Merge pull request #721 from miloknowles/milo/partial_prior_factor
commit
8ffad01868
|
@ -161,6 +161,9 @@ public:
|
|||
}
|
||||
return v;
|
||||
}
|
||||
static TangentVector LocalCoordinates(const ProductLieGroup& p, ChartJacobian Hp = boost::none) {
|
||||
return Logmap(p, Hp);
|
||||
}
|
||||
ProductLieGroup expmap(const TangentVector& v) const {
|
||||
return compose(ProductLieGroup::Expmap(v));
|
||||
}
|
||||
|
|
|
@ -9,20 +9,28 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam_unstable/slam/PartialPriorFactor.h>
|
||||
|
||||
#include <gtsam_unstable/dynamics/PoseRTV.h>
|
||||
#include <gtsam_unstable/slam/PartialPriorFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
// Indices of relevant variables in the PoseRTV tangent vector:
|
||||
// [ rx ry rz tx ty tz vx vy vz ]
|
||||
static const size_t kRollIndex = 0;
|
||||
static const size_t kPitchIndex = 1;
|
||||
static const size_t kHeightIndex = 5;
|
||||
static const size_t kVelocityZIndex = 8;
|
||||
static const std::vector<size_t> kVelocityIndices = { 6, 7, 8 };
|
||||
|
||||
/**
|
||||
* Forces the value of the height in a PoseRTV to a specific value
|
||||
* Forces the value of the height (z) in a PoseRTV to a specific value.
|
||||
* Dim: 1
|
||||
*/
|
||||
struct DHeightPrior : public gtsam::PartialPriorFactor<PoseRTV> {
|
||||
typedef gtsam::PartialPriorFactor<PoseRTV> Base;
|
||||
|
||||
DHeightPrior(Key key, double height, const gtsam::SharedNoiseModel& model)
|
||||
: Base(key, 5, height, model) { }
|
||||
: Base(key, kHeightIndex, height, model) {}
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -35,11 +43,11 @@ struct DRollPrior : public gtsam::PartialPriorFactor<PoseRTV> {
|
|||
|
||||
/** allows for explicit roll parameterization - uses canonical coordinate */
|
||||
DRollPrior(Key key, double wx, const gtsam::SharedNoiseModel& model)
|
||||
: Base(key, 0, wx, model) { }
|
||||
: Base(key, kRollIndex, wx, model) { }
|
||||
|
||||
/** Forces roll to zero */
|
||||
DRollPrior(Key key, const gtsam::SharedNoiseModel& model)
|
||||
: Base(key, 0, 0.0, model) { }
|
||||
: Base(key, kRollIndex, 0.0, model) { }
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -49,17 +57,9 @@ struct DRollPrior : public gtsam::PartialPriorFactor<PoseRTV> {
|
|||
*/
|
||||
struct VelocityPrior : public gtsam::PartialPriorFactor<PoseRTV> {
|
||||
typedef gtsam::PartialPriorFactor<PoseRTV> Base;
|
||||
|
||||
VelocityPrior(Key key, const gtsam::Vector& vel, const gtsam::SharedNoiseModel& model)
|
||||
: Base(key, model) {
|
||||
this->prior_ = vel;
|
||||
assert(vel.size() == 3);
|
||||
this->mask_.resize(3);
|
||||
this->mask_[0] = 6;
|
||||
this->mask_[1] = 7;
|
||||
this->mask_[2] = 8;
|
||||
this->H_ = Matrix::Zero(3, 9);
|
||||
this->fillH();
|
||||
}
|
||||
: Base(key, kVelocityIndices, vel, model) {}
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -74,31 +74,15 @@ struct DGroundConstraint : public gtsam::PartialPriorFactor<PoseRTV> {
|
|||
