documentation

release/4.3a0
Gerry Chen 2021-10-16 03:34:13 -04:00
parent 33e16aa7d2
commit 908ba70706
2 changed files with 179 additions and 0 deletions

View File

@ -5084,6 +5084,185 @@ reference "ex:projection"
\end_layout
\begin_layout Subsection
Derivative of Adjoint
\end_layout
\begin_layout Standard
Consider
\begin_inset Formula $f:SE(3)\rightarrow\mathbb{R}^{6}$
\end_inset
is defined as
\begin_inset Formula $f(T)=Ad_{T}y$
\end_inset
for some constant
\begin_inset Formula $y=\begin{bmatrix}\omega_{y}\\
v_{y}
\end{bmatrix}$
\end_inset
.
Defining
\begin_inset Formula $\xi=\begin{bmatrix}\omega\\
v
\end{bmatrix}$
\end_inset
for the derivative notation (w.r.t.
pose
\begin_inset Formula $T$
\end_inset
):
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
f'(T)=\frac{\partial Ad_{T}y}{\partial\xi}=\begin{bmatrix}\frac{\partial f}{\omega} & \frac{\partial f}{v}\end{bmatrix}
\]
\end_inset
Then we can compute
\begin_inset Formula $f'(T)$
\end_inset
by considering the rotation and translation separately.
To reduce confusion with
\begin_inset Formula $\omega_{y},v_{y}$
\end_inset
, we will use
\begin_inset Formula $R,t$
\end_inset
to denote the rotation and translation of
\begin_inset Formula $T\exp\xi$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\frac{\partial}{\partial\omega}\begin{bmatrix}R & 0\\{}
[t]_{\times}R & R
\end{bmatrix}\begin{bmatrix}\omega_{y}\\
v_{y}
\end{bmatrix}=\frac{\partial}{\partial\omega}\begin{bmatrix}R\omega_{y}\\{}
[t]_{\times}R\omega_{y}+Rv_{y}
\end{bmatrix}=\begin{bmatrix}-R[\omega_{y}]_{\times}\\
-[t]_{\times}R[w_{y}]_{\times}-R[v_{y}]_{\times}
\end{bmatrix}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\frac{\partial}{\partial t}\begin{bmatrix}R & 0\\{}
[t]_{\times}R & R
\end{bmatrix}\begin{bmatrix}\omega\\
v
\end{bmatrix}=\frac{\partial}{\partial t}\begin{bmatrix}R\omega_{y}\\{}
[t]_{\times}R\omega_{y}+Rv_{y}
\end{bmatrix}=\begin{bmatrix}0\\
-[R\omega_{y}]
\end{bmatrix}
\]
\end_inset
Applying chain rule for the translation,
\begin_inset Formula $\frac{\partial}{\partial v}=\frac{\partial}{\partial t}\frac{\partial t}{\partial v}$
\end_inset
:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\frac{\partial}{\partial v}\begin{bmatrix}R & 0\\{}
[t]_{\times}R & R
\end{bmatrix}\begin{bmatrix}\omega_{y}\\
v_{y}
\end{bmatrix}=\begin{bmatrix}0\\
-[R\omega_{y}]_{\times}
\end{bmatrix}R=\begin{bmatrix}0\\
-[R\omega_{y}]_{\times}R
\end{bmatrix}=\begin{bmatrix}0\\
-R[\omega_{y}]_{\times}
\end{bmatrix}
\]
\end_inset
The simplification
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $[R\omega_{y}]_{\times}R=R[\omega_{y}]_{\times}$
\end_inset
can be derived by considering the result for when
\begin_inset Formula $\omega_{y}$
\end_inset
is each of the 3 standard basis vectors
\begin_inset Formula $\hat{e}_{i}$
\end_inset
:
\begin_inset Formula $-[R\hat{e}_{i}]_{\times}R$
\end_inset
.
\end_layout
\begin_layout Standard
Now putting together the rotation and translation:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
f'(T)=\frac{\partial Ad_{T}y}{\partial\xi}=\begin{bmatrix}\frac{\partial f}{\omega} & \frac{\partial f}{v}\end{bmatrix}=\begin{bmatrix}-R[\omega_{y}]_{\times} & 0\\
-[t]_{\times}R[w_{y}]_{\times}-R[v_{y}]_{\times} & -R[\omega_{y}]_{\times}
\end{bmatrix}
\]
\end_inset
\end_layout
\begin_layout Standard
We can apply a similar procedure to compute the derivative of
\begin_inset Formula $Ad_{T}^{T}y$
\end_inset
.
\end_layout
\begin_layout Subsection
Instantaneous Velocity
\end_layout

Binary file not shown.