Changed API slightly and made very clear what is measurement (typically in nav frame) and what is reference direction (typically in body frame)

release/4.3a0
dellaert 2014-01-29 13:34:52 -05:00
parent 19ed8b93b4
commit 8fbab3bde8
3 changed files with 24 additions and 22 deletions

View File

@ -26,33 +26,33 @@ namespace gtsam {
void AttitudeFactor::print(const string& s, void AttitudeFactor::print(const string& s,
const KeyFormatter& keyFormatter) const { const KeyFormatter& keyFormatter) const {
cout << s << "AttitudeFactor on " << keyFormatter(this->key()) << "\n"; cout << s << "AttitudeFactor on " << keyFormatter(this->key()) << "\n";
z_.print(" measured direction: "); nZ_.print(" measured direction in nav frame: ");
ref_.print(" reference direction: "); bRef_.print(" reference direction in body frame: ");
this->noiseModel_->print(" noise model: "); this->noiseModel_->print(" noise model: ");
} }
//*************************************************************************** //***************************************************************************
bool AttitudeFactor::equals(const NonlinearFactor& expected, double tol) const { bool AttitudeFactor::equals(const NonlinearFactor& expected, double tol) const {
const This* e = dynamic_cast<const This*>(&expected); const This* e = dynamic_cast<const This*>(&expected);
return e != NULL && Base::equals(*e, tol) && this->z_.equals(e->z_, tol) return e != NULL && Base::equals(*e, tol) && this->nZ_.equals(e->nZ_, tol)
&& this->ref_.equals(e->ref_, tol); && this->bRef_.equals(e->bRef_, tol);
} }
//*************************************************************************** //***************************************************************************
Vector AttitudeFactor::evaluateError(const Pose3& p, Vector AttitudeFactor::evaluateError(const Pose3& p,
boost::optional<Matrix&> H) const { boost::optional<Matrix&> H) const {
const Rot3& R = p.rotation(); const Rot3& nRb = p.rotation();
if (H) { if (H) {
Matrix D_q_R, D_e_q; Matrix D_nRef_R, D_e_nRef;
Sphere2 q = R.rotate(z_, D_q_R); Sphere2 nRef = nRb.rotate(bRef_, D_nRef_R);
Vector e = ref_.error(q, D_e_q); Vector e = nZ_.error(nRef, D_e_nRef);
H->resize(2, 6); H->resize(2, 6);
H->block < 2, 3 > (0, 0) = D_e_q * D_q_R; H->block < 2, 3 > (0, 0) = D_e_nRef * D_nRef_R;
H->block < 2, 3 > (0, 3) << Matrix::Zero(2, 3); H->block < 2, 3 > (0, 3) << Matrix::Zero(2, 3);
return e; return e;
} else { } else {
Sphere2 q = R * z_; Sphere2 nRef = nRb * bRef_;
return ref_.error(q); return nZ_.error(nRef);
} }
} }

View File

@ -37,7 +37,7 @@ private:
typedef NoiseModelFactor1<Pose3> Base; typedef NoiseModelFactor1<Pose3> Base;
Sphere2 z_, ref_; ///< Position measurement in Sphere2 nZ_, bRef_; ///< Position measurement in
public: public:
@ -57,13 +57,13 @@ public:
/** /**
* @brief Constructor * @brief Constructor
* @param key of the Pose3 variable that will be constrained * @param key of the Pose3 variable that will be constrained
* @param z measured direction in body frame * @param nZ measured direction in navigation frame
* @param ref reference direction in navigation frame
* @param model Gaussian noise model * @param model Gaussian noise model
* @param bRef reference direction in body frame (default Z-axis)
*/ */
AttitudeFactor(Key key, const Sphere2& z, const Sphere2& ref, AttitudeFactor(Key key, const Sphere2& nZ,
const SharedNoiseModel& model) : const SharedNoiseModel& model, const Sphere2& bRef=Sphere2(0,0,1)) :
Base(model, key), z_(z), ref_(ref) { Base(model, key), nZ_(nZ), bRef_(bRef) {
} }
/// @return a deep copy of this factor /// @return a deep copy of this factor
@ -96,8 +96,8 @@ private:
ar ar
& boost::serialization::make_nvp("NoiseModelFactor1", & boost::serialization::make_nvp("NoiseModelFactor1",
boost::serialization::base_object<Base>(*this)); boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(z_); ar & BOOST_SERIALIZATION_NVP(nZ_);
ar & BOOST_SERIALIZATION_NVP(ref_); ar & BOOST_SERIALIZATION_NVP(bRef_);
} }
}; };

View File

@ -30,13 +30,15 @@ TEST( AttitudeFactor, Constructor ) {
// Example: pitch and roll of aircraft in an ENU Cartesian frame. // Example: pitch and roll of aircraft in an ENU Cartesian frame.
// If pitch and roll are zero for an aerospace frame, // If pitch and roll are zero for an aerospace frame,
// that means Z is pointing down, i.e., direction of Z = (0,0,-1) // that means Z is pointing down, i.e., direction of Z = (0,0,-1)
Sphere2 bZ(0, 0, 1); // body Z axis Sphere2 bZ(0, 0, 1); // reference direction is body Z axis
Sphere2 nDown(0, 0, -1); // down, in ENU navigation frame Sphere2 nDown(0, 0, -1); // down, in ENU navigation frame, is "measurement"
// Factor // Factor
Key key(1); Key key(1);
SharedNoiseModel model = noiseModel::Isotropic::Sigma(3, 0.25); SharedNoiseModel model = noiseModel::Isotropic::Sigma(3, 0.25);
AttitudeFactor factor(key, bZ, nDown, model); AttitudeFactor factor0(key, nDown, model);
AttitudeFactor factor(key, nDown, model, bZ);
EXPECT(assert_equal(factor0,factor,1e-5));
// Create a linearization point at the zero-error point // Create a linearization point at the zero-error point
Pose3 T(Rot3(), Point3(-5.0, 8.0, -11.0)); Pose3 T(Rot3(), Point3(-5.0, 8.0, -11.0));