 | 
			
		||||
    boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>, std::vector<char>, double,
 | 
			
		||||
        std::vector<char>> const &vars) {
 | 
			
		||||
 | 
			
		||||
  std::string var_(at_c < 1 > (vars).begin(), at_c < 1 > (vars).end());
 | 
			
		||||
  std::string row_(at_c < 3 > (vars).begin(), at_c < 3 > (vars).end());
 | 
			
		||||
  double coefficient = at_c < 5 > (vars);
 | 
			
		||||
  if (row_ == obj_name)
 | 
			
		||||
    f = -coefficient;
 | 
			
		||||
  else
 | 
			
		||||
    b[row_] = coefficient;
 | 
			
		||||
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    std::cout << "Added RHS for Var: " << var_ << " Row: " << row_
 | 
			
		||||
        << " Coefficient: " << coefficient << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void RawQP::addRHSDouble(
 | 
			
		||||
    boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>, std::vector<char>, double,
 | 
			
		||||
        std::vector<char>, std::vector<char>, std::vector<char>, double> const &vars) {
 | 
			
		||||
 | 
			
		||||
  std::string var_(at_c < 1 > (vars).begin(), at_c < 1 > (vars).end());
 | 
			
		||||
  std::string row1_(at_c < 3 > (vars).begin(), at_c < 3 > (vars).end());
 | 
			
		||||
  std::string row2_(at_c < 7 > (vars).begin(), at_c < 7 > (vars).end());
 | 
			
		||||
  double coefficient1 = at_c < 5 > (vars);
 | 
			
		||||
  double coefficient2 = at_c < 9 > (vars);
 | 
			
		||||
  if (row1_ == obj_name)
 | 
			
		||||
    f = -coefficient1;
 | 
			
		||||
  else
 | 
			
		||||
    b[row1_] = coefficient1;
 | 
			
		||||
 | 
			
		||||
  if (row2_ == obj_name)
 | 
			
		||||
    f = -coefficient2;
 | 
			
		||||
  else
 | 
			
		||||
    b[row2_] = coefficient2;
 | 
			
		||||
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    std::cout << "Added RHS for Var: " << var_ << " Row: " << row1_
 | 
			
		||||
        << " Coefficient: " << coefficient1 << std::endl;
 | 
			
		||||
    std::cout << "                      " << "Row: " << row2_
 | 
			
		||||
        << " Coefficient: " << coefficient2 << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void RawQP::addRow(
 | 
			
		||||
    boost::fusion::vector<std::vector<char>, char, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>> const &vars) {
 | 
			
		||||
 | 
			
		||||
  std::string name_(at_c < 3 > (vars).begin(), at_c < 3 > (vars).end());
 | 
			
		||||
  char type = at_c < 1 > (vars);
 | 
			
		||||
  switch (type) {
 | 
			
		||||
  case 'N':
 | 
			
		||||
    obj_name = name_;
 | 
			
		||||
    break;
 | 
			
		||||
  case 'L':
 | 
			
		||||
    row_to_constraint_v[name_] = &IL;
 | 
			
		||||
    break;
 | 
			
		||||
  case 'G':
 | 
			
		||||
    row_to_constraint_v[name_] = &IG;
 | 
			
		||||
    break;
 | 
			
		||||
  case 'E':
 | 
			
		||||
    row_to_constraint_v[name_] = &E;
 | 
			
		||||
    break;
 | 
			
		||||
  default:
 | 
			
		||||
    std::cout << "invalid type: " << type << std::endl;
 | 
			
		||||
    break;
 | 
			
		||||
  }
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    std::cout << "Added Row Type: " << type << " Name: " << name_ << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void RawQP::addBound(
 | 
			
		||||
    boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>, double> const &vars) {
 | 
			
		||||
 | 
			
		||||
  std::string type_(at_c < 1 > (vars).begin(), at_c < 1 > (vars).end());
 | 
			
		||||
  std::string var_(at_c < 5 > (vars).begin(), at_c < 5 > (vars).end());
 | 
			
		||||
  double number = at_c < 7 > (vars);
 | 
			
		||||
  if (type_.compare(std::string("UP")) == 0)
 | 
			
		||||
    up[varname_to_key[var_]] = number;
 | 
			
		||||
  else if (type_.compare(std::string("LO")) == 0)
 | 
			
		||||
    lo[varname_to_key[var_]] = number;
 | 
			
		||||
  else
 | 
			
		||||
    std::cout << "Invalid Bound Type: " << type_ << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    std::cout << "Added Bound Type: " << type_ << " Var: " << var_
 | 
			
		||||
        << " Amount: " << number << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void RawQP::addBoundFr(
 | 
			
		||||
    boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>> const &vars) {
 | 
			
		||||
  std::string type_(at_c < 1 > (vars).begin(), at_c < 1 > (vars).end());
 | 
			
		||||
  std::string var_(at_c < 5 > (vars).begin(), at_c < 5 > (vars).end());
 | 
			
		||||
  Free.push_back(varname_to_key[var_]);
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    std::cout << "Added Free Bound Type: " << type_ << " Var: " << var_
 | 
			
		||||
        << " Amount: " << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void RawQP::addQuadTerm(
 | 
			
		||||
    boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
        std::vector<char>, std::vector<char>, std::vector<char>, double,
 | 
			
		||||
        std::vector<char>> const &vars) {
 | 
			
		||||
  std::string var1_(at_c < 1 > (vars).begin(), at_c < 1 > (vars).end());
 | 
			
		||||
  std::string var2_(at_c < 3 > (vars).begin(), at_c < 3 > (vars).end());
 | 
			
		||||
  Matrix11 coefficient = at_c < 5 > (vars) * I_1x1;
 | 
			
		||||
 | 
			
		||||
  H[varname_to_key[var1_]][varname_to_key[var2_]] = coefficient;
 | 
			
		||||
  H[varname_to_key[var2_]][varname_to_key[var1_]] = coefficient;
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    std::cout << "Added QuadTerm for Var: " << var1_ << " Row: " << var2_
 | 
			
		||||
        << " Coefficient: " << coefficient << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
QP RawQP::makeQP() {
 | 
			
		||||
  std::vector < Key > keys;
 | 
			
		||||
  std::vector < Matrix > Gs;
 | 
			
		||||
  std::vector < Vector > gs;
 | 
			
		||||
  for (auto kv : varname_to_key) {
 | 
			
		||||
    keys.push_back(kv.second);
 | 
			
		||||
  }
 | 
			
		||||
  std::sort(keys.begin(), keys.end());
 | 
			
		||||
  for (unsigned int i = 0; i < keys.size(); ++i) {
 | 
			
		||||
    for (unsigned int j = i; j < keys.size(); ++j) {
 | 
			
		||||
      Gs.push_back(H[keys[i]][keys[j]]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for (Key key1 : keys) {
 | 
			
		||||
    gs.push_back(-g[key1]);
 | 
			
		||||
  }
 | 
			
		||||
  int dual_key_num = keys.size() + 1;
 | 
			
		||||
  QP madeQP;
 | 
			
		||||
  auto obj = HessianFactor(keys, Gs, gs, f);
 | 
			
		||||
 | 
			
		||||
  madeQP.cost.push_back(obj);
 | 
			
		||||
 | 
			
		||||
  for (auto kv : E) {
 | 
			
		||||
    std::map<Key, Matrix11> keyMatrixMap;
 | 
			
		||||
    for (auto km : kv.second) {
 | 
			
		||||
      keyMatrixMap.insert(km);
 | 
			
		||||
    }
 | 
			
		||||
    madeQP.equalities.push_back(
 | 
			
		||||
        LinearEquality(keyMatrixMap, b[kv.first] * I_1x1, dual_key_num++));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (auto kv : IG) {
 | 
			
