diff --git a/python/gtsam/tests/test_dsf_map.py b/python/gtsam/tests/test_DSFMap.py similarity index 88% rename from python/gtsam/tests/test_dsf_map.py rename to python/gtsam/tests/test_DSFMap.py index 6cae98ff5..f973f7c99 100644 --- a/python/gtsam/tests/test_dsf_map.py +++ b/python/gtsam/tests/test_DSFMap.py @@ -15,8 +15,7 @@ from __future__ import print_function import unittest from typing import Tuple -import gtsam -from gtsam import IndexPair +from gtsam import DSFMapIndexPair, IndexPair, IndexPairSetAsArray from gtsam.utils.test_case import GtsamTestCase @@ -29,10 +28,10 @@ class TestDSFMap(GtsamTestCase): def key(index_pair) -> Tuple[int, int]: return index_pair.i(), index_pair.j() - dsf = gtsam.DSFMapIndexPair() - pair1 = gtsam.IndexPair(1, 18) + dsf = DSFMapIndexPair() + pair1 = IndexPair(1, 18) self.assertEqual(key(dsf.find(pair1)), key(pair1)) - pair2 = gtsam.IndexPair(2, 2) + pair2 = IndexPair(2, 2) # testing the merge feature of dsf dsf.merge(pair1, pair2) @@ -45,7 +44,7 @@ class TestDSFMap(GtsamTestCase): k'th detected keypoint in image i. For the data below, merging such measurements into feature tracks across frames should create 2 distinct sets. """ - dsf = gtsam.DSFMapIndexPair() + dsf = DSFMapIndexPair() dsf.merge(IndexPair(0, 1), IndexPair(1, 2)) dsf.merge(IndexPair(0, 1), IndexPair(3, 4)) dsf.merge(IndexPair(4, 5), IndexPair(6, 8)) @@ -56,7 +55,7 @@ class TestDSFMap(GtsamTestCase): for i in sets: set_keys = [] s = sets[i] - for val in gtsam.IndexPairSetAsArray(s): + for val in IndexPairSetAsArray(s): set_keys.append((val.i(), val.j())) merged_sets.add(tuple(set_keys))