remove added test file

release/4.3a0
Varun Agrawal 2022-10-13 10:46:04 -04:00
parent 1d70d14c72
commit 8f7473d026
1 changed files with 0 additions and 433 deletions

View File

@ -1,433 +0,0 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridEstimation.cpp
* @brief Unit tests for Hybrid Estimation
* @author Varun Agrawal
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridBayesTree.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::L;
using symbol_shorthand::M;
using symbol_shorthand::X;
class Robot {
DiscreteKeys modes_;
HybridNonlinearFactorGraph nonlinearFactorGraph_;
HybridGaussianFactorGraph linearizedFactorGraph_;
Values linearizationPoint_;
public:
Robot(size_t K, std::vector<double> measurements) {
// Create DiscreteKeys for binary K modes
for (size_t k = 0; k < K; k++) {
modes_.emplace_back(M(k), 2);
}
////// Create hybrid factor graph.
// Add measurement factors
auto measurement_noise = noiseModel::Isotropic::Sigma(1, 1.0);
for (size_t k = 0; k < K; k++) {
nonlinearFactorGraph_.emplace_nonlinear<PriorFactor<double>>(
X(k), measurements.at(k), measurement_noise);
}
// 2 noise models where moving has a higher covariance.
auto still_noise_model = noiseModel::Isotropic::Sigma(1, 1e-2);
auto moving_noise_model = noiseModel::Isotropic::Sigma(1, 1e2);
// Add "motion models".
// The idea is that the robot has a higher "freedom" (aka higher covariance)
// for movement
using MotionModel = BetweenFactor<double>;
for (size_t k = 1; k < K; k++) {
KeyVector keys = {X(k - 1), X(k)};
DiscreteKeys dkeys{modes_[k - 1]};
auto still = boost::make_shared<MotionModel>(X(k - 1), X(k), 0.0,
still_noise_model),
moving = boost::make_shared<MotionModel>(X(k - 1), X(k), 0.0,
moving_noise_model);
std::vector<boost::shared_ptr<MotionModel>> components = {still, moving};
nonlinearFactorGraph_.emplace_hybrid<MixtureFactor>(keys, dkeys,
components);
}
// Create the linearization point.
for (size_t k = 0; k < K; k++) {
linearizationPoint_.insert<double>(X(k), static_cast<double>(k + 1));
}
linearizedFactorGraph_ =
*nonlinearFactorGraph_.linearize(linearizationPoint_);
}
void print() const {
nonlinearFactorGraph_.print();
linearizationPoint_.print();
linearizedFactorGraph_.print();
}
HybridValues optimize() const {
Ordering hybridOrdering = linearizedFactorGraph_.getHybridOrdering();
HybridBayesNet::shared_ptr hybridBayesNet =
linearizedFactorGraph_.eliminateSequential(hybridOrdering);
HybridValues delta = hybridBayesNet->optimize();
return delta;
}
};
/* ****************************************************************************/
/**
* I am trying to test if setting the hybrid mixture components to just differ
* in covariance makes sense. This is done by setting the "moving" covariance to
* be 1e2 while the "still" covariance is 1e-2.
*/
TEST(Estimation, StillRobot) {
size_t K = 2;
vector<double> measurements = {0, 0};
Robot robot(K, measurements);
HybridValues delta = robot.optimize();
delta.continuous().print("delta update:");
if (delta.discrete()[M(0)] == 0) {
std::cout << "The robot is stationary!" << std::endl;
} else {
std::cout << "The robot has moved!" << std::endl;
}
EXPECT_LONGS_EQUAL(0, delta.discrete()[M(0)]);
}
/* ****************************************************************************/
TEST(Estimation, MovingRobot) {
size_t K = 2;
vector<double> measurements = {0, 2};
Robot robot(K, measurements);
HybridValues delta = robot.optimize();
delta.continuous().print("delta update:");
if (delta.discrete()[M(0)] == 0) {
std::cout << "The robot is stationary!" << std::endl;
} else {
std::cout << "The robot has moved!" << std::endl;
}
EXPECT_LONGS_EQUAL(1, delta.discrete()[M(0)]);
}
/// A robot with a single leg.
class SingleLeg {
DiscreteKeys modes_;
HybridNonlinearFactorGraph nonlinearFactorGraph_;
HybridGaussianFactorGraph linearizedFactorGraph_;
Values linearizationPoint_;
public:
/**
* @brief Construct a new Single Leg object.
*
* @param K The number of discrete timesteps
* @param pims std::vector of preintegrated IMU measurements.
* @param fk std::vector of forward kinematic measurements for the leg.
*/
SingleLeg(size_t K, std::vector<Pose2> pims, std::vector<Pose2> fk) {
// Create DiscreteKeys for binary K modes
for (size_t k = 0; k < K; k++) {
modes_.emplace_back(M(k), 2);
}
////// Create hybrid factor graph.
auto measurement_noise = noiseModel::Isotropic::Sigma(3, 1.0);
// Add prior on the first pose
nonlinearFactorGraph_.emplace_nonlinear<PriorFactor<Pose2>>(
X(0), Pose2(0, 2, 0), measurement_noise);
// Add measurement factors.