		||||
    std::map<Key, Matrix11> keyMatrixMap;
 | 
			
		||||
    for (auto km : kv.second) {
 | 
			
		||||
      km.second = -km.second;
 | 
			
		||||
      keyMatrixMap.insert(km);
 | 
			
		||||
    }
 | 
			
		||||
    madeQP.inequalities.push_back(
 | 
			
		||||
        LinearInequality(keyMatrixMap, -b[kv.first], dual_key_num++));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (auto kv : IL) {
 | 
			
		||||
    std::map<Key, Matrix11> keyMatrixMap;
 | 
			
		||||
    for (auto km : kv.second) {
 | 
			
		||||
      keyMatrixMap.insert(km);
 | 
			
		||||
    }
 | 
			
		||||
    madeQP.inequalities.push_back(
 | 
			
		||||
        LinearInequality(keyMatrixMap, b[kv.first], dual_key_num++));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (Key k : keys) {
 | 
			
		||||
    if (std::find(Free.begin(), Free.end(), k) != Free.end())
 | 
			
		||||
      continue;
 | 
			
		||||
    if (up.count(k) == 1)
 | 
			
		||||
      madeQP.inequalities.push_back(
 | 
			
		||||
          LinearInequality(k, I_1x1, up[k], dual_key_num++));
 | 
			
		||||
    if (lo.count(k) == 1)
 | 
			
		||||
      madeQP.inequalities.push_back(
 | 
			
		||||
          LinearInequality(k, -I_1x1, lo[k], dual_key_num++));
 | 
			
		||||
    else
 | 
			
		||||
      madeQP.inequalities.push_back(
 | 
			
		||||
          LinearInequality(k, -I_1x1, 0, dual_key_num++));
 | 
			
		||||
  }
 | 
			
		||||
  return madeQP;
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,106 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file     RawQP.h
 | 
			
		||||
 * @brief    
 | 
			
		||||
 * @author   Ivan Dario Jimenez
 | 
			
		||||
 * @date     3/5/16
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/QP.h>
 | 
			
		||||
#include <gtsam/base/Matrix.h>
 | 
			
		||||
#include <gtsam/inference/Key.h>
 | 
			
		||||
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include <unordered_map>
 | 
			
		||||
#include <gtsam/inference/Symbol.h>
 | 
			
		||||
#include <boost/fusion/sequence.hpp>
 | 
			
		||||
#include <boost/fusion/include/vector.hpp>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
class RawQP {
 | 
			
		||||
private:
 | 
			
		||||
  typedef std::unordered_map<Key, Matrix11> coefficient_v;
 | 
			
		||||
  typedef std::unordered_map<std::string, coefficient_v> constraint_v;
 | 
			
		||||
 | 
			
		||||
  std::unordered_map<std::string, constraint_v*> row_to_constraint_v;
 | 
			
		||||
  constraint_v E;
 | 
			
		||||
  constraint_v IG;
 | 
			
		||||
  constraint_v IL;
 | 
			
		||||
  unsigned int varNumber;
 | 
			
		||||
  std::unordered_map<std::string, double> b;
 | 
			
		||||
  std::unordered_map<Key, Vector1> g;
 | 
			
		||||
  std::unordered_map<std::string, Key> varname_to_key;
 | 
			
		||||
  std::unordered_map<Key, std::unordered_map<Key, Matrix11> > H;
 | 
			
		||||
  double f;
 | 
			
		||||
  std::string obj_name;
 | 
			
		||||
  std::string name_;
 | 
			
		||||
  std::unordered_map<Key, double> up;
 | 
			
		||||
  std::unordered_map<Key, double> lo;
 | 
			
		||||
  std::vector<Key> Free;
 | 
			
		||||
  const bool debug = false;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  RawQP() :
 | 
			
		||||
      row_to_constraint_v(), E(), IG(), IL(), varNumber(1), b(), g(), varname_to_key(), H(), f(), obj_name(), name_(), up(), lo(), Free() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void setName(
 | 
			
		||||
      boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>> const & name);
 | 
			
		||||
 | 
			
		||||
  void addColumn(
 | 
			
		||||
      boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>, std::vector<char>, double,
 | 
			
		||||
          std::vector<char>> const & vars);
 | 
			
		||||
 | 
			
		||||
  void addColumnDouble(
 | 
			
		||||
      boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>, double, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>, double> const & vars);
 | 
			
		||||
 | 
			
		||||
  void addRHS(
 | 
			
		||||
      boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>, std::vector<char>, double,
 | 
			
		||||
          std::vector<char>> const & vars);
 | 
			
		||||
 | 
			
		||||
  void addRHSDouble(
 | 
			
		||||
      boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>, std::vector<char>, double,
 | 
			
		||||
          std::vector<char>, std::vector<char>, std::vector<char>, double> const & vars);
 | 
			
		||||
 | 
			
		||||
  void addRow(
 | 
			
		||||
      boost::fusion::vector<std::vector<char>, char, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>> const & vars);
 | 
			
		||||
 | 
			
		||||
  void addBound(
 | 
			
		||||
      boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>, double> const & vars);
 | 
			
		||||
 | 
			
		||||
  void addBoundFr(
 | 
			
		||||
      boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>> const & vars);
 | 
			
		||||
 | 
			
		||||
  void addQuadTerm(
 | 
			
		||||
      boost::fusion::vector<std::vector<char>, std::vector<char>,
 | 
			
		||||
          std::vector<char>, std::vector<char>, std::vector<char>, double,
 | 
			
		||||
          std::vector<char>> const & vars);
 | 
			
		||||
 | 
			
		||||
  QP makeQP();
 | 
			
		||||
}
 | 
			
		||||
;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,255 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @file testQPSolver.cpp
 | 
			
		||||
 * @brief Test simple QP solver for a linear inequality constraint
 | 
			
		||||
 * @date Apr 10, 2014
 | 
			
		||||
 * @author Duy-Nguyen Ta
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam/base/Testable.h>
 | 
			
		||||
#include <gtsam/inference/Symbol.h>
 | 
			
		||||
#include <gtsam/inference/FactorGraph-inst.h>
 | 
			
		||||
#include <gtsam/linear/VectorValues.h>
 | 
			
		||||
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/EqualityFactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/InequalityFactorGraph.h>
 | 
			
		||||
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | 
			
		||||
#include <CppUnitLite/TestHarness.h>
 | 
			
		||||
#include <boost/foreach.hpp>
 | 
			
		||||
#include <boost/range/adaptor/map.hpp>
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/LPSolver.h>
 | 
			
		||||
#include <gtsam_unstable/linear/LPInitSolver.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace gtsam;
 | 
			
		||||
using namespace gtsam::symbol_shorthand;
 | 
			
		||||
 | 
			
		||||
static const Vector kOne = Vector::Ones(1), kZero = Vector::Zero(1);
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
/**
 | 
			
		||||
 * min -x1-x2
 | 
			
		||||
 * s.t.   x1 + 2x2 <= 4
 | 
			
		||||
 *       4x1 + 2x2 <= 12
 | 
			
		||||
 *       -x1 +  x2 <= 1
 | 
			
		||||
 *       x1, x2 >= 0
 | 
			
		||||
 */
 | 
			
		||||
LP simpleLP1() {
 | 
			
		||||
  LP lp;
 | 
			
		||||
  lp.cost = LinearCost(1, Vector2(-1., -1.));  // min -x1-x2 (max x1+x2)
 | 
			
		||||
  lp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector2(-1, 0), 0, 1));  // x1 >= 0
 | 
			
		||||
  lp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector2(0, -1), 0, 2));  //  x2 >= 0
 | 
			
		||||
  lp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector2(1, 2), 4, 3));  //  x1 + 2*x2 <= 4
 | 
			
		||||
  lp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector2(4, 2), 12, 4));  //  4x1 + 2x2 <= 12
 | 
			
		||||
  lp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector2(-1, 1), 1, 5));  //  -x1 + x2 <= 1
 | 
			
		||||
  return lp;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
TEST(LPInitSolver, infinite_loop_single_var) {
 | 
			
		||||
  LP initchecker;
 | 
			
		||||
  initchecker.cost = LinearCost(1, Vector3(0, 0, 1));  // min alpha
 | 
			
		||||
  initchecker.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector3(-2, -1, -1), -2, 1));  //-2x-y-alpha <= -2
 | 
			
		||||
  initchecker.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector3(-1, 2, -1), 6, 2));  // -x+2y-alpha <= 6
 | 
			
		||||
  initchecker.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector3(-1, 0, -1), 0, 3));  // -x - alpha <= 0
 | 
			
		||||
  initchecker.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector3(1, 0, -1), 20, 4));  // x - alpha <= 20
 | 
			
		||||
  initchecker.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector3(0, -1, -1), 0, 5));  // -y - alpha <= 0
 | 
			
		||||
  LPSolver solver(initchecker);
 | 
			
		||||
  VectorValues starter;
 | 
			
		||||
  starter.insert(1, Vector3(0, 0, 2));
 | 
			
		||||
  VectorValues results, duals;
 | 
			
		||||
  boost::tie(results, duals) = solver.optimize(starter);
 | 
			
		||||
  VectorValues expected;
 | 
			
		||||
  expected.insert(1, Vector3(13.5, 6.5, -6.5));
 | 
			
		||||
  CHECK(assert_equal(results, expected, 1e-7));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(LPInitSolver, infinite_loop_multi_var) {
 | 
			
		||||
  LP initchecker;
 | 
			
		||||
  Key X = symbol('X', 1);
 | 
			
		||||
  Key Y = symbol('Y', 1);
 | 
			
		||||
  Key Z = symbol('Z', 1);
 | 
			
		||||
  initchecker.cost = LinearCost(Z, kOne);  // min alpha
 | 
			
		||||
  initchecker.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X, -2.0 * kOne, Y, -1.0 * kOne, Z, -1.0 * kOne, -2,
 | 
			
		||||
                       1));  //-2x-y-alpha <= -2
 | 
			
		||||
  initchecker.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X, -1.0 * kOne, Y, 2.0 * kOne, Z, -1.0 * kOne, 6,
 | 
			
		||||
                       2));  // -x+2y-alpha <= 6
 | 
			
		||||
  initchecker.inequalities.push_back(LinearInequality(
 | 
			
		||||
      X, -1.0 * kOne, Z, -1.0 * kOne, 0, 3));  // -x - alpha <= 0
 | 
			
		||||
  initchecker.inequalities.push_back(LinearInequality(
 | 
			
		||||
      X, 1.0 * kOne, Z, -1.0 * kOne, 20, 4));  // x - alpha <= 20
 | 
			
		||||
  initchecker.inequalities.push_back(LinearInequality(
 | 
			
		||||
      Y, -1.0 * kOne, Z, -1.0 * kOne, 0, 5));  // -y - alpha <= 0
 | 
			
		||||
  LPSolver solver(initchecker);
 | 
			
		||||
  VectorValues starter;
 | 
			
		||||
  starter.insert(X, kZero);
 | 
			
		||||
  starter.insert(Y, kZero);
 | 
			
		||||
  starter.insert(Z, Vector::Constant(1, 2.0));
 | 
			
		||||
  VectorValues results, duals;
 | 
			
		||||
  boost::tie(results, duals) = solver.optimize(starter);
 | 
			
		||||
  VectorValues expected;
 | 
			
		||||
  expected.insert(X, Vector::Constant(1, 13.5));
 | 
			
		||||
  expected.insert(Y, Vector::Constant(1, 6.5));
 | 
			
		||||
  expected.insert(Z, Vector::Constant(1, -6.5));
 | 
			
		||||
  CHECK(assert_equal(results, expected, 1e-7));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(LPInitSolver, initialization) {
 | 
			
		||||
  LP lp = simpleLP1();
 | 
			
		||||
  LPInitSolver initSolver(lp);
 | 
			
		||||
 | 
			
		||||
  GaussianFactorGraph::shared_ptr initOfInitGraph =
 | 
			
		||||
      initSolver.buildInitOfInitGraph();
 | 
			
		||||
  VectorValues x0 = initOfInitGraph->optimize();
 | 
			
		||||
  VectorValues expected_x0;
 | 
			
		||||
  expected_x0.insert(1, Vector::Zero(2));
 | 
			
		||||
  CHECK(assert_equal(expected_x0, x0, 1e-10));
 | 
			
		||||
 | 
			
		||||
  double y0 = initSolver.compute_y0(x0);
 | 
			
		||||
  double expected_y0 = 0.0;
 | 
			
		||||
  DOUBLES_EQUAL(expected_y0, y0, 1e-7);
 | 
			
		||||
 | 
			
		||||
  Key yKey = 2;
 | 
			
		||||
  LP::shared_ptr initLP = initSolver.buildInitialLP(yKey);
 | 
			
		||||
  LP expectedInitLP;
 | 
			
		||||
  expectedInitLP.cost = LinearCost(yKey, kOne);
 | 
			
		||||
  expectedInitLP.inequalities.push_back(LinearInequality(
 | 
			
		||||
      1, Vector2(-1, 0), 2, Vector::Constant(1, -1), 0, 1));  // -x1 - y <= 0
 | 
			
		||||
  expectedInitLP.inequalities.push_back(LinearInequality(
 | 
			
		||||
      1, Vector2(0, -1), 2, Vector::Constant(1, -1), 0, 2));  // -x2 - y <= 0
 | 
			
		||||
  expectedInitLP.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector2(1, 2), 2, Vector::Constant(1, -1), 4,
 | 
			
		||||
                       3));  //  x1 + 2*x2 - y <= 4
 | 
			
		||||
  expectedInitLP.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector2(4, 2), 2, Vector::Constant(1, -1), 12,
 | 
			
		||||
                       4));  //  4x1 + 2x2 - y <= 12
 | 
			
		||||
  expectedInitLP.inequalities.push_back(
 | 
			
		||||
      LinearInequality(1, Vector2(-1, 1), 2, Vector::Constant(1, -1), 1,
 | 
			
		||||
                       5));  //  -x1 + x2 - y <= 1
 | 
			
		||||
  CHECK(assert_equal(expectedInitLP, *initLP, 1e-10));
 | 
			
		||||
  LPSolver lpSolveInit(*initLP);
 | 
			
		||||
  VectorValues xy0(x0);
 | 
			
		||||
  xy0.insert(yKey, Vector::Constant(1, y0));
 | 
			
		||||
  VectorValues xyInit = lpSolveInit.optimize(xy0).first;
 | 
			
		||||
  VectorValues expected_init;
 | 
			
		||||
  expected_init.insert(1, Vector::Ones(2));
 | 
			
		||||
  expected_init.insert(2, Vector::Constant(1, -1));
 | 
			
		||||
  CHECK(assert_equal(expected_init, xyInit, 1e-10));
 | 
			
		||||
 | 
			
		||||
  VectorValues x = initSolver.solve();
 | 
			
		||||
  CHECK(lp.isFeasible(x));
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
/**
 | 
			
		||||
 * TEST gtsam solver with an over-constrained system
 | 
			
		||||
 *  x + y = 1
 | 
			
		||||
 *  x - y = 5
 | 
			
		||||
 *  x + 2y = 6
 | 
			
		||||
 */
 | 
			
		||||
TEST(LPSolver, overConstrainedLinearSystem) {
 | 
			
		||||
  GaussianFactorGraph graph;
 | 
			
		||||
  Matrix A1 = Vector3(1, 1, 1);
 | 
			
		||||
  Matrix A2 = Vector3(1, -1, 2);
 | 
			
		||||
  Vector b = Vector3(1, 5, 6);
 | 
			
		||||
  JacobianFactor factor(1, A1, 2, A2, b, noiseModel::Constrained::All(3));
 | 
			
