commit
905a13c940
|
@ -287,7 +287,7 @@ int main(int argc, char* argv[]) {
|
|||
new_values.insert(current_pose_key, gps_pose);
|
||||
|
||||
printf("################ POSE INCLUDED AT TIME %lf ################\n", t);
|
||||
gps_pose.translation().print();
|
||||
cout << gps_pose.translation();
|
||||
printf("\n\n");
|
||||
} else {
|
||||
new_values.insert(current_pose_key, current_pose_global);
|
||||
|
|
|
@ -2960,6 +2960,7 @@ class ShonanAveraging2 {
|
|||
|
||||
// Advanced API
|
||||
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
|
||||
gtsam::Values initializeRandomlyAt(size_t p) const;
|
||||
double costAt(size_t p, const gtsam::Values& values) const;
|
||||
pair<double, Vector> computeMinEigenVector(const gtsam::Values& values) const;
|
||||
bool checkOptimality(const gtsam::Values& values) const;
|
||||
|
@ -3004,6 +3005,7 @@ class ShonanAveraging3 {
|
|||
|
||||
// Advanced API
|
||||
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
|
||||
gtsam::Values initializeRandomlyAt(size_t p) const;
|
||||
double costAt(size_t p, const gtsam::Values& values) const;
|
||||
pair<double, Vector> computeMinEigenVector(const gtsam::Values& values) const;
|
||||
bool checkOptimality(const gtsam::Values& values) const;
|
||||
|
|
|
@ -749,10 +749,23 @@ Values ShonanAveraging<d>::initializeRandomly(std::mt19937 &rng) const {
|
|||
return initial;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <size_t d> Values ShonanAveraging<d>::initializeRandomly() const {
|
||||
return initializeRandomly(kRandomNumberGenerator);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <size_t d>
|
||||
Values ShonanAveraging<d>::initializeRandomly() const {
|
||||
return ShonanAveraging<d>::initializeRandomly(kRandomNumberGenerator);
|
||||
Values ShonanAveraging<d>::initializeRandomlyAt(size_t p,
|
||||
std::mt19937 &rng) const {
|
||||
const Values randomRotations = initializeRandomly(rng);
|
||||
return LiftTo<Rot3>(p, randomRotations); // lift to p!
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <size_t d>
|
||||
Values ShonanAveraging<d>::initializeRandomlyAt(size_t p) const {
|
||||
return initializeRandomlyAt(p, kRandomNumberGenerator);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -235,6 +235,15 @@ public:
|
|||
*/
|
||||
NonlinearFactorGraph buildGraphAt(size_t p) const;
|
||||
|
||||
/**
|
||||
* Create initial Values of type SO(p)
|
||||
* @param p the dimensionality of the rotation manifold
|
||||
*/
|
||||
Values initializeRandomlyAt(size_t p, std::mt19937 &rng) const;
|
||||
|
||||
/// Version of initializeRandomlyAt with fixed random seed.
|
||||
Values initializeRandomlyAt(size_t p) const;
|
||||
|
||||
/**
|
||||
* Calculate cost for SO(p)
|
||||
* Values should be of type SO(p)
|
||||
|
|
|
@ -114,7 +114,7 @@ public:
|
|||
/** implement functions needed to derive from Factor */
|
||||
|
||||
/* ************************************************************************* */
|
||||
virtual double error(const Values& x) const {
|
||||
double error(const Values &x) const override {
|
||||
return whitenedError(x).squaredNorm();
|
||||
}
|
||||
|
||||
|
@ -125,8 +125,7 @@ public:
|
|||
* Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$
|
||||
*/
|
||||
/* This version of linearize recalculates the noise model each time */
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(
|
||||
const Values& x) const {
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Values &x) const override {
|
||||
// Only linearize if the factor is active
|
||||
if (!this->active(x))
|
||||
return boost::shared_ptr<JacobianFactor>();
|
||||
|
|
|
@ -0,0 +1,139 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Unit tests for Shonan Rotation Averaging.
|
||||
Author: Frank Dellaert
|
||||
"""
|
||||
# pylint: disable=invalid-name, no-name-in-module, no-member
|
||||
|
||||
import unittest
|
||||
|
||||
import gtsam
|
||||
from gtsam import ShonanAveraging3, ShonanAveragingParameters3
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
DEFAULT_PARAMS = ShonanAveragingParameters3(
|
||||
gtsam.LevenbergMarquardtParams.CeresDefaults())
|
||||
|
||||
|
||||
def fromExampleName(name: str, parameters=DEFAULT_PARAMS):
|
||||
g2oFile = gtsam.findExampleDataFile(name)
|
||||
return ShonanAveraging3(g2oFile, parameters)
|
||||
|
||||
|
||||
class TestShonanAveraging(GtsamTestCase):
|
||||
"""Tests for Shonan Rotation Averaging."""
|
||||
|
||||
def setUp(self):
|
||||
"""Set up common variables."""
