Updated BetweenFactor section of 'math' document
parent
d4ec018d0f
commit
8f4c1278b9
205
doc/math.lyx
205
doc/math.lyx
|
@ -885,7 +885,39 @@ H_{a}=G_{f(a)}F_{a}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $G_{f(a)}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the
|
||||||
|
\begin_inset Formula $m\times p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Jacobian matrix of
|
||||||
|
\begin_inset Formula $g$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
evaluated at
|
||||||
|
\begin_inset Formula $f(a)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, and
|
||||||
|
\begin_inset Formula $F_{a}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the
|
||||||
|
\begin_inset Formula $p\times n$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Jacobian matrix of
|
||||||
|
\begin_inset Formula $f$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
evaluated at
|
||||||
|
\begin_inset Formula $a$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Proof
|
\begin_layout Proof
|
||||||
|
@ -1521,7 +1553,7 @@ name "th:Action"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
The Jacobian matrix of the group action
|
The Jacobian matrix of the group action
|
||||||
\begin_inset Formula $f(T,P)=Tp$
|
\begin_inset Formula $f(T,p)=Tp$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
at
|
at
|
||||||
|
@ -2811,6 +2843,12 @@ B^{T} & I_{3}\end{array}\right]
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsection
|
\begin_layout Subsection
|
||||||
|
\begin_inset CommandInset label
|
||||||
|
LatexCommand label
|
||||||
|
name "sub:Pushforward-of-Between"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
Pushforward of Between
|
Pushforward of Between
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
@ -3378,27 +3416,14 @@ BetweenFactor
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
BetweenFactor is often used to summarize
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
\series bold
|
||||||
Theorem
|
\emph on
|
||||||
\begin_inset CommandInset ref
|
BetweenFactor
|
||||||
LatexCommand ref
|
\series default
|
||||||
reference "D-exp"
|
\emph default
|
||||||
|
is a factor in GTSAM that is used ubiquitously to process measurements
|
||||||
\end_inset
|
indicating the relative pose between two unknown poses
|
||||||
|
|
||||||
about the derivative of the exponential map
|
|
||||||
\begin_inset Formula $f:\xi\mapsto\exp\xihat$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
being identity only at
|
|
||||||
\begin_inset Formula $\xi=0$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
has implications for GTSAM.
|
|
||||||
Given two elements
|
|
||||||
\begin_inset Formula $T_{1}$
|
\begin_inset Formula $T_{1}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -3406,15 +3431,104 @@ reference "D-exp"
|
||||||
\begin_inset Formula $T_{2}$
|
\begin_inset Formula $T_{2}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, BetweenFactor evaluates
|
.
|
||||||
|
Let us assume the measured relative pose is
|
||||||
|
\begin_inset Formula $Z$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, then the code that calculates the error in
|
||||||
|
\series bold
|
||||||
|
\emph on
|
||||||
|
BetweenFactor
|
||||||
|
\series default
|
||||||
|
\emph default
|
||||||
|
first calculates the predicted relative pose
|
||||||
|
\begin_inset Formula $T_{12}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, and then evaluates the error between the measured and predicted relative
|
||||||
|
pose:
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout LyX-Code
|
||||||
|
T12 = between(T1, T2);
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout LyX-Code
|
||||||
|
return localCoordinates(Z, T12);
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
where we recall that the function
|
||||||
|
\series bold
|
||||||
|
\emph on
|
||||||
|
between
|
||||||
|
\series default
|
||||||
|
\emph default
|
||||||
|
is given in group theoretic notation as
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
g(T_{1},T_{2};Z)=f^{-1}\left(\mathop{between}(Z,\mathop{between}(T_{1},T_{2})\right)=f^{-1}\left(Z^{-1}\left(T_{1}^{-1}T_{2}\right)\right)
|
\varphi(g,h)=g^{-1}h
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
but because it is assumed that
|
The function
|
||||||
|
\series bold
|
||||||
|
\emph on
|
||||||
|
localCoordinates
|
||||||
|
\series default
|
||||||
|
\emph default
|
||||||
|
itself also calls
|
||||||
|
\series bold
|
||||||
|
\emph on
|
||||||
|
between
|
||||||
|
\series default
|
||||||
|
\emph default
|
||||||
|
, and converts to canonical coordinates:
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout LyX-Code
|
||||||
|
localCoordinates(Z,T12) = Logmap(between(Z, T12));
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Hence, given two elements
|
||||||
|
\begin_inset Formula $T_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $T_{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\series bold
|
||||||
|
\emph on
|
||||||
|
BetweenFactor
|
||||||
|
\series default
|
||||||
|
\emph default
|
||||||
|
evaluates
|
||||||
|
\begin_inset Formula $g:G\times G\rightarrow\Reals n$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
g(T_{1},T_{2};Z)=f^{-1}\left(\varphi(Z,\varphi(T_{1},T_{2})\right)=f^{-1}\left(Z^{-1}\left(T_{1}^{-1}T_{2}\right)\right)
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $f^{-1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the inverse of the map
|
||||||
|
\begin_inset Formula $f:\xi\mapsto\exp\xihat$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
If we assume that the measurement has only small error, then
|
||||||
\begin_inset Formula $Z\approx T_{1}^{-1}T_{2}$
|
\begin_inset Formula $Z\approx T_{1}^{-1}T_{2}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -3422,12 +3536,49 @@ but because it is assumed that
|
||||||
\begin_inset Formula $Z^{-1}T_{1}^{-1}T_{2}\approx e$
|
\begin_inset Formula $Z^{-1}T_{1}^{-1}T_{2}\approx e$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and the derivative should be good there.
|
, and we can invoke Theorem
|
||||||
Note that the derivative of
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "D-exp"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, which says that the derivative of the exponential map
|
||||||
|
\begin_inset Formula $f:\xi\mapsto\exp\xihat$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is identity at
|
||||||
|
\begin_inset Formula $\xi=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, as well as its inverse.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Finally, because the derivative of
|
||||||
|
\series bold
|
||||||
\emph on
|
\emph on
|
||||||
between
|
between
|
||||||
|
\series default
|
||||||
\emph default
|
\emph default
|
||||||
is identity in its second argument.
|
is identity in its second argument, the derivative of the
|
||||||
|
\series bold
|
||||||
|
\emph on
|
||||||
|
BetweenFactor
|
||||||
|
\series default
|
||||||
|
\emph default
|
||||||
|
error is identical to the derivative of pushforward of
|
||||||
|
\begin_inset Formula $\varphi(T_{1},T_{2})$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, derived in Section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sub:Pushforward-of-Between"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
|
|
BIN
doc/math.pdf
BIN
doc/math.pdf
Binary file not shown.
Loading…
Reference in New Issue