// These are the preintegrated IMU measurements of the base.
for (size_t k = 0; k < K - 1; k++) {
nonlinearFactorGraph_.emplace_nonlinear<BetweenFactor<Pose2>>(
X(k), X(k + 1), pims.at(k), measurement_noise);
}
// Forward kinematics from base X to foot L
auto fk_noise = noiseModel::Isotropic::Sigma(3, 1.0);
for (size_t k = 0; k < K; k++) {
nonlinearFactorGraph_.emplace_nonlinear<BetweenFactor<Pose2>>(
X(k), L(k), fk.at(k), fk_noise);
}
// 2 noise models where moving has a higher covariance.
auto stance_model = noiseModel::Isotropic::Sigma(3, 1e-2);
auto swing_model = noiseModel::Isotropic::Sigma(3, 1e2);
// Add "contact models" for the foot.
// The idea is that the robot's leg has a tight covariance for stance and
// loose covariance for swing.
using ContactFactor = BetweenFactor<Pose2>;
for (size_t k = 0; k < K - 1; k++) {
KeyVector keys = {L(k), L(k + 1)};
DiscreteKeys dkeys{modes_[k], modes_[k + 1]};
auto stance = boost::make_shared<ContactFactor>(
keys.at(0), keys.at(1), Pose2(0, 0, 0), stance_model),
lift = boost::make_shared<ContactFactor>(
keys.at(0), keys.at(1), Pose2(0, -1, 0), swing_model),
land = boost::make_shared<ContactFactor>(
keys.at(0), keys.at(1), Pose2(0, 1, 0), swing_model),
swing = boost::make_shared<ContactFactor>(
keys.at(0), keys.at(1), Pose2(1, 0, 0), swing_model);
// 00 - swing, 01 - land, 10 - toe-off, 11 - stance
std::vector<boost::shared_ptr<ContactFactor>> components = {swing, land,
lift, stance};
nonlinearFactorGraph_.emplace_hybrid<MixtureFactor>(keys, dkeys,
components);
}
// Create the linearization point.
for (size_t k = 0; k < K; k++) {
linearizationPoint_.insert<Pose2>(X(k), Pose2(k, 2, 0));
linearizationPoint_.insert<Pose2>(L(k), Pose2(0, 0, 0));
}
linearizedFactorGraph_ =
*nonlinearFactorGraph_.linearize(linearizationPoint_);
}
void print() const {
nonlinearFactorGraph_.print();
linearizationPoint_.print();
linearizedFactorGraph_.print();
}
HybridValues optimize() const {
Ordering hybridOrdering = linearizedFactorGraph_.getHybridOrdering();
HybridBayesNet::shared_ptr hybridBayesNet =
linearizedFactorGraph_.eliminateSequential(hybridOrdering);
HybridValues delta = hybridBayesNet->optimize();
return delta;
}
Values linearizationPoint() const { return linearizationPoint_; }
};
/* ****************************************************************************/
TEST(Estimation, LeggedRobot) {
std::vector<Pose2> pims = {Pose2(1, 0, 0)};
// Leg is in stance throughout
std::vector<Pose2> fk = {Pose2(0, -2, 0), Pose2(-1, -2, 0)};
SingleLeg robot(2, pims, fk);
std::cout << "\n\n\n" << std::endl;
// robot.print();
Values initial = robot.linearizationPoint();
// initial.print();
HybridValues delta = robot.optimize();
// delta.print();
initial.retract(delta.continuous()).print("\n\n=========");
std::cout << "\n\n\n" << std::endl;
}
/// A robot with a single leg - non-hybrid version.
class SL {
NonlinearFactorGraph nonlinearFactorGraph_;
GaussianFactorGraph linearizedFactorGraph_;
GaussianBayesNet bayesNet_;
Values linearizationPoint_;
public:
/**
* @brief Construct a new Single Leg object.
*
* @param K The number of discrete timesteps
* @param pims std::vector of preintegrated IMU measurements.
* @param fk std::vector of forward kinematic measurements for the leg.
*/
SL(size_t K, const std::vector<Pose2>& pims, const std::vector<Pose2>& fk,
const std::vector<bool>& contacts) {
////// Create hybrid factor graph.
auto measurement_noise = noiseModel::Isotropic::Sigma(3, 1.0);
// Add prior on the first pose
nonlinearFactorGraph_.emplace_shared<PriorFactor<Pose2>>(
X(0), Pose2(0, 2, 0), measurement_noise);
// Add measurement factors.