|
||||
self.shonan = fromExampleName("toyExample.g2o")
|
||||
|
||||
def test_checkConstructor(self):
|
||||
self.assertEqual(5, self.shonan.nrUnknowns())
|
||||
|
||||
D = self.shonan.denseD()
|
||||
self.assertEqual((15, 15), D.shape)
|
||||
|
||||
Q = self.shonan.denseQ()
|
||||
self.assertEqual((15, 15), Q.shape)
|
||||
|
||||
L = self.shonan.denseL()
|
||||
self.assertEqual((15, 15), L.shape)
|
||||
|
||||
def test_buildGraphAt(self):
|
||||
graph = self.shonan.buildGraphAt(5)
|
||||
self.assertEqual(7, graph.size())
|
||||
|
||||
def test_checkOptimality(self):
|
||||
random = self.shonan.initializeRandomlyAt(4)
|
||||
lambdaMin = self.shonan.computeMinEigenValue(random)
|
||||
self.assertAlmostEqual(-414.87376657555996,
|
||||
lambdaMin, places=3) # Regression test
|
||||
self.assertFalse(self.shonan.checkOptimality(random))
|
||||
|
||||
def test_tryOptimizingAt3(self):
|
||||
initial = self.shonan.initializeRandomlyAt(3)
|
||||
self.assertFalse(self.shonan.checkOptimality(initial))
|
||||
result = self.shonan.tryOptimizingAt(3, initial)
|
||||
self.assertTrue(self.shonan.checkOptimality(result))
|
||||
lambdaMin = self.shonan.computeMinEigenValue(result)
|
||||
self.assertAlmostEqual(-5.427688831332745e-07,
|
||||
lambdaMin, places=3) # Regression test
|
||||
self.assertAlmostEqual(0, self.shonan.costAt(3, result), places=3)
|
||||
SO3Values = self.shonan.roundSolution(result)
|
||||
self.assertAlmostEqual(0, self.shonan.cost(SO3Values), places=3)
|
||||
|
||||
def test_tryOptimizingAt4(self):
|
||||
random = self.shonan.initializeRandomlyAt(4)
|
||||
result = self.shonan.tryOptimizingAt(4, random)
|
||||
self.assertTrue(self.shonan.checkOptimality(result))
|
||||
self.assertAlmostEqual(0, self.shonan.costAt(4, result), places=2)
|
||||
lambdaMin = self.shonan.computeMinEigenValue(result)
|
||||
self.assertAlmostEqual(-5.427688831332745e-07,
|
||||
lambdaMin, places=3) # Regression test
|
||||
SO3Values = self.shonan.roundSolution(result)
|
||||
self.assertAlmostEqual(0, self.shonan.cost(SO3Values), places=3)
|
||||
|
||||
def test_initializeWithDescent(self):
|
||||
random = self.shonan.initializeRandomlyAt(3)
|
||||
Qstar3 = self.shonan.tryOptimizingAt(3, random)
|
||||
lambdaMin, minEigenVector = self.shonan.computeMinEigenVector(Qstar3)
|
||||
initialQ4 = self.shonan.initializeWithDescent(
|
||||
4, Qstar3, minEigenVector, lambdaMin)
|
||||
self.assertAlmostEqual(5, initialQ4.size())
|
||||
|
||||
def test_run(self):
|
||||
initial = self.shonan.initializeRandomly()
|
||||
result, lambdaMin = self.shonan.run(initial, 5, 10)
|
||||
self.assertAlmostEqual(0, self.shonan.cost(result), places=2)
|
||||
self.assertAlmostEqual(-5.427688831332745e-07,
|
||||
lambdaMin, places=3) # Regression test
|
||||
|
||||
def test_runKlausKarcher(self):
|
||||
# Load 2D toy example
|
||||
lmParams = gtsam.LevenbergMarquardtParams.CeresDefaults()
|
||||
# lmParams.setVerbosityLM("SUMMARY")
|
||||
g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt")
|
||||
parameters = gtsam.ShonanAveragingParameters2(lmParams)
|
||||
shonan = gtsam.ShonanAveraging2(g2oFile, parameters)
|
||||
self.assertAlmostEqual(4, shonan.nrUnknowns())
|
||||
|
||||
# Check graph building
|
||||
graph = shonan.buildGraphAt(2)
|
||||
self.assertAlmostEqual(6, graph.size())
|
||||
initial = shonan.initializeRandomly()
|
||||
result, lambdaMin = shonan.run(initial, 2, 10)
|
||||
self.assertAlmostEqual(0.0008211, shonan.cost(result), places=5)
|
||||
self.assertAlmostEqual(0, lambdaMin, places=9) # certificate!
|
||||
|
||||
# Test alpha/beta/gamma prior weighting.
|
||||
def test_PriorWeights(self):
|
||||
lmParams = gtsam.LevenbergMarquardtParams.CeresDefaults()
|
||||
params = ShonanAveragingParameters3(lmParams)
|
||||
self.assertAlmostEqual(0, params.getAnchorWeight(), 1e-9)
|
||||
self.assertAlmostEqual(1, params.getKarcherWeight(), 1e-9)
|
||||
self.assertAlmostEqual(0, params.getGaugesWeight(), 1e-9)
|
||||
alpha, beta, gamma = 100.0, 200.0, 300.0
|
||||
params.setAnchorWeight(alpha)
|
||||
params.setKarcherWeight(beta)
|
||||
params.setGaugesWeight(gamma)
|
||||
self.assertAlmostEqual(alpha, params.getAnchorWeight(), 1e-9)
|
||||
self.assertAlmostEqual(beta, params.getKarcherWeight(), 1e-9)
|
||||
self.assertAlmostEqual(gamma, params.getGaugesWeight(), 1e-9)
|
||||
params.setKarcherWeight(0)
|
||||
shonan = fromExampleName("Klaus3.g2o", params)
|
||||
|
||||
initial = gtsam.Values()
|
||||
for i in range(3):
|
||||
initial.insert(i, gtsam.Rot3())
|
||||
self.assertAlmostEqual(3.0756, shonan.cost(initial), places=3)
|
||||
result, _lambdaMin = shonan.run(initial, 3, 3)
|
||||
self.assertAlmostEqual(0.0015, shonan.cost(result), places=3)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in New Issue