From 8fbabf5c2417738a561c1e6193dac56e2cdd8fb9 Mon Sep 17 00:00:00 2001 From: Frank Dellaert Date: Fri, 13 Sep 2024 01:08:33 -0700 Subject: [PATCH] Extreme example --- .../tests/testGaussianMixtureFactor.cpp | 27 +++++++++++++++++++ 1 file changed, 27 insertions(+) diff --git a/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp b/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp index ab8453fba..7947779c8 100644 --- a/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp +++ b/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp @@ -613,6 +613,33 @@ TEST(GaussianMixtureFactor, TwoStateModel2) { } } +/* ************************************************************************* */ +/** + * Same model, P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1), but now with very informative + * measurements and vastly different motion model: either stand still or move + * far. This yields a very informative posterior. + */ +TEST(GaussianMixtureFactor, TwoStateModel3) { + using namespace test_two_state_estimation; + + double mu0 = 0.0, mu1 = 10.0; + double sigma0 = 0.2, sigma1 = 5.0; + auto hybridMotionModel = CreateHybridMotionModel(mu0, mu1, sigma0, sigma1); + + // We only check the 2-measurement case + const Vector1 z0(0.0), z1(10.0); + VectorValues given{{Z(0), z0}, {Z(1), z1}}; + + HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true); + HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given); + HybridBayesNet::shared_ptr bn = gfg.eliminateSequential(); + + // Values taken from an importance sampling run with 100k samples: + // approximateDiscreteMarginal(hbn, hybridMotionModel, given); + DiscreteConditional expected(m1, "8.91527/91.0847"); + EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002)); +} + /* ************************************************************************* */ int main() { TestResult tr;