* Primary constructor allows for variable height of the "floor"
|
||||
*/
|
||||
DGroundConstraint(Key key, double height, const gtsam::SharedNoiseModel& model)
|
||||
: Base(key, model) {
|
||||
this->prior_ = Vector::Unit(4,0)*height; // [z, vz, roll, pitch]
|
||||
this->mask_.resize(4);
|
||||
this->mask_[0] = 5; // z = height
|
||||
this->mask_[1] = 8; // vz
|
||||
this->mask_[2] = 0; // roll
|
||||
this->mask_[3] = 1; // pitch
|
||||
this->H_ = Matrix::Zero(3, 9);
|
||||
this->fillH();
|
||||
}
|
||||
: Base(key, { kHeightIndex, kVelocityZIndex, kRollIndex, kPitchIndex },
|
||||
Vector::Unit(4, 0)*height, model) {}
|
||||
|
||||
/**
|
||||
* Fully specify vector - use only for debugging
|
||||
*/
|
||||
DGroundConstraint(Key key, const Vector& constraint, const gtsam::SharedNoiseModel& model)
|
||||
: Base(key, model) {
|
||||
: Base(key, { kHeightIndex, kVelocityZIndex, kRollIndex, kPitchIndex }, constraint, model) {
|
||||
assert(constraint.size() == 4);
|
||||
this->prior_ = constraint; // [z, vz, roll, pitch]
|
||||
this->mask_.resize(4);
|
||||
this->mask_[0] = 5; // z = height
|
||||
this->mask_[1] = 8; // vz
|
||||
this->mask_[2] = 0; // roll
|
||||
this->mask_[3] = 1; // pitch
|
||||
this->H_ = Matrix::Zero(3, 9);
|
||||
this->fillH();
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -80,6 +80,7 @@ public:
|
|||
using Base::Dim;
|
||||
using Base::retract;
|
||||
using Base::localCoordinates;
|
||||
using Base::LocalCoordinates;
|
||||
/// @}
|
||||
|
||||
/// @name measurement functions
|
||||
|
|
|
@ -29,11 +29,9 @@ namespace gtsam {
|
|||
*
|
||||
* The prior vector used in this factor is stored in compressed form, such that
|
||||
* it only contains values for measurements that are to be compared, and they are in
|
||||
* the same order as VALUE::Logmap(). The mask will determine which components to extract
|
||||
* in the error function.
|
||||
* the same order as VALUE::Logmap(). The provided indices will determine which components to
|
||||
* extract in the error function.
|
||||
*
|
||||
* For practical use, it would be good to subclass this factor and have the class type
|
||||
* construct the mask.
|
||||
* @tparam VALUE is the type of variable the prior effects
|
||||
*/
|
||||
template<class VALUE>
|
||||
|
@ -43,16 +41,14 @@ namespace gtsam {
|
|||
typedef VALUE T;
|
||||
|
||||
protected:
|
||||
|
||||
// Concept checks on the variable type - currently requires Lie
|
||||
GTSAM_CONCEPT_LIE_TYPE(VALUE)
|
||||
|
||||
typedef NoiseModelFactor1<VALUE> Base;
|
||||
typedef PartialPriorFactor<VALUE> This;
|
||||
|
||||
Vector prior_; ///< measurement on tangent space parameters, in compressed form
|
||||
std::vector<size_t> mask_; ///< indices of values to constrain in compressed prior vector
|
||||
Matrix H_; ///< Constant Jacobian - computed at creation
|
||||
Vector prior_; ///< Measurement on tangent space parameters, in compressed form.
|
||||
std::vector<size_t> indices_; ///< Indices of the measured tangent space parameters.