// These are the preintegrated IMU measurements of the base.
for (size_t k = 0; k < K - 1; k++) {
nonlinearFactorGraph_.emplace_shared<BetweenFactor<Pose2>>(
X(k), X(k + 1), pims.at(k), measurement_noise);
}
// Forward kinematics from base X to foot L
auto fk_noise = noiseModel::Isotropic::Sigma(3, 1.0);
for (size_t k = 0; k < K; k++) {
nonlinearFactorGraph_.emplace_shared<BetweenFactor<Pose2>>(
X(k), L(k), fk.at(k), fk_noise);
}
// 2 noise models where moving has a higher covariance.
auto stance_model = noiseModel::Isotropic::Sigma(3, 1e-4);
auto swing_model = noiseModel::Isotropic::Sigma(3, 1e8);
// Add "contact models" for the foot.
// The idea is that the robot's leg has a tight covariance for stance and
// loose covariance for swing.
using ContactFactor = BetweenFactor<Pose2>;
for (size_t k = 0; k < K - 1; k++) {
KeyVector keys = {L(k), L(k + 1)};
ContactFactor::shared_ptr factor;
if (contacts[k] && contacts[k + 1]) {
// stance
std::cout << "stance 11" << std::endl;
factor = boost::make_shared<ContactFactor>(
keys.at(0), keys.at(1), Pose2(0, 0, 0), stance_model);
} else if (contacts[k] && !contacts[k + 1]) {
// toe-off
std::cout << "toe-off 10" << std::endl;
factor = boost::make_shared<ContactFactor>(keys.at(0), keys.at(1),
Pose2(0, 0, 0), swing_model);
} else if (!contacts[k] && contacts[k + 1]) {
// land
std::cout << "land 01" << std::endl;
factor = boost::make_shared<ContactFactor>(keys.at(0), keys.at(1),
Pose2(0, 0, 0), swing_model);
} else if (!contacts[k] && !contacts[k + 1]) {
// swing
std::cout << "swing 00" << std::endl;
factor = boost::make_shared<ContactFactor>(keys.at(0), keys.at(1),
Pose2(0, 0, 0), swing_model);
}
nonlinearFactorGraph_.push_back(factor);
}
// Create the linearization point.
for (size_t k = 0; k < K; k++) {
linearizationPoint_.insert<Pose2>(X(k), Pose2(k, 2, 0));
linearizationPoint_.insert<Pose2>(L(k), Pose2(0, 0, 0));
}
linearizedFactorGraph_ =
*nonlinearFactorGraph_.linearize(linearizationPoint_);
}
void print() const {
nonlinearFactorGraph_.print();
linearizationPoint_.print();
linearizedFactorGraph_.print();
}
VectorValues optimize() {
bayesNet_ = *linearizedFactorGraph_.eliminateSequential();
// bayesNet->print();
VectorValues delta = bayesNet_.optimize();
return delta;
}
Values linearizationPoint() const { return linearizationPoint_; }
NonlinearFactorGraph nonlinearFactorGraph() const {
return nonlinearFactorGraph_;
}
GaussianFactorGraph linearizedFactorGraph() const {
return linearizedFactorGraph_;
}
GaussianBayesNet bayesNet() const { return bayesNet_; }
};
/* ****************************************************************************/
TEST(Estimation, LR) {
std::vector<Pose2> pims = {Pose2(1, 0, 0)};
// Leg is in stance throughout
// std::vector<Pose2> fk = {Pose2(0, -2, 0), Pose2(-1, -2, 0)};
// Leg is in swing
// std::vector<Pose2> fk = {Pose2(0, -1, 0), Pose2(0, -1, 0)};
// Leg is in toe-off
// std::vector<Pose2> fk = {Pose2(0, -2, 0), Pose2(0, -1, 0)};
// Leg is in land
std::vector<Pose2> fk = {Pose2(0, -1, 0), Pose2(0, -2, 0)};
vector<bool> contacts;
contacts = {1, 1};
SL robot11(2, pims, fk, contacts);
VectorValues delta = robot11.optimize();
// robot11.nonlinearFactorGraph().print();
std::cout << "Error with optimized delta: " << robot11.bayesNet().error(delta)
<< std::endl;
robot11.linearizationPoint().retract(delta).print();
std::cout << "\n===========================\n\n" << std::endl;
contacts = {1, 0};
SL robot10(2, pims, fk, contacts);
delta = robot10.optimize();
// robot10.nonlinearFactorGraph().print();
std::cout << "Error with optimized delta: " << robot10.bayesNet().error(delta)
<< std::endl;
robot10.linearizationPoint().retract(delta).print();
std::cout << "\n===========================\n\n" << std::endl;
contacts = {0, 1};
SL robot01(2, pims, fk, contacts);
delta = robot01.optimize();
// robot01.nonlinearFactorGraph().print();
std::cout << "Error with optimized delta: " << robot01.bayesNet().error(delta)
<< std::endl;
robot01.linearizationPoint().retract(delta).print();
std::cout << "\n===========================\n\n" << std::endl;
contacts = {0, 0};
SL robot00(2, pims, fk, contacts);
delta = robot00.optimize();
// robot00.nonlinearFactorGraph().print();
std::cout << "Error with optimized delta: " << robot00.bayesNet().error(delta)
<< std::endl;
robot00.linearizationPoint().retract(delta).print();
std::cout << "\n===========================\n\n" << std::endl;
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */