Merge pull request #677 from borglab/feature/sparseJacobian3
additional `sparseJacobian` functions (new)release/4.3a0
commit
8f13405f05
|
|
@ -0,0 +1,119 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SparseEigen.h
|
||||
*
|
||||
* @brief Utilities for creating Eigen sparse matrices (gtsam::SparseEigen)
|
||||
*
|
||||
* @date Aug 2019
|
||||
* @author Mandy Xie
|
||||
* @author Fan Jiang
|
||||
* @author Gerry Chen
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
#include <Eigen/Sparse>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
typedef Eigen::SparseMatrix<double> SparseEigen;
|
||||
|
||||
/// Constructs an Eigen-format SparseMatrix of a GaussianFactorGraph
|
||||
SparseEigen sparseJacobianEigen(
|
||||
const GaussianFactorGraph &gfg, const Ordering &ordering) {
|
||||
// TODO(gerry): eliminate copy/pasta by making GaussianFactorGraph version
|
||||
// more general, or by creating an Eigen::Triplet compatible wrapper for
|
||||
// boost::tuple return type
|
||||
|
||||
// First find dimensions of each variable
|
||||
std::map<Key, size_t> dims;
|
||||
for (const boost::shared_ptr<GaussianFactor> &factor : gfg) {
|
||||
if (!static_cast<bool>(factor)) continue;
|
||||
|
||||
for (auto it = factor->begin(); it != factor->end(); ++it) {
|
||||
dims[*it] = factor->getDim(it);
|
||||
}
|
||||
}
|
||||
|
||||
// Compute first scalar column of each variable
|
||||
size_t currentColIndex = 0;
|
||||
std::map<Key, size_t> columnIndices;
|
||||
for (const auto key : ordering) {
|
||||
columnIndices[key] = currentColIndex;
|
||||
currentColIndex += dims[key];
|
||||
}
|
||||
|
||||
// Iterate over all factors, adding sparse scalar entries
|
||||
std::vector<Eigen::Triplet<double>> entries;
|
||||
entries.reserve(60 * gfg.size());
|
||||
|
||||
size_t row = 0;
|
||||
for (const boost::shared_ptr<GaussianFactor> &factor : gfg) {
|
||||
if (!static_cast<bool>(factor)) continue;
|
||||
|
||||
// Convert to JacobianFactor if necessary
|
||||
JacobianFactor::shared_ptr jacobianFactor(
|
||||
boost::dynamic_pointer_cast<JacobianFactor>(factor));
|
||||
if (!jacobianFactor) {
|
||||
HessianFactor::shared_ptr hessian(
|
||||
boost::dynamic_pointer_cast<HessianFactor>(factor));
|
||||
if (hessian)
|
||||
jacobianFactor.reset(new JacobianFactor(*hessian));
|
||||
else
|
||||
throw std::invalid_argument(
|
||||
"GaussianFactorGraph contains a factor that is neither a "
|
||||
"JacobianFactor nor a HessianFactor.");
|
||||
}
|
||||
|
||||
// Whiten the factor and add entries for it
|
||||
// iterate over all variables in the factor
|
||||
const JacobianFactor whitened(jacobianFactor->whiten());
|
||||
for (JacobianFactor::const_iterator key = whitened.begin();
|
||||
key < whitened.end(); ++key) {
|
||||
JacobianFactor::constABlock whitenedA = whitened.getA(key);
|
||||
// find first column index for this key
|
||||
size_t column_start = columnIndices[*key];
|
||||
for (size_t i = 0; i < (size_t)whitenedA.rows(); i++)
|
||||
for (size_t j = 0; j < (size_t)whitenedA.cols(); j++) {
|
||||
double s = whitenedA(i, j);
|
||||
if (std::abs(s) > 1e-12)
|
||||
entries.emplace_back(row + i, column_start + j, s);
|
||||
}
|
||||
}
|
||||
|
||||
JacobianFactor::constBVector whitenedb(whitened.getb());
|
||||
size_t bcolumn = currentColIndex;
|
||||
for (size_t i = 0; i < (size_t)whitenedb.size(); i++) {
|
||||
double s = whitenedb(i);
|
||||
if (std::abs(s) > 1e-12) entries.emplace_back(row + i, bcolumn, s);
|
||||
}
|
||||
|
||||
// Increment row index
|
||||
row += jacobianFactor->rows();
|
||||
}
|
||||
|
||||
// ...and make a sparse matrix with it.
|
||||
SparseEigen Ab(row, currentColIndex + 1);
|
||||
Ab.setFromTriplets(entries.begin(), entries.end());
|
||||
return Ab;
|
||||
}
|
||||
|
||||
SparseEigen sparseJacobianEigen(const GaussianFactorGraph &gfg) {
|
||||
return sparseJacobianEigen(gfg, Ordering(gfg.keys()));
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
@ -36,9 +36,18 @@ using namespace boost::assign;
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// static SharedDiagonal
|
||||
// sigma0_1 = noiseModel::Isotropic::Sigma(2,0.1), sigma_02 = noiseModel::Isotropic::Sigma(2,0.2),
|
||||
// constraintModel = noiseModel::Constrained::All(2);
|
||||
typedef boost::tuple<size_t, size_t, double> BoostTriplet;
|
||||
bool triplet_equal(BoostTriplet a, BoostTriplet b) {
|
||||
if (a.get<0>() == b.get<0>() && a.get<1>() == b.get<1>() &&
|
||||
a.get<2>() == b.get<2>()) return true;
|
||||
|
||||
cout << "not equal:" << endl;
|
||||
cout << "\texpected: "
|
||||
"(" << a.get<0>() << ", " << a.get<1>() << ") = " << a.get<2>() << endl;
|
||||
cout << "\tactual: "
|
||||
"(" << b.get<0>() << ", " << b.get<1>() << ") = " << b.get<2>() << endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianFactorGraph, initialization) {
|
||||
|
|
@ -74,8 +83,8 @@ TEST(GaussianFactorGraph, sparseJacobian) {
|
|||
// 9 10 0 11 12 13
|
||||
// 0 0 0 14 15 16
|
||||
|
||||
// Expected - NOTE that we transpose this!