|
||||
|
||||
/** default constructor - only use for serialization */
|
||||
PartialPriorFactor() {}
|
||||
|
@ -68,20 +64,22 @@ namespace gtsam {
|
|||
|
||||
~PartialPriorFactor() override {}
|
||||
|
||||
/** Single Element Constructor: acts on a single parameter specified by idx */
|
||||
/** Single Element Constructor: Prior on a single parameter at index 'idx' in the tangent vector.*/
|
||||
PartialPriorFactor(Key key, size_t idx, double prior, const SharedNoiseModel& model) :
|
||||
Base(model, key), prior_((Vector(1) << prior).finished()), mask_(1, idx), H_(Matrix::Zero(1, T::dimension)) {
|
||||
Base(model, key),
|
||||
prior_((Vector(1) << prior).finished()),
|
||||
indices_(1, idx) {
|
||||
assert(model->dim() == 1);
|
||||
this->fillH();
|
||||
}
|
||||
|
||||
/** Indices Constructor: specify the mask with a set of indices */
|
||||
PartialPriorFactor(Key key, const std::vector<size_t>& mask, const Vector& prior,
|
||||
/** Indices Constructor: Specify the relevant measured indices in the tangent vector.*/
|
||||
PartialPriorFactor(Key key, const std::vector<size_t>& indices, const Vector& prior,
|
||||
const SharedNoiseModel& model) :
|
||||
Base(model, key), prior_(prior), mask_(mask), H_(Matrix::Zero(mask.size(), T::dimension)) {
|
||||
assert((size_t)prior_.size() == mask.size());
|
||||
assert(model->dim() == (size_t) prior.size());
|
||||
this->fillH();
|
||||
Base(model, key),
|
||||
prior_(prior),
|
||||
indices_(indices) {
|
||||
assert((size_t)prior_.size() == indices_.size());
|
||||
assert(model->dim() == (size_t)prior.size());
|
||||
}
|
||||
|
||||
/// @return a deep copy of this factor
|
||||
|
@ -102,35 +100,41 @@ namespace gtsam {
|
|||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != nullptr && Base::equals(*e, tol) &&
|
||||
gtsam::equal_with_abs_tol(this->prior_, e->prior_, tol) &&
|
||||
this->mask_ == e->mask_;
|
||||
this->indices_ == e->indices_;
|
||||
}
|
||||
|
||||
/** implement functions needed to derive from Factor */
|
||||
|
||||
/** vector of errors */
|
||||
/** Returns a vector of errors for the measured tangent parameters. */
|
||||
Vector evaluateError(const T& p, boost::optional<Matrix&> H = boost::none) const override {
|
||||
if (H) (*H) = H_;
|
||||
// FIXME: this was originally the generic retraction - may not produce same results
|
||||
Vector full_logmap = T::Logmap(p);
|
||||
// Vector full_logmap = T::identity().localCoordinates(p); // Alternate implementation
|
||||
Vector masked_logmap = Vector::Zero(this->dim());
|
||||
for (size_t i=0; i<mask_.size(); ++i)
|
||||
masked_logmap(i) = full_logmap(mask_[i]);
|
||||
return masked_logmap - prior_;
|
||||
Eigen::Matrix<double, T::dimension, T::dimension> H_local;
|
||||
|
||||
// If the Rot3 Cayley map is used, Rot3::LocalCoordinates will throw a runtime error
|
||||
// when asked to compute the Jacobian matrix (see Rot3M.cpp).
|
||||
#ifdef GTSAM_ROT3_EXPMAP
|
||||
const Vector full_tangent = T::LocalCoordinates(p, H ? &H_local : nullptr);
|
||||
#else
|
||||
const Vector full_tangent = T::Logmap(p, H ? &H_local : nullptr);
|
||||
#endif
|
||||
|
||||
if (H) {
|
||||
(*H) = Matrix::Zero(indices_.size(), T::dimension);
|
||||
for (size_t i = 0; i < indices_.size(); ++i) {
|
||||
(*H).row(i) = H_local.row(indices_.at(i));
|
||||
}
|
||||
}
|
||||
// Select relevant parameters from the tangent vector.
|
||||
Vector partial_tangent = Vector::Zero(indices_.size());
|
||||
for (size_t i = 0; i < indices_.size(); ++i) {
|
||||
partial_tangent(i) = full_tangent(indices_.at(i));
|
||||
}
|
||||
|
||||
return partial_tangent - prior_;
|
||||
}
|
||||
|
||||
// access
|
||||
const Vector& prior() const { return prior_; }
|
||||
const std::vector<size_t>& mask() const { return mask_; }
|
||||
const Matrix& H() const { return H_; }
|
||||
|
||||
protected:
|
||||
|
||||
/** Constructs the jacobian matrix in place */
|
||||
void fillH() {
|
||||
for (size_t i=0; i<mask_.size(); ++i)
|
||||
H_(i, mask_[i]) = 1.0;
|
||||
}
|
||||
const std::vector<size_t>& indices() const { return indices_; }
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
|
@ -140,8 +144,8 @@ namespace gtsam {
|
|||
ar & boost::serialization::make_nvp("NoiseModelFactor1",
|
||||
boost::serialization::base_object<Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(prior_);
|
||||
ar & BOOST_SERIALIZATION_NVP(mask_);
|
||||
ar & BOOST_SERIALIZATION_NVP(H_);
|
||||
ar & BOOST_SERIALIZATION_NVP(indices_);
|
||||
// ar & BOOST_SERIALIZATION_NVP(H_);
|
||||
}
|
||||
}; // \class PartialPriorFactor
|
||||
|
||||
|
|
|
@ -0,0 +1,283 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
#include <gtsam_unstable/slam/PartialPriorFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
namespace NM = gtsam::noiseModel;
|
||||
|
||||
// Pose3 tangent representation is [ Rx Ry Rz Tx Ty Tz ].