		||||
  graph.push_back(factor);
 | 
			
		||||
 | 
			
		||||
  VectorValues x = graph.optimize();
 | 
			
		||||
  // This check confirms that gtsam linear constraint solver can't handle
 | 
			
		||||
  // over-constrained system
 | 
			
		||||
  CHECK(factor.error(x) != 0.0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(LPSolver, overConstrainedLinearSystem2) {
 | 
			
		||||
  GaussianFactorGraph graph;
 | 
			
		||||
  graph.push_back(JacobianFactor(1, I_1x1, 2, I_1x1, kOne,
 | 
			
		||||
                                 noiseModel::Constrained::All(1)));
 | 
			
		||||
  graph.push_back(JacobianFactor(1, I_1x1, 2, -I_1x1, 5 * kOne,
 | 
			
		||||
                                 noiseModel::Constrained::All(1)));
 | 
			
		||||
  graph.push_back(JacobianFactor(1, I_1x1, 2, 2 * I_1x1, 6 * kOne,
 | 
			
		||||
                                 noiseModel::Constrained::All(1)));
 | 
			
		||||
  VectorValues x = graph.optimize();
 | 
			
		||||
  // This check confirms that gtsam linear constraint solver can't handle
 | 
			
		||||
  // over-constrained system
 | 
			
		||||
  CHECK(graph.error(x) != 0.0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST(LPSolver, simpleTest1) {
 | 
			
		||||
  LP lp = simpleLP1();
 | 
			
		||||
  LPSolver lpSolver(lp);
 | 
			
		||||
  VectorValues init;
 | 
			
		||||
  init.insert(1, Vector::Zero(2));
 | 
			
		||||
 | 
			
		||||
  VectorValues x1 =
 | 
			
		||||
      lpSolver.buildWorkingGraph(InequalityFactorGraph(), init).optimize();
 | 
			
		||||
  VectorValues expected_x1;
 | 
			
		||||
  expected_x1.insert(1, Vector::Ones(2));
 | 
			
		||||
  CHECK(assert_equal(expected_x1, x1, 1e-10));
 | 
			
		||||
 | 
			
		||||
  VectorValues result, duals;
 | 
			
		||||
  boost::tie(result, duals) = lpSolver.optimize(init);
 | 
			
		||||
  VectorValues expectedResult;
 | 
			
		||||
  expectedResult.insert(1, Vector2(8. / 3., 2. / 3.));
 | 
			
		||||
  CHECK(assert_equal(expectedResult, result, 1e-10));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST(LPSolver, testWithoutInitialValues) {
 | 
			
		||||
  LP lp = simpleLP1();
 | 
			
		||||
  LPSolver lpSolver(lp);
 | 
			
		||||
  VectorValues result, duals, expectedResult;
 | 
			
		||||
  expectedResult.insert(1, Vector2(8. / 3., 2. / 3.));
 | 
			
		||||
  boost::tie(result, duals) = lpSolver.optimize();
 | 
			
		||||
  CHECK(assert_equal(expectedResult, result));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * TODO: More TEST cases:
 | 
			
		||||
 * - Infeasible
 | 
			
		||||
 * - Unbounded
 | 
			
		||||
 * - Underdetermined
 | 
			
		||||
 */
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST(LPSolver, LinearCost) {
 | 
			
		||||
  LinearCost cost(1, Vector3(2., 4., 6.));
 | 
			
		||||
  VectorValues x;
 | 
			
		||||
  x.insert(1, Vector3(1., 3., 5.));
 | 
			
		||||
  double error = cost.error(x);
 | 
			
		||||
  double expectedError = 44.0;
 | 
			
		||||
  DOUBLES_EQUAL(expectedError, error, 1e-100);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
int main() {
 | 
			
		||||
  TestResult tr;
 | 
			
		||||
  return TestRegistry::runAllTests(tr);
 | 
			
		||||
}
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
| 
						 | 
				
			
			@ -12,7 +12,7 @@
 | 
			
		|||
/**
 | 
			
		||||
 *  @file   testLinearEquality.cpp
 | 
			
		||||
 *  @brief  Unit tests for LinearEquality
 | 
			
		||||
 *  @author thduynguyen
 | 
			
		||||
 *  @author Duy-Nguyen Ta
 | 
			
		||||
 **/
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/LinearEquality.h>
 | 
			
		||||
| 
						 | 
				
			
			@ -28,20 +28,20 @@ using namespace std;
 | 
			
		|||
using namespace gtsam;
 | 
			
		||||
using namespace boost::assign;
 | 
			
		||||
 | 
			
		||||
GTSAM_CONCEPT_TESTABLE_INST(LinearEquality)
 | 
			
		||||
GTSAM_CONCEPT_TESTABLE_INST (LinearEquality)
 | 
			
		||||
 | 
			
		||||
namespace {
 | 
			
		||||
  namespace simple {
 | 
			
		||||
    // Terms we'll use
 | 
			
		||||
    const vector<pair<Key, Matrix> > terms = list_of<pair<Key,Matrix> >
 | 
			
		||||
      (make_pair(5, Matrix3::Identity()))
 | 
			
		||||
      (make_pair(10, 2*Matrix3::Identity()))
 | 
			
		||||
      (make_pair(15, 3*Matrix3::Identity()));
 | 
			
		||||
namespace simple {
 | 
			
		||||
// Terms we'll use
 | 
			
		||||
const vector<pair<Key, Matrix> > terms = list_of < pair<Key, Matrix>
 | 
			
		||||
    > (make_pair(5, Matrix3::Identity()))(
 | 
			
		||||
        make_pair(10, 2 * Matrix3::Identity()))(
 | 
			
		||||
        make_pair(15, 3 * Matrix3::Identity()));
 | 
			
		||||
 | 
			
		||||
    // RHS and sigmas
 | 
			
		||||
    const Vector b = (Vector(3) << 1., 2., 3.).finished();
 | 
			
		||||
    const SharedDiagonal noise = noiseModel::Constrained::All(3);
 | 
			
		||||
  }
 | 
			
		||||
// RHS and sigmas
 | 
			
		||||
const Vector b = (Vector(3) << 1., 2., 3.).finished();
 | 
			
		||||
const SharedDiagonal noise = noiseModel::Constrained::All(3);
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
| 
						 | 
				
			
			@ -53,7 +53,7 @@ TEST(LinearEquality, constructors_and_accessors)
 | 
			
		|||
  {
 | 
			
		||||
    // One term constructor
 | 
			
		||||
    LinearEquality expected(
 | 
			
		||||
      boost::make_iterator_range(terms.begin(), terms.begin() + 1), b, 0);
 | 
			
		||||
        boost::make_iterator_range(terms.begin(), terms.begin() + 1), b, 0);
 | 
			
		||||
    LinearEquality actual(terms[0].first, terms[0].second, b, 0);
 | 
			
		||||
    EXPECT(assert_equal(expected, actual));
 | 
			
		||||
    LONGS_EQUAL((long)terms[0].first, (long)actual.keys().back());
 | 
			
		||||
| 
						 | 
				
			
			@ -65,9 +65,9 @@ TEST(LinearEquality, constructors_and_accessors)
 | 
			
		|||
  {
 | 
			
		||||
    // Two term constructor
 | 
			
		||||
    LinearEquality expected(
 | 
			
		||||
      boost::make_iterator_range(terms.begin(), terms.begin() + 2), b, 0);
 | 
			
		||||
        boost::make_iterator_range(terms.begin(), terms.begin() + 2), b, 0);
 | 
			
		||||
    LinearEquality actual(terms[0].first, terms[0].second,
 | 
			
		||||
      terms[1].first, terms[1].second, b, 0);
 | 
			
		||||
        terms[1].first, terms[1].second, b, 0);
 | 
			
		||||
    EXPECT(assert_equal(expected, actual));
 | 
			
		||||
    LONGS_EQUAL((long)terms[1].first, (long)actual.keys().back());
 | 
			
		||||
    EXPECT(assert_equal(terms[1].second, actual.getA(actual.end() - 1)));
 | 
			