|
||||
Matrix expectedT = (Matrix(16, 3) <<
|
||||
// Expected
|
||||
Matrix expected = (Matrix(16, 3) <<
|
||||
1., 1., 2.,
|
||||
1., 2., 4.,
|
||||
1., 3., 6.,
|
||||
|
|
@ -93,17 +102,32 @@ TEST(GaussianFactorGraph, sparseJacobian) {
|
|||
3., 6.,26.,
|
||||
4., 6.,32.).finished();
|
||||
|
||||
Matrix expected = expectedT.transpose();
|
||||
// expected: in matlab format - NOTE the transpose!)
|
||||
Matrix expectedMatlab = expected.transpose();
|
||||
|
||||
GaussianFactorGraph gfg;
|
||||
SharedDiagonal model = noiseModel::Isotropic::Sigma(2, 0.5);
|
||||
gfg.add(0, (Matrix(2, 3) << 1., 2., 3., 5., 6., 7.).finished(), Vector2(4., 8.), model);
|
||||
gfg.add(0, (Matrix(2, 3) << 9., 10., 0., 0., 0., 0.).finished(), 1,
|
||||
(Matrix(2, 2) << 11., 12., 14., 15.).finished(), Vector2(13., 16.), model);
|
||||
const Key x123 = 0, x45 = 1;
|
||||
gfg.add(x123, (Matrix(2, 3) << 1, 2, 3, 5, 6, 7).finished(),
|
||||
Vector2(4, 8), model);
|
||||
gfg.add(x123, (Matrix(2, 3) << 9, 10, 0, 0, 0, 0).finished(),
|
||||
x45, (Matrix(2, 2) << 11, 12, 14, 15.).finished(),
|
||||
Vector2(13, 16), model);
|
||||
|
||||
Matrix actual = gfg.sparseJacobian_();
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
EXPECT(assert_equal(expectedMatlab, actual));
|
||||
|
||||
// BoostTriplets
|
||||
auto boostActual = gfg.sparseJacobian();
|
||||
// check the triplets size...
|
||||
EXPECT_LONGS_EQUAL(16, boostActual.size());
|
||||
// check content
|
||||
for (int i = 0; i < 16; i++) {
|
||||
EXPECT(triplet_equal(
|
||||
BoostTriplet(expected(i, 0) - 1, expected(i, 1) - 1, expected(i, 2)),
|
||||
boostActual.at(i)));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -0,0 +1,72 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testSparseMatrix.cpp
|
||||
* @author Mandy Xie
|
||||
* @author Fan Jiang
|
||||
* @author Gerry Chen
|
||||
* @author Frank Dellaert
|
||||
* @date Jan, 2021
|
||||
*/
|
||||
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/SparseEigen.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
using boost::assign::list_of;
|
||||
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(SparseEigen, sparseJacobianEigen) {
|
||||
GaussianFactorGraph gfg;
|
||||
SharedDiagonal model = noiseModel::Isotropic::Sigma(2, 0.5);
|
||||
const Key x123 = 0, x45 = 1;
|
||||
gfg.add(x123, (Matrix(2, 3) << 1, 2, 3, 5, 6, 7).finished(),
|
||||
Vector2(4, 8), model);
|
||||
gfg.add(x123, (Matrix(2, 3) << 9, 10, 0, 0, 0, 0).finished(),
|
||||
x45, (Matrix(2, 2) << 11, 12, 14, 15.).finished(),
|
||||
Vector2(13, 16), model);
|
||||
|
||||
// Sparse Matrix
|
||||
auto sparseResult = sparseJacobianEigen(gfg);
|
||||
EXPECT_LONGS_EQUAL(16, sparseResult.nonZeros());
|
||||
EXPECT(assert_equal(4, sparseResult.rows()));
|
||||
EXPECT(assert_equal(6, sparseResult.cols()));
|
||||
EXPECT(assert_equal(gfg.augmentedJacobian(), Matrix(sparseResult)));
|
||||
|
||||
// Call sparseJacobian with optional ordering...
|
||||
auto ordering = Ordering(list_of(x45)(x123));
|
||||
|
||||
// Eigen Sparse with optional ordering
|
||||
EXPECT(assert_equal(gfg.augmentedJacobian(ordering),
|
||||
Matrix(sparseJacobianEigen(gfg, ordering))));
|
||||
|
||||
// Check matrix dimensions when zero rows / cols
|
||||
gfg.add(x123, Matrix23::Zero(), Vector2::Zero(), model); // zero row
|
||||
gfg.add(2, Matrix21::Zero(), Vector2::Zero(), model); // zero col
|
||||
sparseResult = sparseJacobianEigen(gfg);
|
||||
EXPECT_LONGS_EQUAL(16, sparseResult.nonZeros());
|
||||
EXPECT(assert_equal(8, sparseResult.rows()));
|
||||
EXPECT(assert_equal(7, sparseResult.cols()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
Loading…
Reference in New Issue