|
||||
static const int kIndexRx = 0;
|
||||
static const int kIndexRy = 1;
|
||||
static const int kIndexRz = 2;
|
||||
static const int kIndexTx = 3;
|
||||
static const int kIndexTy = 4;
|
||||
static const int kIndexTz = 5;
|
||||
|
||||
typedef PartialPriorFactor<Pose2> TestPartialPriorFactor2;
|
||||
typedef PartialPriorFactor<Pose3> TestPartialPriorFactor3;
|
||||
typedef std::vector<size_t> Indices;
|
||||
|
||||
/// traits
|
||||
namespace gtsam {
|
||||
template<>
|
||||
struct traits<TestPartialPriorFactor2> : public Testable<TestPartialPriorFactor2> {};
|
||||
|
||||
template<>
|
||||
struct traits<TestPartialPriorFactor3> : public Testable<TestPartialPriorFactor3> {};
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, Constructors2) {
|
||||
Key poseKey(1);
|
||||
Pose2 measurement(-13.1, 3.14, -0.73);
|
||||
|
||||
// Prior on x component of translation.
|
||||
TestPartialPriorFactor2 factor1(poseKey, 0, measurement.x(), NM::Isotropic::Sigma(1, 0.25));
|
||||
CHECK(assert_equal(1, factor1.prior().rows()));
|
||||
CHECK(assert_equal(measurement.x(), factor1.prior()(0)));
|
||||
CHECK(assert_container_equality<Indices>({ 0 }, factor1.indices()));
|
||||
|
||||
// Prior on full translation vector.
|
||||
const Indices t_indices = { 0, 1 };
|
||||
TestPartialPriorFactor2 factor2(poseKey, t_indices, measurement.translation(), NM::Isotropic::Sigma(2, 0.25));
|
||||
CHECK(assert_equal(2, factor2.prior().rows()));
|
||||
CHECK(assert_equal(measurement.translation(), factor2.prior()));
|
||||
CHECK(assert_container_equality<Indices>(t_indices, factor2.indices()));
|
||||
|
||||
// Prior on theta.
|
||||
TestPartialPriorFactor2 factor3(poseKey, 2, measurement.theta(), NM::Isotropic::Sigma(1, 0.1));
|
||||
CHECK(assert_equal(1, factor3.prior().rows()));
|
||||
CHECK(assert_equal(measurement.theta(), factor3.prior()(0)));
|
||||
CHECK(assert_container_equality<Indices>({ 2 }, factor3.indices()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, JacobianPartialTranslation2) {
|
||||
Key poseKey(1);
|
||||
Pose2 measurement(-13.1, 3.14, -0.73);
|
||||
|
||||
// Prior on x component of translation.
|
||||
TestPartialPriorFactor2 factor(poseKey, 0, measurement.x(), NM::Isotropic::Sigma(1, 0.25));
|
||||
|
||||
Pose2 pose = measurement; // Zero-error linearization point.
|
||||
|
||||
// Calculate numerical derivatives.
|
||||
Matrix expectedH1 = numericalDerivative11<Vector, Pose2>(
|
||||
boost::bind(&TestPartialPriorFactor2::evaluateError, &factor, _1, boost::none), pose);
|
||||
|
||||
// Use the factor to calculate the derivative.
|
||||
Matrix actualH1;
|
||||
factor.evaluateError(pose, actualH1);
|
||||
|
||||
// Verify we get the expected error.
|
||||
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, JacobianFullTranslation2) {
|
||||
Key poseKey(1);
|
||||
Pose2 measurement(-6.0, 3.5, 0.123);
|
||||
|
||||
// Prior on x component of translation.
|
||||
TestPartialPriorFactor2 factor(poseKey, { 0, 1 }, measurement.translation(), NM::Isotropic::Sigma(2, 0.25));
|
||||
|
||||
Pose2 pose = measurement; // Zero-error linearization point.
|
||||
|
||||
// Calculate numerical derivatives.
|
||||
Matrix expectedH1 = numericalDerivative11<Vector, Pose2>(
|
||||
boost::bind(&TestPartialPriorFactor2::evaluateError, &factor, _1, boost::none), pose);
|
||||
|
||||
// Use the factor to calculate the derivative.
|
||||
Matrix actualH1;
|
||||
factor.evaluateError(pose, actualH1);
|
||||
|
||||
// Verify we get the expected error.
|
||||
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, JacobianTheta) {
|
||||
Key poseKey(1);
|
||||
Pose2 measurement(-1.0, 0.4, -2.5);
|
||||
|
||||
// Prior on x component of translation.
|
||||
TestPartialPriorFactor2 factor(poseKey, 2, measurement.theta(), NM::Isotropic::Sigma(1, 0.25));
|
||||
|
||||
Pose2 pose = measurement; // Zero-error linearization point.
|
||||
|
||||
// Calculate numerical derivatives.
|
||||
Matrix expectedH1 = numericalDerivative11<Vector, Pose2>(
|
||||
boost::bind(&TestPartialPriorFactor2::evaluateError, &factor, _1, boost::none), pose);
|
||||
|
||||
// Use the factor to calculate the derivative.
|
||||
Matrix actualH1;
|
||||
factor.evaluateError(pose, actualH1);
|
||||
|
||||
// Verify we get the expected error.
|
||||
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, Constructors3) {
|
||||
Key poseKey(1);
|
||||
Pose3 measurement(Rot3::RzRyRx(-0.17, 0.567, M_PI), Point3(10.0, -2.3, 3.14));
|
||||
|
||||
// Single component of translation.
|
||||
TestPartialPriorFactor3 factor1(poseKey, kIndexTy, measurement.y(),
|
||||
NM::Isotropic::Sigma(1, 0.25));
|
||||
CHECK(assert_equal(1, factor1.prior().rows()));
|
||||
CHECK(assert_equal(measurement.y(), factor1.prior()(0)));
|
||||
CHECK(assert_container_equality<Indices>({ kIndexTy }, factor1.indices()));
|
||||
|
||||
// Full translation vector.
|
||||
const Indices t_indices = { kIndexTx, kIndexTy, kIndexTz };
|
||||
TestPartialPriorFactor3 factor2(poseKey, t_indices, measurement.translation(),
|
||||
NM::Isotropic::Sigma(3, 0.25));
|
||||
CHECK(assert_equal(3, factor2.prior().rows()));
|
||||
CHECK(assert_equal(measurement.translation(), factor2.prior()));
|
||||
CHECK(assert_container_equality<Indices>(t_indices, factor2.indices()));
|
||||
|
||||
// Full tangent vector of rotation.
|
||||
const Indices r_indices = { kIndexRx, kIndexRy, kIndexRz };
|
||||
TestPartialPriorFactor3 factor3(poseKey, r_indices, Rot3::Logmap(measurement.rotation()),
|
||||
NM::Isotropic::Sigma(3, 0.1));
|
||||
CHECK(assert_equal(3, factor3.prior().rows()));
|
||||
CHECK(assert_equal(Rot3::Logmap(measurement.rotation()), factor3.prior()));
|
||||
CHECK(assert_container_equality<Indices>(r_indices, factor3.indices()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, JacobianAtIdentity3) {
|
||||
Key poseKey(1);
|
||||
Pose3 measurement = Pose3::identity();
|
||||
SharedNoiseModel model = NM::Isotropic::Sigma(1, 0.25);
|
||||
|
||||
TestPartialPriorFactor3 factor(poseKey, kIndexTy, measurement.translation().y(), model);
|
||||
|
||||
Pose3 pose = measurement; // Zero-error linearization point.
|
||||
|
||||
// Calculate numerical derivatives.
|
||||
Matrix expectedH1 = numericalDerivative11<Vector, Pose3>(
|
||||
boost::bind(&TestPartialPriorFactor3::evaluateError, &factor, _1, boost::none), pose);
|
||||
|
||||
// Use the factor to calculate the derivative.
|
||||
Matrix actualH1;
|
||||
factor.evaluateError(pose, actualH1);
|
||||
|
||||
// Verify we get the expected error.