		||||
| 
						 | 
				
			
			@ -78,9 +78,9 @@ TEST(LinearEquality, constructors_and_accessors)
 | 
			
		|||
  {
 | 
			
		||||
    // Three term constructor
 | 
			
		||||
    LinearEquality expected(
 | 
			
		||||
      boost::make_iterator_range(terms.begin(), terms.begin() + 3), b, 0);
 | 
			
		||||
        boost::make_iterator_range(terms.begin(), terms.begin() + 3), b, 0);
 | 
			
		||||
    LinearEquality actual(terms[0].first, terms[0].second,
 | 
			
		||||
      terms[1].first, terms[1].second, terms[2].first, terms[2].second, b, 0);
 | 
			
		||||
        terms[1].first, terms[1].second, terms[2].first, terms[2].second, b, 0);
 | 
			
		||||
    EXPECT(assert_equal(expected, actual));
 | 
			
		||||
    LONGS_EQUAL((long)terms[2].first, (long)actual.keys().back());
 | 
			
		||||
    EXPECT(assert_equal(terms[2].second, actual.getA(actual.end() - 1)));
 | 
			
		||||
| 
						 | 
				
			
			@ -93,10 +93,10 @@ TEST(LinearEquality, constructors_and_accessors)
 | 
			
		|||
/* ************************************************************************* */
 | 
			
		||||
TEST(LinearEquality, Hessian_conversion) {
 | 
			
		||||
  HessianFactor hessian(0, (Matrix(4,4) <<
 | 
			
		||||
        1.57,        2.695,         -1.1,        -2.35,
 | 
			
		||||
       2.695,      11.3125,        -0.65,      -10.225,
 | 
			
		||||
        -1.1,        -0.65,            1,          0.5,
 | 
			
		||||
       -2.35,      -10.225,          0.5,         9.25).finished(),
 | 
			
		||||
          1.57, 2.695, -1.1, -2.35,
 | 
			
		||||
          2.695, 11.3125, -0.65, -10.225,
 | 
			
		||||
          -1.1, -0.65, 1, 0.5,
 | 
			
		||||
          -2.35, -10.225, 0.5, 9.25).finished(),
 | 
			
		||||
      (Vector(4) << -7.885, -28.5175, 2.75, 25.675).finished(),
 | 
			
		||||
      73.1725);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -169,8 +169,8 @@ TEST(LinearEquality, matrices)
 | 
			
		|||
  augmentedJacobianExpected << jacobianExpected, rhsExpected;
 | 
			
		||||
 | 
			
		||||
  Matrix augmentedHessianExpected =
 | 
			
		||||
    augmentedJacobianExpected.transpose() * simple::noise->R().transpose()
 | 
			
		||||
    * simple::noise->R() * augmentedJacobianExpected;
 | 
			
		||||
  augmentedJacobianExpected.transpose() * simple::noise->R().transpose()
 | 
			
		||||
  * simple::noise->R() * augmentedJacobianExpected;
 | 
			
		||||
 | 
			
		||||
  // Whitened Jacobian
 | 
			
		||||
  EXPECT(assert_equal(jacobianExpected, factor.jacobian().first));
 | 
			
		||||
| 
						 | 
				
			
			@ -210,8 +210,8 @@ TEST(LinearEquality, operators )
 | 
			
		|||
  // test gradient at zero
 | 
			
		||||
  Matrix A; Vector b2; boost::tie(A,b2) = lf.jacobian();
 | 
			
		||||
  VectorValues expectedG;
 | 
			
		||||
  expectedG.insert(1, (Vector(2) <<  0.2, -0.1).finished());
 | 
			
		||||
  expectedG.insert(2, (Vector(2) << -0.2,  0.1).finished());
 | 
			
		||||
  expectedG.insert(1, (Vector(2) << 0.2, -0.1).finished());
 | 
			
		||||
  expectedG.insert(2, (Vector(2) << -0.2, 0.1).finished());
 | 
			
		||||
  VectorValues actualG = lf.gradientAtZero();
 | 
			
		||||
  EXPECT(assert_equal(expectedG, actualG));
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -233,5 +233,8 @@ TEST(LinearEquality, empty )
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
			
		||||
int main() {
 | 
			
		||||
  TestResult tr;
 | 
			
		||||
  return TestRegistry::runAllTests(tr);
 | 
			
		||||
}
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -19,14 +19,14 @@
 | 
			
		|||
#include <gtsam/base/Testable.h>
 | 
			
		||||
#include <gtsam/inference/Symbol.h>
 | 
			
		||||
#include <gtsam_unstable/linear/QPSolver.h>
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/linear/QPSParser.h>
 | 
			
		||||
#include <CppUnitLite/TestHarness.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace gtsam;
 | 
			
		||||
using namespace gtsam::symbol_shorthand;
 | 
			
		||||
 | 
			
		||||
const Matrix One = I_1x1;
 | 
			
		||||
static const Vector kOne = Vector::Ones(1), kZero = Vector::Zero(1);
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Create test graph according to Forst10book_pg171Ex5
 | 
			
		||||
| 
						 | 
				
			
			@ -37,15 +37,17 @@ QP createTestCase() {
 | 
			
		|||
  // Note the Hessian encodes:
 | 
			
		||||
  //        0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
 | 
			
		||||
  // Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 10
 | 
			
		||||
  //TODO:  THIS TEST MIGHT BE WRONG : the last parameter  might be 5 instead of 10 because the form of the equation
 | 
			
		||||
  // Should be 0.5x'Gx + gx + f : Nocedal 449
 | 
			
		||||
  qp.cost.push_back(
 | 
			
		||||
      HessianFactor(X(1), X(2), 2.0 * Matrix::Ones(1, 1), -Matrix::Ones(1, 1), 3.0 * I_1x1,
 | 
			
		||||
          2.0 * Matrix::Ones(1, 1), Z_1x1, 10.0));
 | 
			
		||||
      HessianFactor(X(1), X(2), 2.0 * I_1x1, -I_1x1, 3.0 * I_1x1, 2.0 * I_1x1,
 | 
			
		||||
          Z_1x1, 10.0));
 | 
			
		||||
 | 
			
		||||
  // Inequality constraints
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), I_1x1, X(2), I_1x1, 2, 0)); // x1 + x2 <= 2 --> x1 + x2 -2 <= 0, --> b=2
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), -I_1x1, 0, 1));                 // -x1     <= 0
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(2), -I_1x1, 0, 2));                 //    -x2  <= 0
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), I_1x1, 1.5, 3));                // x1      <= 3/2
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), -I_1x1, 0, 1)); // -x1     <= 0
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(2), -I_1x1, 0, 2)); //    -x2  <= 0
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), I_1x1, 1.5, 3)); // x1      <= 3/2
 | 
			
		||||
 | 
			
		||||
  return qp;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -53,8 +55,8 @@ QP createTestCase() {
 | 
			
		|||
TEST(QPSolver, TestCase) {
 | 
			
		||||
  VectorValues values;
 | 
			
		||||
  double x1 = 5, x2 = 7;
 | 
			
		||||
  values.insert(X(1), x1 * Matrix::Ones(1, 1));
 | 
			
		||||
  values.insert(X(2), x2 * Matrix::Ones(1, 1));
 | 
			
		||||
  values.insert(X(1), x1 * I_1x1);
 | 
			
		||||
  values.insert(X(2), x2 * I_1x1);
 | 
			
		||||
  QP qp = createTestCase();
 | 
			
		||||
  DOUBLES_EQUAL(29, x1 * x1 - x1 * x2 + x2 * x2 - 3 * x1 + 5, 1e-9);
 | 
			
		||||
  DOUBLES_EQUAL(29, qp.cost[0]->error(values), 1e-9);
 | 
			
		||||
| 
						 | 
				
			
			@ -67,15 +69,15 @@ TEST(QPSolver, constraintsAux) {
 | 
			
		|||
 | 
			
		||||
  VectorValues lambdas;
 | 
			
		||||
  lambdas.insert(0, (Vector(1) << -0.5).finished());
 | 
			
		||||
  lambdas.insert(1, (Vector(1) <<  0.0).finished());
 | 
			
		||||
  lambdas.insert(2, (Vector(1) <<  0.3).finished());
 | 
			
		||||
  lambdas.insert(3, (Vector(1) <<  0.1).finished());
 | 
			
		||||
  lambdas.insert(1, kZero);
 | 
			
		||||
  lambdas.insert(2, (Vector(1) << 0.3).finished());
 | 
			
		||||
  lambdas.insert(3, (Vector(1) << 0.1).finished());
 | 
			
		||||
  int factorIx = solver.identifyLeavingConstraint(qp.inequalities, lambdas);
 | 
			
