single leg robot test
parent
b2ca7476d6
commit
8f94f726a9
|
|
@ -15,7 +15,6 @@
|
|||
* @author Varun Agrawal
|
||||
*/
|
||||
|
||||
#include <gtsam/base/serializationTestHelpers.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridBayesTree.h>
|
||||
|
|
@ -40,7 +39,6 @@ using symbol_shorthand::M;
|
|||
using symbol_shorthand::X;
|
||||
|
||||
class Robot {
|
||||
size_t K_;
|
||||
DiscreteKeys modes_;
|
||||
HybridNonlinearFactorGraph nonlinearFactorGraph_;
|
||||
HybridGaussianFactorGraph linearizedFactorGraph_;
|
||||
|
|
@ -118,12 +116,10 @@ TEST(Estimation, StillRobot) {
|
|||
vector<double> measurements = {0, 0};
|
||||
|
||||
Robot robot(K, measurements);
|
||||
// robot.print();
|
||||
|
||||
HybridValues delta = robot.optimize();
|
||||
|
||||
delta.continuous().print("delta update:");
|
||||
|
||||
if (delta.discrete()[M(0)] == 0) {
|
||||
std::cout << "The robot is stationary!" << std::endl;
|
||||
} else {
|
||||
|
|
@ -132,17 +128,16 @@ TEST(Estimation, StillRobot) {
|
|||
EXPECT_LONGS_EQUAL(0, delta.discrete()[M(0)]);
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
TEST(Estimation, MovingRobot) {
|
||||
size_t K = 2;
|
||||
vector<double> measurements = {0, 2};
|
||||
|
||||
Robot robot(K, measurements);
|
||||
// robot.print();
|
||||
|
||||
HybridValues delta = robot.optimize();
|
||||
|
||||
delta.continuous().print("delta update:");
|
||||
|
||||
if (delta.discrete()[M(0)] == 0) {
|
||||
std::cout << "The robot is stationary!" << std::endl;
|
||||
} else {
|
||||
|
|
@ -153,7 +148,6 @@ TEST(Estimation, MovingRobot) {
|
|||
|
||||
/// A robot with a single leg.
|
||||
class SingleLeg {
|
||||
size_t K_;
|
||||
DiscreteKeys modes_;
|
||||
HybridNonlinearFactorGraph nonlinearFactorGraph_;
|
||||
HybridGaussianFactorGraph linearizedFactorGraph_;
|
||||
|
|
@ -165,10 +159,9 @@ class SingleLeg {
|
|||
*
|
||||
* @param K The number of discrete timesteps
|
||||
* @param pims std::vector of preintegrated IMU measurements.
|
||||
* @param contacts std::vector denoting whether the leg was in contact at each
|
||||
* timestep.
|
||||
* @param fk std::vector of forward kinematic measurements for the leg.
|
||||
*/
|
||||
SingleLeg(size_t K, std::vector<Pose2> pims, std::vector<uint64_t> contacts) {
|
||||
SingleLeg(size_t K, std::vector<Pose2> pims, std::vector<Pose2> fk) {
|
||||
// Create DiscreteKeys for binary K modes
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
modes_.emplace_back(M(k), 2);
|
||||
|
|
@ -176,10 +169,15 @@ class SingleLeg {
|
|||
|
||||
////// Create hybrid factor graph.
|
||||
|
||||
auto measurement_noise = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
|
||||
// Add prior on the first pose
|
||||
nonlinearFactorGraph_.emplace_nonlinear<PriorFactor<Pose2>>(
|
||||
X(0), Pose2(0, 2, 0), measurement_noise);
|
||||
|
||||
// Add measurement factors.
|
||||
// These are the preintegrated IMU measurements of the base.
|
||||
auto measurement_noise = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
for (size_t k = 0; k < K - 1; k++) {
|
||||
nonlinearFactorGraph_.emplace_nonlinear<BetweenFactor<Pose2>>(
|
||||
X(k), X(k + 1), pims.at(k), measurement_noise);
|
||||
}
|
||||
|
|
@ -187,35 +185,30 @@ class SingleLeg {
|
|||
// Forward kinematics from base X to foot L
|
||||
auto fk_noise = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
if (contacts.at(k) == 1) {
|
||||
nonlinearFactorGraph_.emplace_nonlinear<BetweenFactor<Pose2>>(
|
||||
X(k), L(k), Pose2(), fk_noise)
|
||||
} else {
|
||||
nonlinearFactorGraph_.emplace_nonlinear<BetweenFactor<Pose2>>(
|
||||
X(k), L(k), Pose2(), fk_noise)
|
||||
}
|
||||
nonlinearFactorGraph_.emplace_nonlinear<BetweenFactor<Pose2>>(
|
||||
X(k), L(k), fk.at(k), fk_noise);
|
||||
}
|
||||
|
||||
// 2 noise models where moving has a higher covariance.