|
||||
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, JacobianPartialTranslation3) {
|
||||
Key poseKey(1);
|
||||
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
|
||||
SharedNoiseModel model = NM::Isotropic::Sigma(1, 0.25);
|
||||
|
||||
TestPartialPriorFactor3 factor(poseKey, kIndexTy, measurement.translation().y(), model);
|
||||
|
||||
Pose3 pose = measurement; // Zero-error linearization point.
|
||||
|
||||
// Calculate numerical derivatives.
|
||||
Matrix expectedH1 = numericalDerivative11<Vector, Pose3>(
|
||||
boost::bind(&TestPartialPriorFactor3::evaluateError, &factor, _1, boost::none), pose);
|
||||
|
||||
// Use the factor to calculate the derivative.
|
||||
Matrix actualH1;
|
||||
factor.evaluateError(pose, actualH1);
|
||||
|
||||
// Verify we get the expected error.
|
||||
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, JacobianFullTranslation3) {
|
||||
Key poseKey(1);
|
||||
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
|
||||
SharedNoiseModel model = NM::Isotropic::Sigma(3, 0.25);
|
||||
|
||||
std::vector<size_t> translationIndices = { kIndexTx, kIndexTy, kIndexTz };
|
||||
TestPartialPriorFactor3 factor(poseKey, translationIndices, measurement.translation(), model);
|
||||
|
||||
// Create a linearization point at the zero-error point
|
||||
Pose3 pose = measurement; // Zero-error linearization point.
|
||||
|
||||
// Calculate numerical derivatives.
|
||||
Matrix expectedH1 = numericalDerivative11<Vector, Pose3>(
|
||||
boost::bind(&TestPartialPriorFactor3::evaluateError, &factor, _1, boost::none), pose);
|
||||
|
||||
// Use the factor to calculate the derivative.
|
||||
Matrix actualH1;
|
||||
factor.evaluateError(pose, actualH1);
|
||||
|
||||
// Verify we get the expected error.
|
||||
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, JacobianTxTz3) {
|
||||
Key poseKey(1);
|
||||
Pose3 measurement(Rot3::RzRyRx(-0.17, 0.567, M_PI), Point3(10.0, -2.3, 3.14));
|
||||
SharedNoiseModel model = NM::Isotropic::Sigma(2, 0.25);
|
||||
|
||||
std::vector<size_t> translationIndices = { kIndexTx, kIndexTz };
|
||||
TestPartialPriorFactor3 factor(poseKey, translationIndices,
|
||||
(Vector(2) << measurement.x(), measurement.z()).finished(), model);
|
||||
|
||||
Pose3 pose = measurement; // Zero-error linearization point.
|
||||
|
||||
// Calculate numerical derivatives.
|
||||
Matrix expectedH1 = numericalDerivative11<Vector, Pose3>(
|
||||
boost::bind(&TestPartialPriorFactor3::evaluateError, &factor, _1, boost::none), pose);
|
||||
|
||||
// Use the factor to calculate the derivative.
|
||||
Matrix actualH1;
|
||||
factor.evaluateError(pose, actualH1);
|
||||
|
||||
// Verify we get the expected error.
|
||||
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(PartialPriorFactor, JacobianFullRotation3) {
|
||||
Key poseKey(1);
|
||||
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
|
||||
SharedNoiseModel model = NM::Isotropic::Sigma(3, 0.25);
|
||||
|
||||
std::vector<size_t> rotationIndices = { kIndexRx, kIndexRy, kIndexRz };
|
||||
TestPartialPriorFactor3 factor(poseKey, rotationIndices, Rot3::Logmap(measurement.rotation()), model);
|
||||
|
||||
Pose3 pose = measurement; // Zero-error linearization point.
|
||||
|
||||
// Calculate numerical derivatives.
|
||||
Matrix expectedH1 = numericalDerivative11<Vector, Pose3>(
|
||||
boost::bind(&TestPartialPriorFactor3::evaluateError, &factor, _1, boost::none), pose);
|
||||
|
||||
// Use the factor to calculate the derivative.
|
||||
Matrix actualH1;
|
||||
factor.evaluateError(pose, actualH1);
|
||||
|
||||
// Verify we get the expected error.
|
||||
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
Loading…
Reference in New Issue