		||||
  LONGS_EQUAL(2, factorIx);
 | 
			
		||||
 | 
			
		||||
  VectorValues lambdas2;
 | 
			
		||||
  lambdas2.insert(0, (Vector(1) << -0.5).finished());
 | 
			
		||||
  lambdas2.insert(1, (Vector(1) <<  0.0).finished());
 | 
			
		||||
  lambdas2.insert(1, kZero);
 | 
			
		||||
  lambdas2.insert(2, (Vector(1) << -0.3).finished());
 | 
			
		||||
  lambdas2.insert(3, (Vector(1) << -0.1).finished());
 | 
			
		||||
  int factorIx2 = solver.identifyLeavingConstraint(qp.inequalities, lambdas2);
 | 
			
		||||
| 
						 | 
				
			
			@ -92,14 +94,14 @@ QP createEqualityConstrainedTest() {
 | 
			
		|||
  //        0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
 | 
			
		||||
  // Hence, we have G11=2, G12 = 0, g1 = 0, G22 = 2, g2 = 0, f = 0
 | 
			
		||||
  qp.cost.push_back(
 | 
			
		||||
      HessianFactor(X(1), X(2), 2.0 * Matrix::Ones(1, 1), Z_1x1, Z_1x1,
 | 
			
		||||
          2.0 * Matrix::Ones(1, 1), Z_1x1, 0.0));
 | 
			
		||||
      HessianFactor(X(1), X(2), 2.0 * I_1x1, Z_1x1, Z_1x1, 2.0 * I_1x1, Z_1x1,
 | 
			
		||||
          0.0));
 | 
			
		||||
 | 
			
		||||
  // Equality constraints
 | 
			
		||||
  // x1 + x2 = 1 --> x1 + x2 -1 = 0, hence we negate the b vector
 | 
			
		||||
  Matrix A1 = (Matrix(1, 1) << 1).finished();
 | 
			
		||||
  Matrix A2 = (Matrix(1, 1) << 1).finished();
 | 
			
		||||
  Vector b = -(Vector(1) << 1).finished();
 | 
			
		||||
  Matrix A1 = I_1x1;
 | 
			
		||||
  Matrix A2 = I_1x1;
 | 
			
		||||
  Vector b = -kOne;
 | 
			
		||||
  qp.equalities.push_back(LinearEquality(X(1), A1, X(2), A2, b, 0));
 | 
			
		||||
 | 
			
		||||
  return qp;
 | 
			
		||||
| 
						 | 
				
			
			@ -132,20 +134,19 @@ TEST(QPSolver, indentifyActiveConstraints) {
 | 
			
		|||
  currentSolution.insert(X(1), Z_1x1);
 | 
			
		||||
  currentSolution.insert(X(2), Z_1x1);
 | 
			
		||||
 | 
			
		||||
  LinearInequalityFactorGraph workingSet =
 | 
			
		||||
      solver.identifyActiveConstraints(qp.inequalities, currentSolution);
 | 
			
		||||
  InequalityFactorGraph workingSet = solver.identifyActiveConstraints(
 | 
			
		||||
      qp.inequalities, currentSolution);
 | 
			
		||||
 | 
			
		||||
  CHECK(!workingSet.at(0)->active());   // inactive
 | 
			
		||||
  CHECK(workingSet.at(1)->active());    // active
 | 
			
		||||
  CHECK(workingSet.at(2)->active());    // active
 | 
			
		||||
  CHECK(!workingSet.at(3)->active());   // inactive
 | 
			
		||||
  CHECK(!workingSet.at(0)->active()); // inactive
 | 
			
		||||
  CHECK(workingSet.at(1)->active());// active
 | 
			
		||||
  CHECK(workingSet.at(2)->active());// active
 | 
			
		||||
  CHECK(!workingSet.at(3)->active());// inactive
 | 
			
		||||
 | 
			
		||||
  VectorValues solution  = solver.solveWithCurrentWorkingSet(workingSet);
 | 
			
		||||
  VectorValues solution = solver.buildWorkingGraph(workingSet).optimize();
 | 
			
		||||
  VectorValues expectedSolution;
 | 
			
		||||
  expectedSolution.insert(X(1), (Vector(1) << 0.0).finished());
 | 
			
		||||
  expectedSolution.insert(X(2), (Vector(1) << 0.0).finished());
 | 
			
		||||
  expectedSolution.insert(X(1), kZero);
 | 
			
		||||
  expectedSolution.insert(X(2), kZero);
 | 
			
		||||
  CHECK(assert_equal(expectedSolution, solution, 1e-100));
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
| 
						 | 
				
			
			@ -158,13 +159,13 @@ TEST(QPSolver, iterate) {
 | 
			
		|||
  currentSolution.insert(X(2), Z_1x1);
 | 
			
		||||
 | 
			
		||||
  std::vector<VectorValues> expectedSolutions(4), expectedDuals(4);
 | 
			
		||||
  expectedSolutions[0].insert(X(1), (Vector(1) << 0.0).finished());
 | 
			
		||||
  expectedSolutions[0].insert(X(2), (Vector(1) << 0.0).finished());
 | 
			
		||||
  expectedSolutions[0].insert(X(1), kZero);
 | 
			
		||||
  expectedSolutions[0].insert(X(2), kZero);
 | 
			
		||||
  expectedDuals[0].insert(1, (Vector(1) << 3).finished());
 | 
			
		||||
  expectedDuals[0].insert(2, (Vector(1) << 0).finished());
 | 
			
		||||
  expectedDuals[0].insert(2, kZero);
 | 
			
		||||
 | 
			
		||||
  expectedSolutions[1].insert(X(1), (Vector(1) << 1.5).finished());
 | 
			
		||||
  expectedSolutions[1].insert(X(2), (Vector(1) << 0.0).finished());
 | 
			
		||||
  expectedSolutions[1].insert(X(2), kZero);
 | 
			
		||||
  expectedDuals[1].insert(3, (Vector(1) << 1.5).finished());
 | 
			
		||||
 | 
			
		||||
  expectedSolutions[2].insert(X(1), (Vector(1) << 1.5).finished());
 | 
			
		||||
| 
						 | 
				
			
			@ -173,10 +174,11 @@ TEST(QPSolver, iterate) {
 | 
			
		|||
  expectedSolutions[3].insert(X(1), (Vector(1) << 1.5).finished());
 | 
			
		||||
  expectedSolutions[3].insert(X(2), (Vector(1) << 0.5).finished());
 | 
			
		||||
 | 
			
		||||
  LinearInequalityFactorGraph workingSet =
 | 
			
		||||
      solver.identifyActiveConstraints(qp.inequalities, currentSolution);
 | 
			
		||||
  InequalityFactorGraph workingSet = solver.identifyActiveConstraints(
 | 
			
		||||
      qp.inequalities, currentSolution);
 | 
			
		||||
 | 
			
		||||
  QPState state(currentSolution, VectorValues(), workingSet, false);
 | 
			
		||||
  QPSolver::State state(currentSolution, VectorValues(), workingSet, false,
 | 
			