|
||||
auto stance_model = noiseModel::Isotropic::Sigma(1, 1e-2);
|
||||
auto swing_model = noiseModel::Isotropic::Sigma(1, 1e2);
|
||||
auto stance_model = noiseModel::Isotropic::Sigma(3, 1e-2);
|
||||
auto swing_model = noiseModel::Isotropic::Sigma(3, 1e2);
|
||||
|
||||
// Add "contact models" for the foot.
|
||||
// The idea is that the robot's leg has a tight covariance for stance and
|
||||
// loose covariance for swing.
|
||||
using ContactFactor = BetweenFactor<double>;
|
||||
using ContactFactor = BetweenFactor<Pose2>;
|
||||
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
for (size_t k = 0; k < K - 1; k++) {
|
||||
KeyVector keys = {L(k), L(k + 1)};
|
||||
DiscreteKeys dkeys{modes_[k], modes_[k + 1]};
|
||||
auto stance = boost::make_shared<ContactFactor>(keys.at(0), keys.at(1),
|
||||
0.0, stance_model),
|
||||
lift = boost::make_shared<ContactFactor>(keys.at(0), keys.at(1), 0.0,
|
||||
swing_model),
|
||||
land = boost::make_shared<ContactFactor>(keys.at(0), keys.at(1), 0.0,
|
||||
swing_model),
|
||||
swing = boost::make_shared<ContactFactor>(keys.at(0), keys.at(1),
|
||||
0.0, swing_model);
|
||||
auto stance = boost::make_shared<ContactFactor>(
|
||||
keys.at(0), keys.at(1), Pose2(0, 0, 0), stance_model),
|
||||
lift = boost::make_shared<ContactFactor>(
|
||||
keys.at(0), keys.at(1), Pose2(0, 0, 0), swing_model),
|
||||
land = boost::make_shared<ContactFactor>(
|
||||
keys.at(0), keys.at(1), Pose2(0, 0, 0), swing_model),
|
||||
swing = boost::make_shared<ContactFactor>(
|
||||
keys.at(0), keys.at(1), Pose2(0, 0, 0), swing_model);
|
||||
// 00 - swing, 01 - land, 10 - toe-off, 11 - stance
|
||||
std::vector<boost::shared_ptr<ContactFactor>> components = {swing, land,
|
||||
lift, stance};
|
||||
|
|
@ -225,7 +218,8 @@ class SingleLeg {
|
|||
|
||||
// Create the linearization point.
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
linearizationPoint_.insert<double>(X(k), static_cast<double>(k + 1));
|
||||
linearizationPoint_.insert<Pose2>(X(k), Pose2(k, 2, 0));
|
||||
linearizationPoint_.insert<Pose2>(L(k), Pose2(0, 0, 0));
|
||||
}
|
||||
|
||||
linearizedFactorGraph_ =
|
||||
|
|
@ -243,11 +237,31 @@ class SingleLeg {
|
|||
HybridBayesNet::shared_ptr hybridBayesNet =
|
||||
linearizedFactorGraph_.eliminateSequential(hybridOrdering);
|
||||
|
||||
hybridBayesNet->print();
|
||||
HybridValues delta = hybridBayesNet->optimize();
|
||||
return delta;
|
||||
}
|
||||
|
||||
Values linearizationPoint() const { return linearizationPoint_; }
|
||||
};
|
||||
|
||||
/* ****************************************************************************/
|
||||
TEST(Estimation, LeggedRobot) {
|
||||
std::vector<Pose2> pims = {Pose2(1, 0, 0)};
|
||||
// Leg is in stance throughout
|
||||
std::vector<Pose2> fk = {Pose2(0, -2, 0), Pose2(-1, -2, 0)};
|
||||
SingleLeg robot(2, pims, fk);
|
||||
|
||||
std::cout << "\n\n\n" << std::endl;
|
||||
// robot.print();
|
||||
Values initial = robot.linearizationPoint();
|
||||
// initial.print();
|
||||
|
||||
HybridValues delta = robot.optimize();
|
||||
delta.print();
|
||||
|
||||
initial.retract(delta.continuous()).print("\n\n=========");
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
|||
Loading…
Reference in New Issue