documentation
parent
33e16aa7d2
commit
908ba70706
179
doc/math.lyx
179
doc/math.lyx
|
@ -5084,6 +5084,185 @@ reference "ex:projection"
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Derivative of Adjoint
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Consider
|
||||
\begin_inset Formula $f:SE(3)\rightarrow\mathbb{R}^{6}$
|
||||
\end_inset
|
||||
|
||||
is defined as
|
||||
\begin_inset Formula $f(T)=Ad_{T}y$
|
||||
\end_inset
|
||||
|
||||
for some constant
|
||||
\begin_inset Formula $y=\begin{bmatrix}\omega_{y}\\
|
||||
v_{y}
|
||||
\end{bmatrix}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Defining
|
||||
\begin_inset Formula $\xi=\begin{bmatrix}\omega\\
|
||||
v
|
||||
\end{bmatrix}$
|
||||
\end_inset
|
||||
|
||||
for the derivative notation (w.r.t.
|
||||
pose
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
):
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
f'(T)=\frac{\partial Ad_{T}y}{\partial\xi}=\begin{bmatrix}\frac{\partial f}{\omega} & \frac{\partial f}{v}\end{bmatrix}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Then we can compute
|
||||
\begin_inset Formula $f'(T)$
|
||||
\end_inset
|
||||
|
||||
by considering the rotation and translation separately.
|
||||
To reduce confusion with
|
||||
\begin_inset Formula $\omega_{y},v_{y}$
|
||||
\end_inset
|
||||
|
||||
, we will use
|
||||
\begin_inset Formula $R,t$
|
||||
\end_inset
|
||||
|
||||
to denote the rotation and translation of
|
||||
\begin_inset Formula $T\exp\xi$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\frac{\partial}{\partial\omega}\begin{bmatrix}R & 0\\{}
|
||||
[t]_{\times}R & R
|
||||
\end{bmatrix}\begin{bmatrix}\omega_{y}\\
|
||||
v_{y}
|
||||
\end{bmatrix}=\frac{\partial}{\partial\omega}\begin{bmatrix}R\omega_{y}\\{}
|
||||
[t]_{\times}R\omega_{y}+Rv_{y}
|
||||
\end{bmatrix}=\begin{bmatrix}-R[\omega_{y}]_{\times}\\
|
||||
-[t]_{\times}R[w_{y}]_{\times}-R[v_{y}]_{\times}
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\frac{\partial}{\partial t}\begin{bmatrix}R & 0\\{}
|
||||
[t]_{\times}R & R
|
||||
\end{bmatrix}\begin{bmatrix}\omega\\
|
||||
v
|
||||
\end{bmatrix}=\frac{\partial}{\partial t}\begin{bmatrix}R\omega_{y}\\{}
|
||||
[t]_{\times}R\omega_{y}+Rv_{y}
|
||||
\end{bmatrix}=\begin{bmatrix}0\\
|
||||
-[R\omega_{y}]
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Applying chain rule for the translation,
|
||||
\begin_inset Formula $\frac{\partial}{\partial v}=\frac{\partial}{\partial t}\frac{\partial t}{\partial v}$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\frac{\partial}{\partial v}\begin{bmatrix}R & 0\\{}
|
||||
[t]_{\times}R & R
|
||||
\end{bmatrix}\begin{bmatrix}\omega_{y}\\
|
||||
v_{y}
|
||||
\end{bmatrix}=\begin{bmatrix}0\\
|
||||
-[R\omega_{y}]_{\times}
|
||||
\end{bmatrix}R=\begin{bmatrix}0\\
|
||||
-[R\omega_{y}]_{\times}R
|
||||
\end{bmatrix}=\begin{bmatrix}0\\
|
||||
-R[\omega_{y}]_{\times}
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
The simplification
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\xout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $[R\omega_{y}]_{\times}R=R[\omega_{y}]_{\times}$
|
||||
\end_inset
|
||||
|
||||
can be derived by considering the result for when
|
||||
\begin_inset Formula $\omega_{y}$
|
||||
\end_inset
|
||||
|
||||
is each of the 3 standard basis vectors
|
||||
\begin_inset Formula $\hat{e}_{i}$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula $-[R\hat{e}_{i}]_{\times}R$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Now putting together the rotation and translation:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
f'(T)=\frac{\partial Ad_{T}y}{\partial\xi}=\begin{bmatrix}\frac{\partial f}{\omega} & \frac{\partial f}{v}\end{bmatrix}=\begin{bmatrix}-R[\omega_{y}]_{\times} & 0\\
|
||||
-[t]_{\times}R[w_{y}]_{\times}-R[v_{y}]_{\times} & -R[\omega_{y}]_{\times}
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
We can apply a similar procedure to compute the derivative of
|
||||
\begin_inset Formula $Ad_{T}^{T}y$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Instantaneous Velocity
|
||||
\end_layout
|
||||
|
|
BIN
doc/math.pdf
BIN
doc/math.pdf
Binary file not shown.
Loading…
Reference in New Issue