		||||
                        100);
 | 
			
		||||
 | 
			
		||||
  int it = 0;
 | 
			
		||||
  while (!state.converged) {
 | 
			
		||||
| 
						 | 
				
			
			@ -209,6 +211,64 @@ TEST(QPSolver, optimizeForst10book_pg171Ex5) {
 | 
			
		|||
  CHECK(assert_equal(expectedSolution, solution, 1e-100));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pair<QP, QP> testParser(QPSParser parser) {
 | 
			
		||||
  QP exampleqp = parser.Parse();
 | 
			
		||||
  QP expectedqp;
 | 
			
		||||
  Key X1(Symbol('X', 1)), X2(Symbol('X', 2));
 | 
			
		||||
  // min f(x,y) = 4 + 1.5x -y + 0.58x^2 + 2xy + 2yx + 10y^2
 | 
			
		||||
  expectedqp.cost.push_back(
 | 
			
		||||
      HessianFactor(X1, X2, 8.0 * I_1x1, 2.0 * I_1x1, -1.5 * kOne, 10.0 * I_1x1,
 | 
			
		||||
          2.0 * kOne, 4.0));
 | 
			
		||||
  // 2x + y >= 2
 | 
			
		||||
  // -x + 2y <= 6
 | 
			
		||||
  expectedqp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X1, -2.0 * I_1x1, X2, -I_1x1, -2, 0));
 | 
			
		||||
  expectedqp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X1, -I_1x1, X2, 2.0 * I_1x1, 6, 1));
 | 
			
		||||
  // x<= 20
 | 
			
		||||
  expectedqp.inequalities.push_back(LinearInequality(X1, I_1x1, 20, 4));
 | 
			
		||||
  //x >= 0
 | 
			
		||||
  expectedqp.inequalities.push_back(LinearInequality(X1, -I_1x1, 0, 2));
 | 
			
		||||
  // y > = 0
 | 
			
		||||
  expectedqp.inequalities.push_back(LinearInequality(X2, -I_1x1, 0, 3));
 | 
			
		||||
  return std::make_pair(expectedqp, exampleqp);
 | 
			
		||||
}
 | 
			
		||||
;
 | 
			
		||||
 | 
			
		||||
TEST(QPSolver, ParserSyntaticTest) {
 | 
			
		||||
  auto expectedActual = testParser(QPSParser("QPExample.QPS"));
 | 
			
		||||
  CHECK(assert_equal(expectedActual.first.cost, expectedActual.second.cost,
 | 
			
		||||
                     1e-7));
 | 
			
		||||
  CHECK(assert_equal(expectedActual.first.inequalities,
 | 
			
		||||
                     expectedActual.second.inequalities, 1e-7));
 | 
			
		||||
  CHECK(assert_equal(expectedActual.first.equalities,
 | 
			
		||||
                     expectedActual.second.equalities, 1e-7));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(QPSolver, ParserSemanticTest) {
 | 
			
		||||
  auto expected_actual = testParser(QPSParser("QPExample.QPS"));
 | 
			
		||||
  VectorValues actualSolution, expectedSolution;
 | 
			
		||||
  boost::tie(expectedSolution, boost::tuples::ignore) =
 | 
			
		||||
      QPSolver(expected_actual.first).optimize();
 | 
			
		||||
  boost::tie(actualSolution, boost::tuples::ignore) =
 | 
			
		||||
      QPSolver(expected_actual.second).optimize();
 | 
			
		||||
  CHECK(assert_equal(actualSolution, expectedSolution, 1e-7));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(QPSolver, QPExampleTest){
 | 
			
		||||
  QP problem = QPSParser("QPExample.QPS").Parse();
 | 
			
		||||
  VectorValues actualSolution;
 | 
			
		||||
  auto solver = QPSolver(problem);
 | 
			
		||||
  boost::tie(actualSolution, boost::tuples::ignore) = solver.optimize();
 | 
			
		||||
  VectorValues expectedSolution;
 | 
			
		||||
  expectedSolution.insert(Symbol('X',1),0.7625*I_1x1);
 | 
			
		||||
  expectedSolution.insert(Symbol('X',2),0.4750*I_1x1);
 | 
			
		||||
  double error_expected = problem.cost.error(expectedSolution);
 | 
			
		||||
  double error_actual = problem.cost.error(actualSolution);
 | 
			
		||||
  CHECK(assert_equal(expectedSolution, actualSolution, 1e-7))
 | 
			
		||||
  CHECK(assert_equal(error_expected, error_actual))
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Create Matlab's test graph as in http://www.mathworks.com/help/optim/ug/quadprog.html
 | 
			
		||||
QP createTestMatlabQPEx() {
 | 
			
		||||
| 
						 | 
				
			
			@ -219,19 +279,22 @@ QP createTestMatlabQPEx() {
 | 
			
		|||
  //        0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
 | 
			
		||||
  // Hence, we have G11=1, G12 = -1, g1 = +2, G22 = 2, g2 = +6, f = 0
 | 
			
		||||
  qp.cost.push_back(
 | 
			
		||||
      HessianFactor(X(1), X(2), 1.0 * I_1x1, -Matrix::Ones(1, 1), 2.0 * I_1x1,
 | 
			
		||||
          2.0 * Matrix::Ones(1, 1), 6 * I_1x1, 1000.0));
 | 
			
		||||
      HessianFactor(X(1), X(2), 1.0 * I_1x1, -I_1x1, 2.0 * I_1x1, 2.0 * I_1x1,
 | 
			
		||||
          6 * I_1x1, 1000.0));
 | 
			
		||||
 | 
			
		||||
  // Inequality constraints
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), One, X(2), One, 2, 0));      // x1 + x2 <= 2
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), -One, X(2), 2*One, 2, 1));   //-x1 + 2*x2 <=2
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), 2*One, X(2), One, 3, 2));    // 2*x1 + x2 <=3
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), -One, 0, 3));                // -x1      <= 0
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(2), -One, 0, 4));                //      -x2 <= 0
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), I_1x1, X(2), I_1x1, 2, 0)); // x1 + x2 <= 2
 | 
			
		||||
  qp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X(1), -I_1x1, X(2), 2 * I_1x1, 2, 1)); //-x1 + 2*x2 <=2
 | 
			
		||||
  qp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X(1), 2 * I_1x1, X(2), I_1x1, 3, 2)); // 2*x1 + x2 <=3
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), -I_1x1, 0, 3)); // -x1      <= 0
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(2), -I_1x1, 0, 4)); //      -x2 <= 0
 | 
			
		||||
 | 
			
		||||
  return qp;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///* ************************************************************************* */
 | 
			
		||||
TEST(QPSolver, optimizeMatlabEx) {
 | 
			
		||||
  QP qp = createTestMatlabQPEx();
 | 
			
		||||
  QPSolver solver(qp);
 | 
			
		||||
| 
						 | 
				
			
			@ -246,20 +309,35 @@ TEST(QPSolver, optimizeMatlabEx) {
 | 
			
		|||
  CHECK(assert_equal(expectedSolution, solution, 1e-7));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///* ************************************************************************* */
 | 
			
		||||
TEST(QPSolver, optimizeMatlabExNoinitials) {
 | 
			
		||||
  QP qp = createTestMatlabQPEx();
 | 
			
		||||
  QPSolver solver(qp);
 | 
			
		||||
  VectorValues solution;
 | 
			
		||||
  boost::tie(solution, boost::tuples::ignore) = solver.optimize();
 | 
			
		||||
  VectorValues expectedSolution;
 | 
			
		||||
  expectedSolution.insert(X(1), (Vector(1) << 2.0 / 3.0).finished());
 | 
			
		||||
  expectedSolution.insert(X(2), (Vector(1) << 4.0 / 3.0).finished());
 | 
			
		||||
  CHECK(assert_equal(expectedSolution, solution, 1e-7));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Create test graph as in Nocedal06book, Ex 16.4, pg. 475
 | 
			
		||||
QP createTestNocedal06bookEx16_4() {
 | 
			
		||||
  QP qp;
 | 
			
		||||
 | 
			
		||||
  qp.cost.push_back(JacobianFactor(X(1), Matrix::Ones(1, 1), I_1x1));
 | 
			
		||||
  qp.cost.push_back(JacobianFactor(X(2), Matrix::Ones(1, 1), 2.5 * I_1x1));
 | 
			
		||||
  qp.cost.push_back(JacobianFactor(X(1), I_1x1, I_1x1));
 | 
			
		||||
  qp.cost.push_back(JacobianFactor(X(2), I_1x1, 2.5 * I_1x1));
 | 
			
		||||
 | 
			
		||||
  // Inequality constraints
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), -One, X(2), 2 * One, 2, 0));
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), One, X(2), 2 * One, 6, 1));
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), One, X(2), -2 * One, 2, 2));
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), -One, 0.0, 3));
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(2), -One, 0.0, 4));
 | 
			
		||||
  qp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X(1), -I_1x1, X(2), 2 * I_1x1, 2, 0));
 | 
			
		||||
  qp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X(1), I_1x1, X(2), 2 * I_1x1, 6, 1));
 | 
			
		||||
  qp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X(1), I_1x1, X(2), -2 * I_1x1, 2, 2));
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(1), -I_1x1, 0.0, 3));
 | 
			
		||||
  qp.inequalities.push_back(LinearInequality(X(2), -I_1x1, 0.0, 4));
 | 
			
		||||
 | 
			
		||||
  return qp;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -280,28 +358,45 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
 | 
			
		||||
TEST(QPSolver, failedSubproblem) {
 | 
			
		||||
  QP qp;
 | 
			
		||||
  qp.cost.push_back(JacobianFactor(X(1), I_2x2, Z_2x1));
 | 
			
		||||
  qp.cost.push_back(HessianFactor(X(1), Z_2x2, Z_2x1, 100.0));
 | 
			
		||||
  qp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X(1), (Matrix(1,2) << -1.0, 0.0).finished(), -1.0, 0));
 | 
			
		||||
      LinearInequality(X(1), (Matrix(1, 2) << -1.0, 0.0).finished(), -1.0, 0));
 | 
			
		||||
 | 
			
		||||
  VectorValues expected;
 | 
			
		||||
  expected.insert(X(1), (Vector(2) << 1.0, 0.0).finished());
 | 
			
		||||
 | 
			
		||||
  VectorValues initialValues;
 | 
			
		||||
  initialValues.insert(X(1),  (Vector(2) << 10.0, 100.0).finished());
 | 
			
		||||
  initialValues.insert(X(1), (Vector(2) << 10.0, 100.0).finished());
 | 
			
		||||
 | 
			
		||||
  QPSolver solver(qp);
 | 
			
		||||
  VectorValues solution;
 | 
			
		||||
  boost::tie(solution, boost::tuples::ignore) = solver.optimize(initialValues);
 | 
			
		||||
//  graph.print("Graph: ");
 | 
			
		||||
//  solution.print("Solution: ");
 | 
			
		||||
 | 
			
		||||
  CHECK(assert_equal(expected, solution, 1e-7));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST(QPSolver, infeasibleInitial) {
 | 
			
		||||
  QP qp;
 | 
			
		||||
  qp.cost.push_back(JacobianFactor(X(1), I_2x2, Vector::Zero(2)));
 | 
			
		||||
  qp.cost.push_back(HessianFactor(X(1), Z_2x2, Vector::Zero(2), 100.0));
 | 
			
		||||
  qp.inequalities.push_back(
 | 
			
		||||
      LinearInequality(X(1), (Matrix(1, 2) << -1.0, 0.0).finished(), -1.0, 0));
 | 
			
		||||
 | 
			
		||||
  VectorValues expected;
 | 
			
		||||
  expected.insert(X(1), (Vector(2) << 1.0, 0.0).finished());
 | 
			
		||||
 | 
			
		||||
  VectorValues initialValues;
 | 
			
		||||
  initialValues.insert(X(1), (Vector(2) << -10.0, 100.0).finished());
 | 
			
		||||
 | 
			
		||||
  QPSolver solver(qp);
 | 
			
		||||
  VectorValues solution;
 | 
			
		||||
  CHECK_EXCEPTION(solver.optimize(initialValues), InfeasibleInitialValues);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
int main() {
 | 
			
		||||
  TestResult tr;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -60,15 +60,15 @@ using namespace boost; // not usual, but for conciseness of generated code
 | 
			
		|||
// "Unique" key to signal calling the matlab object constructor with a raw pointer
 | 
			
		||||
// to a shared pointer of the same C++ object type as the MATLAB type.
 | 
			
		||||
// Also present in utilities.h
 | 
			
		||||
static const uint64_t ptr_constructor_key =
 | 
			
		||||
  (uint64_t('G') << 56) |
 | 
			
		||||
  (uint64_t('T') << 48) |
 | 
			
		||||
  (uint64_t('S') << 40) |
 | 
			
		||||
  (uint64_t('A') << 32) |
 | 
			
		||||
  (uint64_t('M') << 24) |
 | 
			
		||||
  (uint64_t('p') << 16) |
 | 
			
		||||
  (uint64_t('t') << 8) |
 | 
			
		||||
  (uint64_t('r'));
 | 
			
		||||
static const boost::uint64_t ptr_constructor_key =
 | 
			
		||||
  (boost::uint64_t('G') << 56) |
 | 
			
		||||
  (boost::uint64_t('T') << 48) |
 | 
			
		||||
  (boost::uint64_t('S') << 40) |
 | 
			
		||||
  (boost::uint64_t('A') << 32) |
 | 
			
		||||
  (boost::uint64_t('M') << 24) |
 | 
			
		||||
  (boost::uint64_t('p') << 16) |
 | 
			
		||||
  (boost::uint64_t('t') << 8) |
 | 
			
		||||
  (boost::uint64_t('r'));
 | 
			
		||||
 | 
			
		||||
//*****************************************************************************
 | 
			
		||||
// Utilities
 | 
			
		||||
| 
						 | 
				
			
			@ -244,9 +244,9 @@ template <typename T>
 | 
			
		|||
T myGetScalar(const mxArray* array) {
 | 
			
		||||
  switch (mxGetClassID(array)) {
 | 
			
		||||
    case mxINT64_CLASS:
 | 
			
		||||
      return (T) *(int64_t*) mxGetData(array);
 | 
			
		||||
      return (T) *(boost::int64_t*) mxGetData(array);
 | 
			
		||||
    case mxUINT64_CLASS:
 | 
			
		||||
      return (T) *(uint64_t*) mxGetData(array);
 | 
			
		||||
      return (T) *(boost::uint64_t*) mxGetData(array);
 | 
			
		||||
    default:
 | 
			
		||||
      // hope for the best!
 | 
			
		||||
      return (T) mxGetScalar(array);
 | 
			
		||||
| 
						 | 
				
			
			@ -349,7 +349,7 @@ mxArray* create_object(const std::string& classname, void *pointer, bool isVirtu
 | 
			
		|||
  int nargin = 2;
 | 
			
		||||
  // First input argument is pointer constructor key
 | 
			
		||||
  input[0] = mxCreateNumericMatrix(1, 1, mxUINT64_CLASS, mxREAL);
 | 
			
		||||
  *reinterpret_cast<uint64_t*>(mxGetData(input[0])) = ptr_constructor_key;
 | 
			
		||||
  *reinterpret_cast<boost::uint64_t*>(mxGetData(input[0])) = ptr_constructor_key;
 | 
			
		||||
  // Second input argument is the pointer
 | 
			
		||||
  input[1] = mxCreateNumericMatrix(1, 1, mxUINT32OR64_CLASS, mxREAL);
 | 
			
		||||
  *reinterpret_cast<void**>(mxGetData(input[1])) = pointer;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue